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Abstract: The goal of this dissertation is to explore a system of fractional evolution equations with
infinitesimal generator operators and an infinite time delay with non-local conditions. It turns out
that there are two ways to regulate the solution. To demonstrate the presence of the controllability
of mild solutions, it is usual practice to apply Krasnoselskii’s theorem in the compactness case and
the Sadvskii and Kuratowski measure of noncompactness. A fractional Caputo approach of order
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make our results seem to be applicable, a numerical example is provided.
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1. Introduction

Fractional calculus is a branch of mathematics that studies derivatives and integrals of
arbitrary order, which are known as fractional derivatives and fractional integrals [1-3]. It
is a generalization of classical calculus, which studies derivatives and integrals of integer
order. Fractional calculus can be used to model various physical phenomena, such as
diffusion and wave propagation, and can also be used to solve certain types of differential
equations. It has applications in many fields, such as engineering, physics, chemistry,
economics, and finance. Fractional studies based on the economic and financial systems
have been investigated by [4,5].

Calculating the targets to which one can influence the state of a dynamical system
using a control parameter that appears in the equation is the mathematical problem of
controllability. It is the ability to control the evolution of a system by manipulating its
parameters. This concept is used in many areas, such as control theory, dynamic systems,
and engineering. Controllability is a key factor in the analysis and design of systems and
can help to ensure that the system behaves as desired. Understanding the controllability of
evolution equations can help us to better understand and control the behavior of complex
systems [6,7]. Controllability results for impulsive neutral differential evolution inclusions
with infinite delay have been discussed in [8].

Non-local conditions are also used to incorporate the effect of external influences, such
as boundary conditions, on the system. By combining fractional derivatives and non-local
conditions, we can gain a better understanding of the behavior of the system (see [9-13]).

Therefore, fractional evolution equations with infinite delay are a type of differential
equation that can be used to model a variety of physical phenomena. These equations
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involve a fractional derivative of a certain order, which is a generalization of the standard
derivative. The infinite delay term in the equation allows for the consideration of memory
effects, which can be important in many real-world systems. Solving these equations
can be challenging, but they can provide valuable insights into the behavior of complex
systems [14-17]. In more detail, the existence and uniqueness of mild solutions for impul-
sive fractional equations with non-local conditions and infinite delay have been concerned
in [14]. The existence of solutions for neutral fractional differential equations with indefinite
delay is examined using the Banach fixed point theorem and the nonlinear alternative of
the Leray-Schauder type [15]. In [16], Santra et al. have discovered a few necessary and
sufficient criteria for the oscillation of the solutions to a second-order neutral differential
equation. Local estimates, fixed point arguments, and a novel Halanay-type inequality
are used to address the dissipativity, stability, and weak stability of solutions for non-local
differential equations involving infinite delays [17].

In 2021, Bedi et al. [18] introduced a study about controllability and stability results for
fractional evolution equations involving generalized Hilfer fractional derivatives such as

{ Dy EU(t) = AL(t) + EH (L, 8U(E)) + E(RB(E), teI =104,
1

1Ry (0) = s, fly € D(&).

Such that ]D)S’f;x portray the Hilfer fractional derivative of order 0 < v < 1 and
type 0 < y < 1. The control function U(-) is defined in the Banach space of admissible
control functions L*(J, U) and the state (-) takes value in Banach space Q). Furthermore,
£: U) — D(&) is bounded linear operator and $: J x Q — D(&) C Q. Therefore,
(A, €) is closed linear operator generates an exponentially bounded propagation family
{T(t),t <0} from D(&) to Q. I(()lft)(l_n); ! is the Riemann-Liouville fractional integral of
order (1 —1t)(1 —).

In [19], the researchers examined the existence of solutions and the approximate
controllability of the Atangana-Baleanu fractional neutral stochastic inclusion with an
infinite delay of the form

ABCDS. [p(8) — N(&, pr)] € A[p(§) — N(& pe)] + Bu(?)
+F (& pg) + G(E pe) Wg 2 cel=[od,
p(¢) = ¢(¢) € L=(Q,B;U), Z € (—o0,0].

As above, A4BCD? is the ABC fractional derivative of order v € (0,1),2l: D(A) C H —
H is infinitesimal generator of an g-resolvent operator {54(¢) }¢>0, {Tp(&) }&>0 is a solution
on separable Hilbert space (H, || - ||).

We are inspired by these masterpieces and hope to establish controllability of mild
solution with infinite delay and non-local conditions of the evolution equation

DU () = A% (&) + F (G, % (§), %) +By(), ¢e]=][0,a],
% (§) = ¢(S), & € (—00,0], )
%'(0)+n(%) = o, Fex

where (9§ () is the Caputo fractional derivative of order 1 < v <2,.% : [0,a] X X X Py —
X is a continuous function, ¢(§) € & (7 4 later judgment will be made over the phase
space that is acceptable), a is a finite positive number, the state % () takes values in a
Banach space X, the control function y(-) is given in a Banach space L?(J,U) and 5(-) is a
continuous function on X. Furthermore, % represents the state function’s history up to the
present time ¢, i.e., %:(R) = % (§ + R) for all & € (—o0,0].

Let A be an infinitesimal generator of a strongly continuous cosine family {.#"(&) }#>0
of uniformly bounded linear operators defined on a Banach space X. The Banach space
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of continuous and bounded functions from (—oo, 4] into X provided with the topology of
uniform convergence is denoted by C = C,((—o0, 4], X) with the norm

|%llc = sup [Z(Q)]

(:G ( —oo,a]

and let (B(X), ||.|/(5(x)) be the Banach space of all linear and bounded operators from X to
X. As { ' (8) } >0 is cosine family on X, then there exists 90t > 1 where

[ ()] <o 6)

The fractional derivatives have many different types of definitions, among them
Riemann-Liouville, Caputo, Hadamard, Conformable, Katugampola, Hilfer, etc. Riemann—
Liouville and Caputo fractional derivatives are the most important ones in the applications
of fractional calculus. A close relationship exists between the Riemann-Liouville frac-
tional derivative and the Caputo fractional derivative. The Riemann-Liouville fractional
derivative can be converted to the Caputo fractional derivative under some regularity
assumptions of the function. However, the Caputo derivative is the most appropriate
fractional operator to be used in modeling real-world problems. The Caputo derivative is
of use in modeling phenomena that take account of interactions within the past and also
problems with non-local properties. Furthermore, the initial conditions take the same form
as that for integer-order differential equations, namely, the initial values of integer-order
derivatives of functions at starting point [20]. However, the Riemann-Liouville approach
needs initial conditions containing the limit values of the Riemann-Liouville fractional
derivative at the starting point, whose physical meanings are not very clear.

Partial differential equations with time ¢ as one of the independent variables, or non-
linear evolution equations, can be found in many areas of mathematics as well as in other
scientific disciplines including physics, mechanics, and material science. Nonlinear evolu-
tion equations include, among others, the Navier-Stokes and Euler equations from fluid
mechanics, the nonlinear reaction-diffusion equations from heat transfers and biological
sciences, the nonlinear Klein-Gordon equations and nonlinear Schrodinger equations from
quantum mechanics, and the Cahn-Hilliard equations from material science (see [21-23]
and references cited therein).

Functional evolution equations with infinite-time delay arise often in mathematical
modeling of a wide range of real-world issues, and as a result, research into these equations
has gotten a lot of interest in recent years (see [24-28]. The time delay in the robot teleop-
eration system occurs when the system operator and the remote robot are far apart [29].
Zhang et al. [30] used the principle of compressed mapping to discuss the existence and
uniqueness of the fractional diffusion equation with time delay. Anilkumar and Jose [31]
analyzed a discrete-time queueing inventory model with service time and back-order in
inventory. Some results of the existence and uniqueness of fixed points for a C-class of
mappings satisfying an inequality of rational type in b-metric spaces have been studied by
Asadi and Afsha [32].

The remainder of the text is organized as follows. We introduce some basic ideas
and lemmas in Section 2. In Section 3, we formulate the mild solution of (2) by assuming
that A is an infinitesimal generator of a strongly continuous cosine family {.#(¢) }#>0. In
Section 4, we handle the infinite delay by phase space. Section 5 provides the results of
our analysis using two cases first in a compact case and second by the measure of the
non-compactness technique. Section 6 offers an example that can be used as an application.

2. Preliminaries

In this section, a few concepts and terms related to the components of the research
report are offered.
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Definition 1 ([33]). The expression of the Caputo derivative of fractional order q for at least nth
continuously differentiable function g: [0,00) — R is

ot
DIg(t) = r(l) /0 (t—s)" 9 1gM(s)ds, n—1<q<nn=[q+1,

n—q
where [q] denote the integer part of the real number q.

Definition 2 ([33]). Given below is the Laplace transform for the Caputo derivative of order
ge(1,2]

L{D]g(t)} = AIG(A) — AT71G(0) + A172G'(0),
where G(A) = [~ e Mg(t)dt.
Definition 3 ([33]). The left fractional integrals of the function f is

Lif(t) = r(lq)/at(tp —s°)9 7 f(s)ds, t>a, q>0.

Lemma 1 ([34]). Letn € N, n —1 < q < nand x(t) € C"[0,1]. Then,
39%(t) = x(t) +ag+art + - +a,_1t" L.

Definition 4 ([35]). The Kuratowski measure of noncompactness y(-) is defined on bounded set S
of Banach space X as

m
u(S): :inf{5>0:SCUSi,SiC%,diam(Si)<(5 for i:1,2,...,m;m€N}
i—1

where
diam(S;) = sup{||x1 — x2| : x1,x2 € S;}.

The following properties of the Kuratowski measure of noncompactness are well-
known.

Lemma 2 ([35]). Let .7, % be bounded in Banach space X. The following properties are satisfied:
() u(7) =0, ifand only if T is compact, where T means the closure hull of 7;

(i) (7)) = u(7) = u(conv), where conv.7 means the convex hull of 7;

(i) u(k7) = |k|u(7) forany k € R;

G(v) T C Z implies u(7) < u(%);

™ W T +2) <u(T)+u(#) where 7 + % ={x|lx=y+z,y€ 7,z€ R},

i) W(FURX) =max{u7, u#};

(vii) Ifthe map H : D(H) C X — 9) is Lipschitz continuous with constant c, then y(H(U)) <
cu(U) for any bounded subset U € D(H), where ) is another Banach space.

Lemma 3 (Sadovskii fixed point theorem [35]). Let ¥ be bounded closed and convex subset
in Banach space X. If the operator 2 : ¥ — Y is continuous p-condensing, which means that
w(2(Y)) < u(Y). Then, 2 has at least one fixed point in Y.

Definition 5 ([36]). Claim that the family of bounded linear operators { # (t) }scr, , namely maps
the Banach space X — X, has just one parameter, is referred to as a strongly continuous cosine

family if and only if



Axioms 2023, 12, 264

50f17

@ 2 0)=1I
() A (s+1t)+H(s—t)=2L(s)H (t) forall s,t € Ry;

(iii) 7 (t)x is a continuous on R for any x € X.
The substantially continuous cosine family {# (t) }1cwr, , which is connected to the sine family
{f(t)}teR+, is defined by
t
Z(Hx = / H (s)xds, x € X,t € Ry.
JO

Lemma 4 ([36]). Unless A is an infinitesimal generator of a strongly continuous cosine family
{# (t)}ier, on a Banach space X, then || (t)| gx) < Me®,t € Ry will be obtained. Then,

given the value of A > & and (&?,00) C o(A) (the resolvent set of the operator A), we obtain

AR(A% A)x = / e M (Dxdt,  R(A%A)x = / eMP(xdt, xeX
0 0

where the operator R(A; A) = (Al — A) ™1 is the resolvent of the operator A and A € o(A).

The operator A is characterized by

42
Ax = ﬁ%(o)x, V x € D(A)
where D(A) = {x € X : # (t)x € C?(R,X)}. Clearly, the infinitesimal generator A is a
densely defined operator in X and closed.

Definition 6. The Mainardi-Wright-type function when t > 0 is

=

Mp(t) = Z“o nC(1—p(n+1))’

pe(0,1), teC

and achieves

r(1+¢)

Tiips) 77

M, () > 0, /0 65 M, (0)d0 =

3. Setting of Mild Solution

We first illustrate the following lemma before giving a formulation of the moderate
solution of (2).

Lemma 5. Allow (2) to hold. Then, there is

Ha(@)p(0) + [ (1) (&0 — n(%))dt + [£(& — )T L (& )F (t)dt
+ [ (@ - T Z(E Byt ¢ e 0,a),

¢ € (—o0,0],

where1/2 < g =% <1,

(@) = [ My(0) (E6)de,

Zy(@s) =g [ 6My(6)2((E ~ y0)de,

and My is a probability density function defined by Definition 6.
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Proof. Presume that A > 0

UMy = [T @z FO)+BY() = [Te M (@) + By(E)de.

0

Let A® € ¢(A). Now, that (2) has been transformed using Laplace and Lemma 4,
we attain

U(A) = (A" = &)~ [F(A) + BY(A) +A719(0) + A2(G0 — (%))
— p-1 /000 NS 7 (5)(0)ds + A2 /()we*AqSX(t)(go —y())ds

+ " oM () [F(A) + BY (1)) ds.

Let6 € (0,00),9 € (,1) and ¥,(8) = 6,,%MQ(Q“O. Then,

/Ooo e_)‘g‘l’q(e)de = e_/w,for g€ (%,1).

If we take p — 0, we will still have the same answer for the first term in Lemma 5
in [37]. Afterward, we can write:

PUs /Om e (s)g(0)ds = /Oooﬂ%@)ﬂo)d@-

In addition, since £[1](A) = A~!, we obtain

A [ e ) 6o - as = [T e [0 - neayar b

The last term, [~ e "2 (s)[F(A) + BY(A)]ds, is identical to the final term in [37] if
we set p — 0 and set f(p) = F(A) + BY(A), we get

/°° e ML (s)[F(A) + BY(A)]ds = /Ooo eAé{/Oé(C ~)ITLLGE DT () + %y(t)]df}dé-

0

To sum up, we can obtain

S [N ¢
[T e w@ie= [7 e @0+ [ 0@ - )
¢
+ [ @00 L@ N1 0+ By(oe
The intended outcome is attained by using the inverse Laplace transform. O

Definition 7. A function % (&) € (C(—oo,al; X) is considered to be the mild solution of (2) if
it fulfills

Ha(@)p(0) + [ o (4)(Eo — (% ))dt
2@ = +[S@ -0 L& O[T U, ;) + By(D)dt, & e 0,a],

¢(S), ¢ € (—00,0].

Remark 1 ([37]). It is obvious to infer from the linearity of (&) and £ (&) for any ¢ > 0O that
Hq(&) and £4(C, s) are also linear operators where 0 < s < &.

As a corollary, when p approaches 1, the proofs of all subsequent Lemmas are identical.
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Lemma 6 ([37]). The following estimates for #;(¢) and £, (G, s) are verified for any fixed ¢ > 0

and0 <s<¢

Ho(@)x| <Mx| and lo%<c,s>x|gl?g“;)|x|.

Lemma 7 ([37]). For any 0 < s < ¢ and { > 0, the operators (&) and Z(s,¢) are
strongly continuous.

Lemma 8 ([37]). Pretend that ¢ (§) and £ ({, s) are compact for every 0 < s < t. In that case,
forany 0 < s < ¢, the operators (&) and £ (s, &) are compact.

4. Abstract Phases Space %, and Infinite Delay

By using the handy method of [14,15], we demonstrate the abstract phase &7 ». Let us
say that 7 = C((—00,0],[0,00)) with ff)oo S (t)dt < oo are used. Finally, we have stated
that for every ¢ > 0

P ={A:][-¢,0 — X, Aisbounded and measurable}
identically, create the space & with

|22 = sup |A(s)|, forall Ae 2.
s€[—c,0]

Let us specify the space

0
Py :{Ql: (—00,0] — X such that for any ¢ > 0,2[_.o € & and / F(t) sup A(s)dt < oo}.
—0 t<s<0

If & 4 are configured as

0
165, = [ () sup [A(s)|at, YA€ 2y,
—oo t<s<0

then (Z,4,| - || #,, ) is a Banach space.
The space is the first thing we consider

Py :{U : (—00,a] — X such that v|| ,jis continuous, v|(_s = ¢ € @,f}

which has the norm
Ixll7,, = sup [lo(s)ll + 9]z,
s€(0,a]
Definition 8 ([38]). The prerequisites are true ¥t € [0,a]. If v : (—o0,a] — X, a > 0, such that
¢ €Dy

1- vreyjf;

2. There are two function B1(t), B2 (t) such that B1(t): [0,00) — [0, 00) is a continuous function
and By (t): [0,00) — [0,00) is a locally bounded function which are independent to v(-)
whereas

[0l 2, < Br(t) sup [[o(s)[| + B2 (D)9l 2., ;

O<s<t

3. |lo(t)|| < Hl|v¢|| 2, , where H > 0 is constant.
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Currently, the operator is defined 7 : & ;» — & 4 as follows
)+ J§ Hq(H) (& — (%))t
H(U)(G) = +fo BT 19%(5 H[F(t) + By(t)ldt, ¢ €[0,4],
¢(5), Z € (—o0,0].

The function represented by () : (—o0,a] — X should be considered as

[0, &€ (0,a],
”@{ #(0), &e(~w00]

After that, 2(0) = ¢(0). We indicate the function defined by « for each 2 € C([0, 4], X)
with 2°(0) = 0 and

_ [ Z(@), ¢€(0,4q,
K(8) = { 0, Fe (—ZO,O].

If % (-) satisfies that % () = (% )(¢) for all { € (—o0,a], we can decompose that
U (G) =«(8) + 2(E), ¢ € (—oo,a], it denotes % = Kz + s for every § € (—oo,a] and the
function Z(-) satisfies

2(0) = H©90) + [ H1)(G0 — -+ )
+ /Og(g COILL (D[ F (x4 k0 + ) + By (1)]dt

Set the space © = {Z € C([0,4], %), Z(0) = 0} equipped the norm

1Zle = sup [|Z(Z).
¢eloal

Therefore, (O, || - ||@) is a Banach space. Assume that the operator & is defined as
follows: Let the operator & : ® — © be formulated as follows:

B(2)(0) = H4(O90) + [ H(1)(E — nlx+ )
+ /Oé(é - t)q_l.,%(tj, B)[F (x4 32,k + 22) + By(t)]dt

The argument that the operator .s# appears to have a fixed point is similar to the claim
that & has a fixed point. Therefore, we continue to demonstrate this.
The subsequent assumptions, we make:

7Z1) The function .7 : | x X x &4 — X is a continuous and there exist dy¢,d,+ > 0 such
that for all (§, %, %), (5, V,Vz) € [ X X X Py,

|Z (& %, ) — F &V, V)l <dipll% — V|| x + dop| % — Yzl 2, -

(Z,) The linear operator #: U — X is bounded, and let W: L.2(J,U) — X be the linear
operator defined by

Wy — /O “(a— 01712 (a, ) By(t)dt,

has an invertible operator W~! which takes value in IL?(], U) /kerW, and there exist
two positive constant 91 and 91 such that

1B] <01, W <D,
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(Z3) The function 17: X — X is continuous and there exist there exist a positive constant L,
such that
(%) =y < LylZ = 71l.

Lemma 9. Let B] = supgc(o B1(¢) and B = SUPz¢[0,q] B2(&) where B1(-) and Ba(-) be
defined in Definition (8). Assume that the assumptions (1) and (Z3) are satisfied with ¢ =
gm[ax]|52(§, 0,0)| and v, = [7(0)|. Then,

€[0,a

|78+ 55,0 + 320)|| < (dagH + oy ) (B1(OZ o + B2 |6l 2, ) + ¢
< (diH + dog ) (8111 Z o + B39 9, ) + ¢ 2 ¢

and
(%) < LyllZ || + vy

Proof. By the same way in Lemma 9 in [37], we can easily reach the desired result. [J

5. Controllability Results

Definition 9 ([39]). The system (2) is said to be controllable on the interval | if for any ¢(0) € 2
and &, ya € X, there exists a control y € L?(],U) such that a mild solution % (-) of system (2)
satisfies % (a) = ya.

Lemma 10. If the assumptions (Z1) and (Z3) hold, and y, € X is target point. Then the con-
trol function

&) =W ya = H)gl0) + [ 0)(G0 e )l
—I—/O (a— 1)1 L (a, ) F (tx+ 50,5 + %t)dt} :

steers the state 2 () of the system (2) from initial points ¢(0) and o to target point y, at time a.
Furthermore, the control function y(&) has an estimate ||y(¢|| < IT where

a2
1= O(llvall + % +-t), T =M +a(llZoll + vy)), and //lozm‘

Proof. Consider the solution Z(¢) of (2) defined by (7). For ¢ = a, we get

P (a) = Ho(a)$(0) + /0 () (0 — 7k + )t + /Ou(a TG (0, F (T + 0+ 522

+ 0= 20, 0B [y = i (a)p(0) + [ (00—l + )i

+ a0 G 0,07 (@ xr)df} it

— Ha(@)p(0) + [ Ap(0) G~ e+ )t + [ (@~ 0170, 0)F (5,54 6+ )
Wy = A @)90) + [ A7) G — et e

a
+/ (a— r)‘ifl,ij(a, T)F (T, 6 + 2, %k + %T)dq_—} =Yy
0
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Furthermore, by using Lemma 9 the control function estimate

ly@l < ||w| [nyu + [ (2)p(0)[| + /O”H%/qu(néon {1+ 52) [t
+ /Ou(a — )N Z (a, 1) ||||-F (£ + 5,50 + %t)||dt]

2
<0, |:||ya| + M ([|¢0) || + a(l|Zoll +y)) + qugm

which ends the proof. O

5.1. Compactness Case

In this subsection, we assume the compactness of controllability of mild solution and
investigate its existence of it by employing Krasnoselskii’s fixed point theorem to deduce
the first result about the existence of the solution of the problem (2).

Theorem 1. Assume that (I;), (I,) and (I3) are satisfied. Then the problem (2) is controllable
on ] if

Lo =M, [uDﬁLW + MoB}(drgH + dzf)] <1
where M1 = D107.4).
Proof. Designate
Yo={Z€b:|Z]p<p}
where

L () { o+ ol (d1yH + g ) B39, + 1} + Al
[ .
1-L,

The operator ® can be divided as a sum of two operators ¢, and &, which can be
defined as

(€:2)0) = H@©90) + [ ()G~ i+ )i

+ /Og(g —OILL @ D[ F (4 + 54+ ) + B (ya — H4(a)p(0) |at,
(©:2)(€) =8 [ (e -0 (0| [ 0G0 - -+ e

+ /Ou(a — 1)1 L (a,T) F (T, K+ 3¢, k0 + %T)dr} dt.

Then, for u,v € Y,, it follows that ||&1(2)u + &,(2)v|| < p, which concludes that
®1(u) + B2(v) € Y,. Now, we want to show that & maps bounded sets into the bounded
set. For any p > 0 and for any 2 € Y, and in light of Lemma 9, we have
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I®2)@1| < M(Ip(O)] +alo]l + 7))
oty (1 H + dog) (BT 2 o + B3 1911, ) + ]
+. 4 [[lyall + (O + a(l1Zoll +y))
+ oty [(dyH + dog) (B Z o + B3Il .. ) + €]
= (1) { o+ ] (dryH -+ dog ) B3I 7,0 + 1 | + 0]
+ p40B1 (1 + 44)(disH + dap)p < p.

The following step is to confirm that the operator & is equicontinuous. In the light
of the situations (Z7) and (Z3), &, is continuous. Let v1,vp € Jsuch that0 < v; < vy <g,
then the following scenarios are therefore possible.

1(12)(02) = (612)(01) | < A5 (v2) — A4 (@) |19 O)]] + M ([0l + 7y) (v2 — v1)

me MO0
{QF(ZQ) - ql"(;q)2 (lyall + im|¢(0)||)} (v2 —vq)7

+ (€4 D102yl + MU@I) [ (02 = 7 Ly, 1) = (01 = 17 Zy o1, )

To evaluate the last term, we can follow the steps

(02— D17 LZ (00, 8) — (01 — )T (0, ) + (01 — )T L. Z(vg, t) — (01 — t)ﬁ*l.,sfq(vl,t)Hdt

(%1
_/
0

< /Ovl[(vl — )17 — (v — )T || L (0o, ) || At + /07’1 (01 — 112 (02, 1) — L (01, 1) | dt
= qr?;@ (02 =)+ (o] —o])] + Avl(vl — 17| Ly (0a, ) — Zy (0, 1) |dt

which implies that
[(812)(02) = (6:1.2) (1) < [|H(02) — 25 (01)[1 |90 || + (|| ol + 7y) (v2 —v1)
[ MY ileDz(HyaH +§)ﬁ||4)(0)||):| (vp — 1)1

qr(29) * qr(2q)

+ (4 D102l + OO) D) 7 [ (02— 00)7 + (] o)
40+ 00a(1gall + O )) [ (02— 177 Zy(o2,6) — (01 — 177 Lo, ).

Due to compactness of operator %;(y) and .Z;(t,y) (see Lemma 8), we infer that
|61(2)(v1) — &1(z)(v2)]| — 0 as v — v1. Thus, & is a relatively compact on Y,. By
Arezela Ascoli Theorem the operator &1 is completely continuous on Y,. The only thing
left to do is provide evidence that &; is a contraction mapping. Consider 2, Z* € Y. Then,

forany ¢ € [0,4],
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1(622)(5) — (6227) (D ly

Dlﬁ)zfm g - Q*l /a . *
< Sty o @07 I [T+ (o 450) e
+ﬂ/a(a—r)ﬂ*1||y(r K+ 52, Ko+ 922) — F(T,6" + 38,50 + 3¢ )|dT}
I—,(zq) 0 7 s T T 7 s T T
[ * m ¢ -1 * *
< My |aMLy|[x — K HYJFW/O (a =) (difllc — & |ly + doyllkr — %[ 2, )dT

i . m e _ .
< Ay | aMLy ||k —x HY+T2¢1)/O (a—1)1 1(d1fH+d2f)||KTKT||g%dT}

< M [ MLy + A0 (dypH + dog) | e — [y

= Lolle —x"[y-

In a sense, the fractional evolution equation with non-instantaneous impulsive (2) has
at least one mild solution on Y, according to the Krasnoselskii Theorem. In view of the
results in Lemma 10 and our results here, the evolution system (2) is controllable on J. The
evidence is now complete. [

5.2. Noncompactness Case

The existence of a solution in the case of noncompactness of controllability of mild
solution can be further explored by utilizing Kuratowski’s measure of noncompactness
through applying Sadovskii’s fixed point Theorem 3. This matter can be addressed by
considering the next existence result.

Theorem 2. Assume that (1), (Ip) and (I3) are satisfied. Furthermore, suppose that the follow-
ing inequality holds

Po = (1+.44) [aMLy + Mo} (dhgH +doy)| < 1.
Then, the evolution system (2) is controllable on J.

Proof. Firstly, we show that &: Y, — Y, is continuous where Y, C 0 is defined in the
proof of Theorem 1. Plainly, the subset Y, is a closed, bounded, and convex nonempty
subset of the Banach space 6. Let the sequence { 2"}, of a Banach space 6 such that
Z" — Z asn — o0. For 0 < ¢ < a, by the strongly continuity of .#;(¢) and .Z;(¢, t) and
Lemma 9, we get

1(©27)(¢) = (62) (9l < im/oé [l (" + 3¢) =1 (k + 3¢) || dt

g

+ rémzq) /O (&= )T Y F (K" + 50,6 + 30) — F(t, K+ 56,5 + ) ||dt
¢ m e .

<Ly [ — vt + o) | @ =07 (gl = el + gt = ], )t
¢ m 4

< n_ — — )1 n__

= SDTLU/O HK KHYdt T F(ZQ) /0 (g t) (dlfH+ dzf) HKt Kt”L@%dt

< [aDﬁLW + MoB (dlfH+d2f)} 12"~ Z|y — 0

as n — oo which implies that &: Y, — Y, is continuous.
Next, we show & maps Y, into itself. It is verified as in Theorem 1. The operator &
must be shown to satisfy the inequality of the Kuratowski measure of noncompactness in
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Lemma 3 as the last phase of this argument. Indeed, consider 2, Z* € Y,. Then, for any
¢ € [0, a], with using the assumptions (Z;)-(Z3), we get

1(612)(5) = (6:.27)(Dly < 93?/0C 1170 + 5¢) — 5 (6" + 52) | dt

Mmad ¢
T;q) /0 (G = BT T (b5 + 52, k0 4 50) = F (4,6 + 32,57 + 3a)||dt

< [asz,7 + B (dlfH + dzf)} 12— 2*|y.
By exploiting the results obtained in the previous theorem, we find that

1(62)(@) — (627)(@) v < [(B12)(0) = (©12") @)y + (©:2)(2) ~ (622D Iy
< (1+44) |aMLy + Mo (g H + dop) || 2 — 2|y

which implies that
(&2)(8) = (&27)(E)lly = Poll 2 — 27 ly-

Let U C Y, be closed such that there are U;, i = 1,2,...,n; n € Nand U C UL, U;
Then, according to the definitions of diameter and Kuratowski measure of noncompactness,
we conclude that

n
u(eU) = inf{r: diam(&U;) <r, U C ui}
i=1

- inf{r: sup{ [ (62)(&) — (BZ*)(E)|y} <1, %, Z* € U, U C U ul}
i=1

n
§‘13pinf{r sup{||Z (&) *(é)||y}§r,9,f,ff*€ui,ll§Uui}
i=1
—mpmf{r diam(U;) <r, U C | J Ui}
i=1
= Pou(U).

By Lemma 2 (vii), we know that for any bounded U € Y,

u(&U)) < Pop(U).

This means that the operator &: Y, — Y, is -condensing. It follows from Sadovskii
fixed point theorem the operator & has at least one fixed point 2° € Y,, which is just a mild
solution to problem (2). This with Lemma 10 completes the proof. [

6. An Application

Consider the following fractional evolution with infinite delay

Dy U8, x) = A% (8,x) + .F (8, % (8, x), %(Z,x)) + By(E,x), ¢€[0,1],xel0,n]
2(ex) = L 0%, € (Zoo,0),x € [0,7]
2'(0,%) + Lsin% (&%) = L, & e 01],x € [0,7]
%(6/0 :%(6/1): ’ E[ ]

Let the space X = C([0,1] x [0, 7], R) and U = L?|0, 1] the space of a square-integrable
function equipped with the norm

1

1% | 12101) = (/01|02/(g)|2d§)2_
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Furthermore, the operator A: D(A) C X — X is defined as A = a = . with a domain

aZ
v, W% S 36}

d
D(A) = —
) = {# x|,
Apparently, the operator A is densely defined in X and is the infinitesimal generator
of a resolvent cosine family J# (&), ¢ > 0 on X. Here, we take v = g which implies g = %

and A = 2, x € [0, 7], we take H = 1, 1(8) = S5 = By = 3, $2(8) = A B3 = 5,
14(@)] < 1,1.%(E 1)) <036 Y0 <s<g<1.
The non-local function given by (% (¢,-)) = 15 sin% (¢, -), so we have

Hsm% sm"I/H |z — v

=13

Let h(s) = ¢”%,5 < 0, then [°_ (s)ds = 1, we define

0
917 = [ ¢" sup 9(2)]ds.

- s<E<0

Then, we can say
1
—0.5¢ _ L
Assume that the operator B = 911 where I is the identity operator. For x € [0, 7|, we
also assume the operator W: (U,R) — X is defined as

1
19115, = lIze

1 —1
Wy =901 [ (1-)7 %0,y %)
and its norm can be given easily by

69
5T(3)

ol = | 1 -0)7 Z o v < 221l

6531
5(3)”

Plainly, W is linear and bounded operator with W < Therefore Assumption 2

holds for a suitable constant O, > 0.
Finally, suppose that

P 1 . Uz
J(@,%(C),%@)—ﬁg sm%+5+§%

Clearly .7 : [0,1] x X X &, — X is continuous and satisfies

1 .1, . . 1
17(&, % (E), %) — F (&, V(E), Vo) = 1583 Isin% —sin V|| - + P 1% — Vel 2, -

Then, we have d;; = % and dyf = ¢ L and

¢ Case I: Krasnoselskii fixed point theorem:
To check the presumption of Theorem 1, we have L, ~ 0.167757.#; < 1 which is
true for all 0 < O < 4.48439/9;. Thus, all assumptions of this theorem are satisfied.
Therefore, the problem (2) has a unique mild solution and is controllable on (—co, 1].
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*  Case II: Sadovskii fixed point theorem:
To check the presumption of Theorem 2, we have B, ~ 0.167757(1 + .#;) < 1 which
is true for all 0 < O < 3.7321/9;. Thus, all assumptions of this theorem are satisfied.
Therefore, the problem (2) has a unique mild solution and is controllable on (—co, 1].

7. Conclusions

In the current study, we analyzed an infinitely delaying system of fractional evolution
equations. The foundation for our observations is furnished by current functional analysis
approaches. In order to provide a reasonable remedy, we employ the unbounded operator
A as the generator of the strongly continuous Cosine family. In the case of the problem (2),
we had to examine a moderate controllability solution by two different arguments, the
first of which used compactness technology and the second, noncompactness. By using
the Sadovskii fixed point theorem and the measure of non-compactness, we present a new
approach to analyzing the controllability of mild solutions. The first argument is based on
Krasnoselskii’s theorem, which allows % (&, %, %g) to behave as

|7 (& %, %) — F &V, V)l <dipll% — V|| x + dop| % — Yzl 2, -

The tools of fixed point theory in the case of simple assumptions are simple to install
and enhance the range of results offered to meet our demands. The second result, which
is rooted in the Kuratowski measure of noncompactness and the Sadovskii fixed point
theorem, establishes a stipulation to utilize the operator of the solution is a condensing
map in order to comply with the Lipschitz continuance, ensuring that the problem at hand
has no prior solutions. Our conclusion is then illustrated with a numerical example that
looks at a function that meets all the requirements.
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