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Abstract: This investigation aims to explore certain variables which are considered responsible
for generating pressure anisotropy in dynamical spherically symmetric stellar systems against the
background of the stringy-inspired Gauss–Bonnet modification of general relativity. We explore
the hydrostatic equilibrium of self-gravitating systems by taking into account the modified form
of Tolman–Oppenheimer–Volkoff for the quadratic- f (G) gravitational model. In this respect, we
formulate a differential equation in terms of the Weyl curvature scalar, also described as an evolution
equation, which is essential for understanding the evolution of the stellar structure. Finally, we
conclude that the existence of some fluid variables such as shear, heat flux and the irregular behavior
of energy density in the presence of an extra degree f (G)-terms in the fluid flow that are the elements
that cause anisotropy in the initially isotropic stellar structure. The comparison of the presented
results with those of the classical model shows that they are physically relevant and compatible.

Keywords: general applied mathematics; equations of motion; relativistic gravitational theories other
than Einstein’s; cosmology; black holes
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1. Introduction

In recent times, researchers devoted considerable attention to modified gravitational
theories (MGT): specifically, on their interesting character in understanding accelerated cos-
mic expansion. One appealing aspect of higher-curvature MGT is that they can contribute
to illustrating the inflationary mechanism of the universe by adding geometrical quantities
in the usual Einstein–Hilbert action (EHA) [1,2] without the inclusion of a scalar field or
dark energy (DE). The Gauss-Bonnet (GB) curvature scalar is

G = R2 + Rµυση Rµυση − RµυRµυ, (1)

where, R corresponds to the Ricci scalar, while Rµυ and Rµυση denote the Ricci and Riemann
tensors, respectively. This curvature invariant arises in the re-normalization of an intriguing
quantum theory of fields in the curved spacetimes and plays a significant role in this
perspective. Further, it should be pointed out that the scalar invariant G also emerges in the
low energy actions of certain notable theories [3]. This work is devoted to analyzing the
interesting results of an increasingly popular modified f (G) gravity [4], with gravitation
lagrangian L f (G) = R + f (G). It is notable that, in four dimensions, G is referred to
as a topological invariant. However, it may provide several captivating cosmological
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consequences in higher dimensions [5] and naturally arises in the string theories [6]).
Further, it is demonstrated that certain realistic variants of the f (G) cosmological models
are compatible with all the tests in the solar system.

It is significant to observe that the GB scalar curvature results from the unique incor-
poration of the square of curvature computing tensorial quantities such as R2, RµυRµυ and
Rµυση Rµυση . This unique combination gives rise to a modified GB cosmological model,
commonly termed the f (G) theory of gravitation. This cosmological model is exceptionally
appealing for understanding the phenomenon of DE and the cosmological expansion [4].

• This modification of gravity is conformal with the standard tests of our solar system
and presents a natural substitute for gravitational DE [7,8].

• This gravitational alternative may be utilized for explaining the unified description of
dark matter as well as DE. Some of the important cosmological consequences such as
rotational curves of spiral galaxies may also be studied successfully in f (G)-gravity.

• During cosmic evolution, it naturally illustrates the transition from deceleration to an
acceleration of the cosmic era [9].

• This gravitational model can describe the cosmic transition from the non-phantom to
the phantom phase, without the inclusion of any exotic matter [10]. It is observed that
the phantom era appears to be in this modification, thereby avoiding the happening
of Big Rip.

• It is expected that this alternative gravity can be utilized with the assistance of effective
DE dominance. Therefore, the problem of coincidence can also be resolved naturally
by the phenomena of cosmic speed-up.

• This form of gravity model can also be advantageous in the field of high energy
physics, such as for the justification of hierarchy problem [11] and for the unification
of gravity with grand unified theories. However, it is important to note that the
above-stated features are possible for some specific models, but not exhibited by all
f (G) models.

The framework of the GB-gravitational model is interesting for numerous reasons,
including the preservation of significant aspects of the gravitational theory, such as dif-
feomorphism invariance, Bianchi identities, and second-order quasi-linear gravitational
field equations. The presence of GB correction in the standard EHA action is a useful
scheme for curing the shortcomings associated with f (R)-gravity such as the existence of
ghosts [12]. Moreover, Flaut and Shpakivskyi [13] described that some functions of the GB
quantity are linked to the conserved quantities. The GB combination of squared-curvature
terms can avoid the emergence of pseudo-spin-2 ghosts [14–16], and is also useful in ruling
out the matter instabilities [17], regardless of the fact that they are consistent with local
gravitational restrictions as well as late-time cosmic acceleration. Additionally, the GB-
cosmology is considered one of the interesting cosmological models to cure finite-time
future singularities [18] and is also beneficial in regularizing the standard EHA-action.

In relativistic astrophysics, compact stars are produced through a significant gravita-
tional process called the gravitational collapse of highly dense and massive stellar systems.
The small size and enormously massive framework of the stellar systems result in very
strong gravitational interactions. The physical characteristics of compact stars involve cer-
tain relationships between the force of gravity and the interior pressure of stellar structure
that gives rise to the equilibrium state, commonly characterized as hydrostatic equilib-
rium. This phenomenon plays a crucial role in studying interior stellar structures. The
solutions for compact stars are often illustrated through hydrostatic equilibrium equations
or Tolman–Oppenheimer–Volkoff (TOV) equations. In the field of gravitational physics
and modern relativistic astrophysics, the investigation of compact stellar objects has gained
particular interest due to their massive structure and interesting features.

Initially, Gamow [19] discussed the transition of neutron stars and computed the
critical mass of neutron stars using homogenous matter configurations, as formerly at-
tempted by Stoner [20], for white dwarfs. Gamow’s conception was concerned with the
comparison of Newtonian gravitational pressures and ultra-relativistic pressures. Chan-



Axioms 2023, 12, 257 3 of 21

drasekhar [21,22] calculated the maximal mass of white dwarfs and also discussed their
stability and evolution. Oppenheimer and Volkoff [23] proposed that a new phase com-
posed of neutrons will form when the pressure inside stellar matter reaches a certain level.
It is notable that the first consistent neutron star model involving internal energy contribu-
tions was developed by Tolman, Oppenheimer and Volkof. Moreover, Oppenheimer and
Snyder [24] performed a comprehensive study on the continued gravitational contraction.
Several studies have been performed to explore the dynamics of compact stellar objects
using TOV equations [25–29]. The TOV equations provide significant correspondence
between certain physical quantities such as mass, pressure, and energy density of a specific
stellar structure. In addition, TOV equations enable us to calculate the deviations of the
stellar pressure and energy density related to the mass of compact self-gravitational system.

Pani et al. [30] developed a formalism to study the self-gravitational structure by
considering the GB-corrections. Moreover, they analyzed the stability and existence of
compact stars in quadratic curvature corrections. The presence of quadratic GB-corrections
(αG2) enables us to obtain stable stellar configurations with high central densities for
α < 0, as observed in the case of neutron star [25]. The radii and the masses of the
corresponding stellar systems differ from classical general relativity (GR) inconsiderably,
since the quadratic term G2 is small as compared to the R term. However, the nature of
mass density dependence alters. In a small range of densities, the mass tends to grow as the
central density rises. Bhar et al. [31] executed a comparative study regarding the dynamics
of compact stars in both GR and GB-gravity. They discussed that the values of density and
pressure are higher in the case of the GB star model than in the GR model. There are some
reviews on the study of f (G) gravity [32,33] which describe the implication of f (G) gravity
on a few cosmic puzzles.

The GB curvature scalar is shown to be a conserved topological invariant when inte-
grated into four-dimensional spacetime; its addition to the EHA action has no contribution
to the gravitational dynamics. However, a non-minimal coupled configuration of GB-scalar
induces some salient characteristics as an alternative to gravitational DE. More recently, Gla-
van and Lin [34] suggested a generic four-dimensional GB-gravitational theory and found
that the GB-term produces non-trivial gravitational effects in four dimensions. The central
theme of their investigation was the rescaling of the GB curvature scalar by α→ α/(D− 4)
in a D-dimensional manifold, under the limit D→ α. Silva et al. [35] observed that compact
stars manifest spontaneous scalarization in GB-gravity. Most recently, Nashed et al. [36]
studied the characteristics of anisotropic compact systems using TOV equations in the
limit of D → 4. Oikonomou [37] explored certain solutions representing singular cos-
mological bounce having type-IV singularity at the bouncing point, using f (G) gravity.
Bruck and Longden extended the notion of Higgs inflation [38] and studied a few realistic
inflationary models during reheating [39], with the help of GB-coupling. Makarenko and
Myagky [40] considered a f (G) gravitational model to analyze the bouncing nature that
existed in the early-time universe and provided some asymptotic solutions for this model.
Santillán [41] investigated certain homogeneous and isotropic models without potential via
a four-dimensional GB model. Tariq et al. [42] pointed out certain elements responsible for
the emergence of anisotropy of self-gravitating systems through the principles of Palatini
f (R)-corrections. Bhatti and Yousaf [43] studied the instability bounds for spherically
charged self-gravitational systems for the f (G)-corrections. Bhatti et al. [44,45] investigated
the quasi-homologous evolution of charged and uncharged complex self-gravitational
fluids within the dynamics of GB-cosmology.

In this endeavor, we have generalized Herrera’s work [46] to formulate the stability
condition for isotropic pressure through the mechanism of a GB-cosmological model. This
investigation is mainly concerned with finding a solution to the following issues:

• What material characteristics of the considered fluid configuration are responsible for
changing the behavior of the fluid configuration from isotropic to anisotropic?

• What circumstances cause an originally isotropic distribution to remain isotropic
throughout its evolution?
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The overview of the manuscript is described as follows: In Section 2, we review
the standard formalism of modified f (G) cosmology, equations of motion, gravitational
mass, as well as the corresponding TOV equations for the quadratic GB corrections. In
Section 3, we explore a significant differential equation in terms of Weyl curvature scalar
by constructing significant relations between pressure anisotropy, energy density as well
as geometric and dissipative variables. In Section 4, we discuss in detail the necessary
condition for the existence of pressure anisotropy along with the evolution of the self-
gravitational structure. We also identify the physical factors that are responsible for the
departure from this condition in the same section. In Section 5, we formulate the mass–
radius diagrams for the G + αG2 gravity model. Finally, the conclusion is drawn in Section 5.

2. Tolman–Oppenheimer–Volkoff Equations in f (G) Gravity

The standard gravitational action in the context of f (G) cosmological model was
initially proposed in [4] as

S f (G) ≡ SG + SM =
∫ ( 1

2κ2 R + f (G)
)√
−gd4x +

∫
Lm
√
−gd4x, (2)

where SG and SM are the gravitational and matter actions, respectively. Moreover, R is the
curvature scalar and g = det(gµυ), κ2 is the coupling constant and Lm symbolizes the density
of matter Lagrangian. In our calculations, we choose the units such that κ2 ≡ 8πG̃ = 1, and
G̃ denotes the Newtonian constant. Furthermore, f is a generic differentiable function of
the GB scalar, G, which is a total differential in four dimensions. Hence, the GB-equations
remain invariant under the choice of f (G) = G. However, for other functional forms, this
factor makes non-trivial effects to the equations of motion.

Thus, upon varying the gravitational action (2) w.r.t. gµυ, we obtain

Gµυ + 4
[

Rµσυη + Rσυgµη − Rσηgυµ − Rµυgση + Rµηgυσ (3)

+
R
2
(gµυgση − gµηgυσ)

]
∇υ∇σ fG +

1
2
(G fG − f )gµυ = Tµυ,

where fGG ... =
dn f (G)

dGn . The higher-order f (G) gravity terms emerging in the above equation
can be advantageous in exploring the inflationary, as well as the acceleratory mechanism
of our universe. Here, ∇σ is an operator used for covariant differentiation. Moreover,
the tensorial quantities Gµυ and Tµυ represent the Einstein tensor and usual stress–energy
tensor, respectively.

Tµυ = ρVµVυ + Πµυ + Phµυ + (χµVυ + χυVµ)q. (4)

where in this equation, q = q(t, r) is the magnitude of the heat flux, P represents the fluid’s
pressure, ρ denotes the energy-density and Vµ stands for the four-velocity vector. For
comoving coordinates, these quantities follow the following relationships

Vµχµ = 0, qµVµ = 0, χµχµ = 1, VµVµ = −1. (5)

In addition, Πµυ is the anisotropic pressure tensor, which can be defined via unit
four-vector χµ and projection tensor hµυ as

Πµυ = Π
(

χµχυ −
1
3

hµυ

)
, where hµυ = VµVυ + gµυ, (6)

where Π ≡ Pr − P⊥, with Pr and P⊥ being pressure components along the radial and
transverse directions, respectively.

The investigations on anisotropic compact stars consistently remained a subject of
growing attention in the field of relativistic astrophysics. Generally, the anisotropy in



Axioms 2023, 12, 257 5 of 21

compact stellar systems arises due to the existence of combinations of several types of
fluid distributions, such as rotation, the existence of the external fields, the presence of
superfluid [47] and phase transitions. When densities associated with gravitational systems
are normally higher than the particular nuclear-matter density, the pressure is split into
two distinct constituents i.e., Pr and P⊥. This fact gives rise to the anisotropic condition that
(Pr) is not equal to (P⊥). Therefore, in an anisotropic fluid configuration, the above-stated
pressure components are unequal, i.e., Pr 6= P⊥. This effect was suggested by Jeans [48] for
self-gravitational systems. Later on, Lemaître [49] also studied the local anisotropy within
the formalism of classical GR.

The anisotropic effects in understanding the framework and evolution of gravitational
configurations were initially proposed by Bowers and Liang [50]. They formulated the
modified form of hydrostatic equilibrium equation which includes the anisotropic effects,
for spherically symmetric matter distributions in GR. In this respect, several studies are
available in the literature [51,52]. Bhar et al. [53] studied anisotropic stellar objects models
for spherically symmetric geometry and discussed various physical features corresponding
to the compact objects. Maurya et al. [54] studied a family of relativistic stellar solutions
for static spherically symmetric anisotropic fluids in hydrostatic equilibrium by using the
Buchdahl ansatz.

The spherically symmetric solutions are considered to be the most significant tools in
describing the physical characteristics and structure of isotropic, as well as anisotropic com-
pact stellar objects, both in GR and MGT. Shamir [55] analyzed the dynamics of anisotropy
in compact stellar configurations through the mechanism of different f (G) cosmological
models. The same author discussed the dynamics of the anisotropic universe through
the background of string-inspired f (G) gravity. He discussed the energy conditions and
proved that the failure of strong energy conditions indicates the emergence of an anisotropic
universe in this modified theory. Bhatti et al. [56] examined the evolution of relativistic
compact objects such as neutron stars by constructing the TOV equations in the f (R, T) cos-
mological model. Maurya et al. [54] investigated the dynamics of compact stellar systems
under an anisotropic environment by assuming a time-independent spherically symmetric
source. Nashed and Capozziello [57] investigated the dynamics of anisotropic compact ob-
jects by constructing some solutions corresponding to self-gravitational structure for f (R)
cosmology. Mustafa et al. [58] formulated spherically symmetric solutions corresponding
to three different anisotropic stellar systems for f (G) gravity. They investigated different
features corresponding to the stellar systems by constructing the modified TOV equations.

Next, choosing comoving coordinates, the generic form of dynamical spherically
symmetric metric is given as

ds2 = −A2(t, r)dt2 + B2(t, r)dr2 + C2(t, r)(dθ2 + sin2 θdφ2), (7)

where the spherical coordinates are labeled as xµ = (t, r, θ, φ), with µ = 0, 1, 2, 3. In case of
comoving observers, the above metric fulfills the following relationships:

Vµ =
1
A

δ
µ
0 , χµ =

1
B

δ
µ
1 , qµ =

1
B

qδ
µ
1 , (8)

where the heat flux vector q is a function of temporal as well as radial coordinates, i.e.,
q = q(t, r).

The irrotational fluid distribution can be entirely discussed via three types of physical
parameters, i.e., shear tensor (σµυ), expansion scalar (Θ) and four-acceleration (aµ). The
shear tensor is defined as

σµυ = Vµ;υ + a(µVυ) −
1
3

Θhµυ. (9)
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The non-vanishing constituents of the above equation are

σ11 =
2σ

3
B2, σ22 =

σ33

sin2 θ
= −σ

3
C2, where σ =

1
A

(
Ḃ
B
− Ċ

C

)
, (10)

where σ denotes the shear scalar and dot indicates t-derivative. The tensor σµυ can also be
defined in terms of projection tensor and unit four vector as

σµυ = σ

(
χµχυ −

1
3

hµυ

)
. (11)

On the other hand, Θ and aµ are defined as

Θ = Vµ
;µ, aµ = Vµ;υVυ. (12)

These variables are responsible for measuring the expansion and the influence of iner-
tial forces on the fluid distribution, respectively. Their non-null components are defined as

Θ =
1
A

(
2

Ċ
C
+

Ḃ
B

)
, a1 =

A′

A
, aµaµ =

(
A′

AB

)2

, where aµaµ = a2. (13)

Here, a denotes the four-acceleration scalar and prime indicates the r-derivative.
Next, the gravitational field equations for f (G) gravity, using Equations (4)–(7), are

defined as

ρ =
1

A2

(
Ċ
C
+ 2

Ḃ
B

)
Ċ
C
− 1

B2

[(
C′

C

)2

−
(

B
C

)2
+

2
C

(
C′′ +

B′

B
C′
)]

+φ1Ġ2 fGGG + (φ1G̈ + φ2Ġ + φ3G ′) fGG −
1
2
(G fG − f ), (14)

q =
2

AB

(
Ċ′

C
− A′Ċ

AC
− C′ Ḃ

CB

)
+ (η1Ġ + η2G ′ + η3Ġ ′) fGG , (15)

Pr =
1

B2

(
C′

C
+ 2

A′

A

)
C′

C
− 1

A2

[
2

C̈
C
+

(
Ċ
C

)2

− 2
ĊȦ
CA

]
− 1

C2

+ϕ1G ′
2 fGGG + (ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ) fGG +

1
2
(G fG − f ), (16)

P⊥ =
1

B2

[
C′′

C
+

A′′

A
− B′A′

BA
−
(

B′

B
− A′

A

)
C
C′

]
− 1

A2

[
C̈
C
+

B̈
B

+
Ḃ
B

(
Ċ
C
− Ȧ

A

)
− ȦĊ

AC

]
+ (ψ1Ġ2 + ψ2G ′

2
+ ψ5ĠG ′) fGGG

+(ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′) fGG +
1
2
(G fG − f ). (17)

where the values of the f (G)-corrections φi, ϕi and ψi (i = 1, 2, . . ., n) are given in the
appendix, as in Equations (A1)–(A15), respectively. The above-stated gravitational field
equations can be reduced for classical GR, under usual limits. The hydrostatic equilibrium
equation is obtained by contracting the Bianchi identities ∇µTµ

υ for υ = r as

dPr

dr
= −(ρ + Pr)

A′

A
+ 2(P⊥ − Pr)

C′

C
. (18)

This result generalizes the TOV equation [50] for the GR cosmological theory for
anisotropic stellar systems. The above equation is satisfied identically for υ = t.
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We have used the definition of the Misner–Sharp (MS) mass function suggested
in [59,60] as

m(t, r) =
C
2

R3
232, (19)

where C = C(t, r) is the proper radius of the spherical star and R3
232 is the component of

the Riemann tensor. Zhang et al. [61] formulated the MS-mass function in n-dimensional
f (R) gravitational theory. By following a similar procedure, Maeda [62] generalized the
MS-mass function in the Einstein-GB gravitational model for the n (≥ 5) dimensional
metric. As we are working in the four-dimensional spacetime, the definition of MS-mass
therefore remains similar to that of GR [59].

Thus, the geometric mass m(t, r) of a spherically symmetric star can be written using
MS formalism mentioned in Equation (19) as

m(t, r) =
C
2

R3
232 =

C
2

[
1−

(
C′

B

)2

+

(
Ċ
A

)2]
. (20)

Here, Ẽ ≡ C′
B =

(
1 + U2 − 2m

C
) 1

2 and U = Ċ
A . Now the corresponding TOV equations

can be obtained by writing the f (G) field equations in terms of dPr
dr and DC(m) = 1

C
dm
dr .

Then, after some manipulation, we obtain

DC(m) =
1
2

(
ρ + q

U
Ẽ

)
C2 +

1
2

φ1Ġ2 fGGGC2 +
1
2

[
C2(φ1G̈ + φ2Ġ + φ3G ′

)
+

qU
Ẽ

(
η1Ġ + η2G ′ + η3Ġ ′

)]
fGG −

1
4
(G fG − f )C2, (21)

dPr

dr
=−

[
ρ + Pr −

1
B4

{
ϕ1G ′

2 fGGG +
(

ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ
)}

+
1

A2B2

{
φ1Ġ2

GGG +
(
φ1G̈ + φ2Ġ + φ3G ′

)
fGG
}]A′

A

+

[
2(P⊥ − Pr)−

2
B4

{
ϕ1G ′

2 fGGG +
(

ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ
)}

fGG

]
C′

C

− 1
2B2

d
dr

( f − G fG) + T (G), (22)

where the higher-curvature T (G) terms are defined in the Appendix A.

2.1. The f (G) Gravity Model

The geometrically modified gravity models have been found to be quite captivating in
investigating the large-scale structure formation and acceleratory behavior of our universe.
Abdalla et al. [63] discussed an extended gravitational model constructed by the addition of
positive and negative powers of the Ricci scalar, R. The presence of R2 corrections provide
DE, which is helpful in achieving cosmic acceleration and escaping from cosmic doomsday.
Researchers investigated different theoretical gravity models to realize the phenomenon
of cosmic speed-up. The existence of modified geometric terms in the standard action of
classical GR may also be utilized to discuss the issues of early-time inflation, Big Bang
singularity and several cosmological enigmas [64]. To include the GB-corrections, we
assume an arbitrary functional form of f (G) in the following form [65]

f (G) = G + αG2, (23)

where α is any constant real number. It is expected that this type of gravitational models
(parallel to quadratic- f (R) models [66,67]) may be helpful to reproduce the cosmological
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history in an appealing way. The authors in [26] formulated the TOV equations within
the background of the f (R) = R + αR2 model. We want to formulate the TOV equations
using the quadratic model (23). This form may enable us to evaluate some interesting fea-
tures of the anisotropic spherically symmetric compact systems. Recently, Bhatti et al. [68]
considered the quadratic- f (G) gravity model (23) to analyze the complexity of anisotropic
fluid configurations evolving homologously. The same authors investigated the dynam-
ics of gravastars [69,70], spherically symmetric stellar fluids, using f (G) cosmological
model, with and without the incorporation of electric charge, respectively. Then, using
Equation (23) in Equations (21) and (22), we get

DC(m) =
1
2

(
ρ + q

U
Ẽ

)
C2 + α

[
C2(φ1G̈ + φ2Ġ + φ3G ′

)
+

qU
Ẽ

(
η1Ġ + η2G ′ + η3Ġ ′

)]
− 1

4
αG2C2, (24)

dPr

dr
= −

[
ρ + Pr −

1
B4

(
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

)
+

2α

A2B2

(
φ1G̈ + φ2Ġ

+φ3G ′
)]A′

A
+

[
2(P⊥ − Pr)−

2
B4

{(
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

)}
2α

]
C′

C

+
α

2B2GG
′ + T (G), (25)

2.2. Mass-Radius Relationship

We presented the fourth-order f (G) gravitational equations, which are then used to
formulate one of the TOV equations for the considered quadratic gravity model. In order to
investigate the physical features of complex systems (i.e., compact objects), toy models play
a very interesting role. In this respect, one must formulate the mass-radius diagrams or the
Lane–Emden equation to study the anisotropic stellar systems more effectively. For this
purpose, we present the mass-radius relationship and observe some new physical insights
using this result. The ratio between the mass and radius of the stellar structure is defined
as the compactness factor, ( m

r ). We define the compactness factor corresponding to the
spherical source by the following expression

m(t, r)
r

=
1
r

{
1
2

∫ r

0

(
ρ + q

U
Ẽ

)
C2C′dr + α

∫ r

0

[
C2(φ1G̈ + φ2Ġ + φ3G ′

)
+

qU
Ẽ

(
η1Ġ + η2G ′

+η3Ġ ′
)]

C′dr− α

4

∫ r

0
G2C2C′dr

}
, (26)

where ρ is the energy density, q is the heat flux vector, U = Ṙ
A is the velocity of the collapsing

fluid, E = R′
B , C is the metric coefficient, G is GB invariant, and φi, ηi (i = 1, 2, 3) are the

GB-corrections. For the metric coefficients A, B and C, we consider the Krori and Barua
solution [71] for physical significance as follows

A(t, r) = t(s1r2 + s2), B(t, r) = t(s3r2 + s2), C(t, r) = r, (27)

For a better understanding, we analyze this relation (26) graphically by plotting the
graph of ( m

r ) for the model (23). Figure 1 presents the trends of ( m
r ) for various values of

model parameter (α = 0, 1, 3, 5, 7). For all the chosen values of the parameter, ( m
r ) depicts

maximum behavior at the core of the compact object; it gradually decreases towards the
boundary with increases in r and t. However, the behavior of the graph corresponding
to α = 0 (in the absence of modified terms) exhibits the existence of normal matter, as
it shows less compactness in comparison to other values of α. It enlighted the role of
GB-corrections and helps us in the comparison with GB. The graphical analysis shows that
a wide range of relativistic massive compact systems may arise in quadratic GB-corrections.
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Thus, it is expected that this effect may produce more compactness in the stellar objects
than GB, which is a useful result from an observational standpoint. Consequently, we
could conclude that a model of this type may help us to explore some unknown highly
dense, non-static self-gravitational dissipative systems that have not been discovered in GR.

Figure 1. Plots of m
r for α = 0 (Red), α = 1 (Pink), α = 3 (Green), α = 5 (Cyan) and α = 7 (Magenta).

3. Differential Equation for the Weyl Curvature Scalar E
We shall now proceed to construct a significant relation between the E , density inho-

mogeneity, dissipative variables and the f (G) corrections. In classical GR, the Weyl tensor
is used to evaluate the influence of tidal forces along with the spacetime curvature. The
Weyl tensor (Cσ

µυη) may be described in terms of certain curvature, measuring tensorial
quantitative as

Cσ
µυη = Rσ

µυς +
1
2
(Rµυδσ

η − Rµηδσ
υ + Rσ

υ gµη + Rσ
η gµυ) +

1
6

R(δσ
υ gµη − δσ

η gµυ). (28)

Generally, the quantity Cσ
µυη can be decomposed in terms of two components: one is

the magnetic component Hµυ (which vanishes in spherically symmetric case). However,
the electric component, (Eµυ), is defined as

Eµυ = CµσηυVσVυ, (29)

whose only non-zero components are

E11 =
2E
3

B2, E22 = −E
3

C2, E33 = E22 sin2 θ.

Here, E is known as the Weyl scalar, defined as

E = −1
2

[
C′′

C
− A′′

A
−
(

C′

C
− A′

A

)(
C′

C
+

B′

B

)]
1

B2 −
1

2C2 (30)

+
1
2

[
C̈
C
+

(
Ċ
C
+

Ȧ
A

)(
Ḃ
B
− Ċ

C

)
− B̈

B

]
1

A2 .
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The relation (29) can also be defined in an alternative form as

Eµυ = E
[

χµχυ −
1
3

hµυ

]
. (31)

Next, using f (G) field equations along with Equations (20) and (30), we have

E =
1
2
(ρ−Π)− 3m

C3 − α
(
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′ − φ2G ′′ − φ2G ′ + φ3Ġ

)
. (32)

Next, the integration of Equation (24) gives

m =
1
2

∫ r̃

0

(
ρ + q

U
Ẽ

)
C2C′dr̃ + α

∫ r̃

0

[
C2(φ1G̈ + φ2Ġ + φ3G ′

)
+

qU
Ẽ

(
η1Ġ + η2G ′ + η3Ġ ′

)]
C′dr̃− α

4

∫ r̃

0
G2C2C′dr̃. (33)

The combination of Equations (32) and (33) implies

E = −Π
2
+

1
2C3

∫ r̃

0
C3ρ′dr̃− 3

2C3

∫ r̃

0
q

U
Ẽ

C′C2dr̃− 3α

4

∫ r̃

0
G2C′C2dr̃

− 3α

C3

∫ r̃

0

[
C2(φ1G̈ + φ2Ġ + φ3G ′

)
++

qU
Ẽ

(
η1Ġ + η2G ′ + η3Ġ ′

)]
C′dr̃

− α
(
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′ − φ2G ′′ − φ2G ′ + φ3Ġ

)
. (34)

The above equation describes a basic relationship between the Weyl scalar, anisotropy
of pressure, irregular energy density, dissipative variables and the f (G)-contributions.

Next, we formulate an important equation for the Weyl curvature scalar that performs
a primary role in this manuscript. This equation relates the Weyl scalar and some matter
variables as well, as the f (G)-corrections, to analyze the evolution of dissipative anisotropic
self-gravitational fluid. This differential equation was primarily defined in [72]. Later
with [73,74], from the conservation equations (Bianchi identities) can easily be obtained.

d
dt

[
E − 1

2
(ρ−Π)

]
=

3Ċ
C

[
1
2
(ρ + P⊥)− E −

α

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)
− α

4
G2
]

+
3
2

AC′

BC
q +X (D)

1 , (35)

where the term X (D)
1 is defined in the appendix. This equation was originally suggested

by Ellis [72,75]. Later on, it was used in several investigations regarding GR as well
MGT [46,76,77]. It plays a significant function in this investigation. This is the evolution
of the equation for different quantities accountable for the appearance of inhomogeneous
behavior of energy–density. Against the dynamics of GR, Herrera et al. [76] discussed that
the Weyl tensor, anisotropic stresses, and the dissipative variables are certain parameters
for generating inhomogeneities in the framework of the self-gravitational stars. How-
ever, in our case, quadratic- f (G) corrections also play an effective role in controlling the
inhomogeneities in the energy density distribution, alongside GR terms. The presence
of higher-derivative quadratic GB corrections may increment the inhomogeneities of the
energy density of the compact stars. After some manipulation, we use this differential
Equation (35) as an evolution equation for the pressure anisotropy in the coming section. In
this way, we may obtain certain conditions that ensure the propagation in time of anisotropy
of pressure for f (G)-corrections.

4. The Evolution of the Isotropic Pressure

The understanding of relativistic stellar systems under extreme conditions provides a
crossroads of the theories regarding gravitational interactions. It represents an extensive
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review of the strong-field regime of standard GR and initiates productive pathways to
modern cosmology and gravitational physics. This idea has given the way to different
gravitational alternatives that alter the standard action of GR. These gravity models modify
the TOV equations [50] of stellar structure. This has opened a new insight to constrain the
modified theories with the current and forthcoming observations of various kinds of stars.
The modifications of GR involving the GB term (G) have recently gained a lot of attention
as a possible explanation of gravitational DE.

In this respect, Abbas et al. [78] investigated the formation of anisotropic stellar
structures within the dynamics of f (G) model of gravity. They analyzed the stability and
the regularity conditions corresponding to several anisotropic compact systems. Momeni
and Myrzakulov [26] formulated spherically symmetric solutions for a stellar system
such as a neutron star by constructing a hydrostatic equilibrium equation (commonly
known as TOV equation) in f (G) gravity. Momeni et al. [79] studied the dynamics of the
stellar system by formulating TOV equations within the frameworks of non-local f (R)
gravitational theory. Yousaf et al. [80] examined the effects of Palatini f (R) gravity on
the evolution of static anisotropic compact systems by calculating the TOV equations.
Momeni et al. [27] explored the modified form of the TOV equation corresponding to a
static spherically symmetric stellar system in the mimetic gravity model. It is observed that
the investigation of stellar systems in alternative gravity models enables us to explore some
appealing astrophysical features. By assuming different realistic f (G) gravitational models,
Shamir and Naz [29] examined several structural features of anisotropic stellar systems
such as pressure anisotropy, effective density, TOV equations, mass-radius ratio as well as
the stabling bounds. The same authors scrutinized the effects of the charge distribution
on the isotropic compact stars by finding the TOV equations within the formalism of
some realistic f (G) models [81]. Bhatti et al. [44,45] studied the dynamical evolution of
dissipative anisotropic stellar systems with and without the influence of electric charge by
formulating the corresponding complexity factor.

We proceed by taking into consideration the role of radial and tangential pressure in
the concept of “asymmetry”, through the mechanism of classical GR. The TOV equation for
the an anisotropic stellar system as defined in Equation (25) is

P′r = −
[

ρ + Pr −
1

B4

(
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

)
+

2α

A2B2

(
φ1G̈ + φ2Ġ

+φ3G ′
)]A′

A
+

[
2(P⊥ − Pr)−

2
B4

{(
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

)}
2α

]
C′

C

+
α

2B2GG
′ + T (G). (36)

The above-stated expression is also known as the hydrostatic equilibrium equation
in which every term has a well-known physical meanings. Here, P′r simply represents the
gradient of pressure opposing the gravity, the second and the third term correspond to
the gravitational force and the influence of pressure anisotropy, while the remaining terms
signify the f (G)-corrections. It is important to note that Pr combines with the gravitational
force term, while P⊥ fails to do so. This fact describes why the compactness of anisotropic
spherical sources is greater than those of isotropic ones, if Pr < P⊥. In Newtonian hydro-
dynamics, Pr = 0, in the second term of Equation (35), represents an intrinsic anisotropy.
Now, we propose the following explanation regarding the origin of the degression of the
anisotropic pressure condition during the evolution of a gravitational structure, departing
the equilibrium state from a static matter configuration having isotropic pressure. For
this, we consider that the gravitational source is constrained to leave its equilibrium state.
Following that, we assume a picture of the system just after the abandoning, at a time scale
smaller than the hydrostatic time, thermal adjustment time and the thermal relaxation time.
Thus, at such a time scale, we get

q ≈ U ≈ Θ ≈ σ ≈ 0⇒ Ċ ≈ Ḃ ≈ 0, (37)
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where it is notable that the t-derivative of the above-stated quantities is very small but
non-zero. Next, using the f (G) gravitational equations along with the assumption that the
considered fluid is initially isotropic we evaluate the anisotropic pressure scalar Π as

Π+

[
2α

B2

(
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

)
− 1

C2

(
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′

)]
≈ 1

A

(
B̈
B
− C̈

C

)
≈ σ̇. (38)

Consequently, we deduce that under the considered time scale, the system will leave
the original isotropic pressure condition unless we consider the shear-free (σ = 0) evolution
of the fluid. It is notable that as the gravitational system leaves its equilibrium state, two
possible situations arise:

• The dissipative fluid distribution is stable within the considered time scale (hydro-
static time);

• The fluid distribution turns unstable and enters into the time-dependent regime,
unless it reaches the final state of equilibrium.

In the first scenario, the pressure anisotropy described by Equation (38) should not
vanish in the new state of equilibrium. Thus, the consequent distribution, despite being
static, represents the anisotropy of pressure, contrary to the first one. However, in the
second scenario, the degression from the pressure isotropy condition is compulsory, despite
the shear-free evolution, for any scale of time. Then, utilizing Equations (A16) and (35),
we have

d
dt

(
E + Π

2

)
+

Ċ
C

(
3E + Π

2

)
− α

2A
GĠ − A

2
Y (D)

1

= −σ

2
(ρ + Pr)A− A

2B
q− 3α

Ċ
C

[
1
4
G2 − 1

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)]
− 1

2B

(
2A′ − AC′

C

)
+

A
4A′

αG +X (D)
1 . (39)

The above equation corresponds to Equation (24) of [46] for GR, with the difference
that it also includes the extra-curvature f (G)-corrections. Next, considering the dissipative
constituent Φdiss as

Φdiss ≡ −
1

2B

[
q′A +

(
2A′ − AC′

C

)
q
]

. (40)

Therefore, Equation (39) reads

Π̇ + Π
Ċ
C
+ 2
(
Ė + 3E Ċ

C

)
− α

A
GĠ − AY (D)

1

= −σ(ρ + Pr)A + 2Φdiss − 3α
Ċ
C

[
1
4
G2 − 1

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)]
+

A
2A′

αG + 2X (D)
1 , (41)

which is an evolution equation for the anisotropic factor Π. Observe that the above-stated
expression also corresponds to the Equation (26) of [46] for GR, with a difference of higher-
order terms emerging due to f (G) gravity. Then, integrating the last equation under the
initial condition (Π = 0 at t = 0), we get



Axioms 2023, 12, 257 13 of 21

Π = − 2
C

∫ r̃

0

(
Ė + 3E Ċ

C

)
Cdt̃− 1

C

∫ r̃

0
σ(ρ + Pr)ACdt̃ +

2
C

∫ r̃

0
ΦdissCdt̃

+
α

C

(∫ r̃

0

C
A
GĠ
)

dt̃ +
1
C

∫ r̃

0
CAY (D)

1 dt̃ +
2
C

∫ r̃

0
CX (D)

1 dt̃

− 3α

C

∫ r̃

0
C

Ċ
C

[
1
4
G2 − 1

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)]
dr̃. (42)

Here, it is worth-mentioning that there are three factors plus the f (G) contributions
causing the self-gravitational fluid to leave the isotropic pressure condition. In this equa-
tion, the first integral describes the contribution of the Weyl tensor, the second integral
corresponds to the shear stress of the fluid distribution, the third one explains the influence
of dissipative phenomenons using Φdiss, and the remaining factors show the contribution
of f (G) dark source terms that also affect pressure isotropy. Now, we reformulate the above
equation by representing the Weyl tensor termss with the help of Equation (34).

ΠĊ =
C
2
(ρ + Pr)Aσ−ΦdissC +

3α

2

[
1
4
G2 − 1

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)]
C

− CX (D)
1 +

1
2C2

d
dt

(∫ r̃

0
ρ′C3dr̃

)
− 3α

4C2

(
d
dt

∫ r̃

0
G2C2C′dr̃

)
+

3α

C2

(
d
dt

∫ r̃

0

C2

A2

(
φ1G̈ + φ2Ġ + φ3G ′

)
C′dr̃

)
− 3

2C2

(∫ r̃

0
q

U
Ẽ

C′C2dr̃
)

+
3α

C2

(
d
dt

∫ r̃

0

U
Ẽ

C2

A2 (η1Ġ + η2G ′ + η3Ġ ′)dr̃
)

. (43)

From the above-mentioned equation, we may deduce that the self-gravitational struc-
ture will leave the isotropic pressure condition only in a case where all the terms on
the right-hand side cancel each other. This is unlike in the case of GR (Equation (28)
of [46]), where the isotropy condition depends on the first four factors only. Here, the
f (G)-corrections also contribute to the anisotropy factor and force the system to abandon
the pressure isotropy condition. Therefore, it appears that the presence of higher-curvature
stringy corrections is forcing the system to leave the initially isotropic fluid configuration.
Thus, the modification of gravity increases the anisotropy, unless we assume a highly
unlikely cancelation of all the terms on the right side occurs.

We have presented the effects of the various components of Equations (41) and (42)
using graphical analysis by considering the Krori and Barua ansatz [71] presented in
Equation (26). We analyze the contributions of different fluid components and the higher-
curvature terms graphically. The graphical analysis showed how an initially isotropic
matter configuration becomes anisotropic due to the presence of dissipative fluxes, shear,
density inhomogeneity and higher-curvature terms emerging from GB-gravity. The graphi-
cal analysis (described in Figures 2–4) shows that the anisotropy is minimal at the center
and is maximal at the boundary. In this respect, Maurya et al. [82] suggested the gen-
eralized anisotropic stellar models of embedding class one by describing their physical
characteristics. In addition, Maurya et al. [83] discussed the existence of anisotropic com-
pact objects for f (G, T) gravity. Mustafa et al. [84] explored the physical features of the
anisotropic compact systems through modified teleparallel gravity. Our analysis shows
that the presented results are compatible with the above-mentioned studies.
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Figure 2. Anisotropic factor (Π) of a self-gravitating object via schematic diagrams for a suitable
model parameter value α, such as α = 0.033. One can examine through this diagram that, as the value
of r increases, the system enters into an anisotropic phase.
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Figure 3. Anisotropic factor (Π) of self-gravitating compact objects via schematic diagrams for a
suitable value of model parameter α, such as α = 0.66. One can examine through this diagram that,
as the value of t increases, the system enters into an anisotropic phase.
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Figure 4. Anisotropic factor (Π) of self-gravitating compact objects via schematic diagrams for a
suitable value of model parameter α, such as α = 0.99. One can examine through this diagram that,
by increasing the values of r and t, the system enters into an anisotropic phase.

5. Conclusions

During the last few decades, some primary findings have been realized with respect
to relativistic, as well as Newtonian fluids, by taking into account the isotropic pressure
condition. On the other hand, it is well established that the existence of a small number
of anisotropies in the fluid’s pressure may cause different consequences under the same
general condition. We also know that several physical phenomena that cause pressure
anisotropy are likely to exist in very gravitational compact systems. From the above
discussion, there stems an important question: under which situation does an initially
isotropic fluid distribution remain isotropic throughout the evolution of the compact
system? A detailed investigation is provided at the start of Section 5 for a spherically
symmetric fluid configuration, which justifies the tendency of a gravitational structure to
leave the pressure isotropy condition. In addition, this outcome implies that if a stable
matter configuration returns to a new equilibrium state, after being eliminated from this
condition, the configuration would turn out to be anisotropic.

Afterward, we analyzed the physical factors producing pressure anisotropy in the
spherically symmetric fluid distribution in detail. From Equation (43), it can be easily
identified that these physical factors are heat dissipation represented by the dissipative
factor Φdiss, shear, inhomogeneous energy density and the f (G)-corrections. Thus, we
conclude that an initially isotropic (in pressure) fluid distribution will remain in this
condition throughout its evolution, only if the fluid is homogeneous (in energy density),
shear-free (σ = 0), non-dissipative (q = 0) and the higher-curvature f (G)-corrections
vanish; this must occur unless all the terms on the right-hand side of Equation (43) vanish.
In addition, Equation (42) shows that the stability of isotropic pressure can be ensured from
certain conditions including the nonexistence of dissipation, disappearance of the shear,
conformal flatness and the vanishing of the f (G) terms; this is again shown by omitting the
possibility of cancellation of all these factors.

Herrera [46] studied several sources causing inhomogeneities in the distribution of en-
ergy density. He also examined the evolution of these sources from originally homogeneous
configuration for self-gravitational fluids, through the mechanism of GR. He reported that
a particular combination of pressure anisotropy, dissipative variables, and shear generates
inhomogeneities in energy density. In [85], it is also identified that a single dynamical
variable (scalar function) originating from the orthogonal splitting of the curvature tensor
controls the departure of the anisotropic fluids from the shear-free condition. This dynami-
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cal variable entails a specific combination of inhomogeneous density, dissipative variables
and pressure anisotropy. Here, it is notable that, in our case, this function also incorporates
the higher-order f (G)-corrections. Therefore, even if we make the assumption of vanishing
of the inhomogeneous energy density, shearing stress as well as the pressure anisotropy,
in this case, the dissipative variables will increase the digression of the pressure isotropy
condition in two ways:

• By considering its contribution as characterized by Equation (43).
• By incorporating the degression of the homogeneous energy density and the absence

of shear (σ = 0).

Consequently, we can deduce that the fluid distribution evolves by possessing the
pressure isotropy condition throughout its evolution, only under the conditions of non-
dissipation, shear-free, conformal flatness and the non-existence of GB corrections.

The central theme of this investigation is to explore the influence of the quadratic-GB
gravitational model on the modeling of non-static anisotropic self-gravitational compact
stars that would be interesting to study further in the future. We have examined the
physical aspects of the non-static stellar structure through mass-radius relationships. The
behavior of compactness of the anisotropic compact system corresponding to r and t for
different values of model parameter offer interesting future directions for this work. More
concisely, the considered realistic form of the f (G)-gravity model thoroughly justifies the
role of the GB-correction on the anisotropies of the spherically symmetric self-gravitational
fluids, as well as the stability of pressure anisotropy of the system. In addition, it is
worth mentioning that the presence of higher-curvature GB corrections follows physically
accepted phenomena and the resulting outcomes are consistent with the experimental data.
This shows the viability of the assumed gravity model in the realm of f (G)-theory.
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Appendix A

The higher-order f (G) terms appearing in Equation (14) are defined as

φ1 =
4

A2B4C2

{
C′2 A2 − A2B2 − Ċ2B2

}
, (A1)

φ2 =
4

A2B5C2

{
B′Ċ2B2 + 2C′C′′A2B− 3A2B′C′2 + A2B′B2 − 2ḂB2C′Ċ

}
, (A2)

φ3 =
4

A4B3C2

{
3ḂB2Ċ2 − A2ḂC′2 + A2ḂB2 − 2A2BĊC′′ + 2A2B′C′Ċ

}
.
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The higher-curvature f (G) terms appearing in Equation (15) are defined as

η1 =
4

A4B3C2

{
A2 A′C′2 − 2ABḂĊC′ + 2AB2ĊĊ′ − 3A′B2Ċ2 − A2 A′B2

}
, (A3)

η2 =
4

A3B4C2

{
2AA′BĊC′ − B2ḂĊ2 + 3A2ḂC′2 − 2A2BC′Ċ2 − A2B2Ḃ

}
, (A4)

η3 =
4

A3B3C2

{
A2B2 − A2C′2 + B2Ċ2

}
. (A5)

The higher-curvature f (G) terms appearing in Equation (16) are defined as

ϕ1 =
4

A5B2C2

{
2A2 A′C′Ċ− A2 ȦC′2 − 2AB2ĊC̈ + 3ȦB2Ċ2 + A2 ȦC2

}
, (A6)

ϕ2 =
4

A4B4C2

{
A′B2Ċ2 − 2ȦB2ĊC′ − 3A2 A′C′2 + 2AB2C′C̈ + A2 A′B2

}
, (A7)

ϕ3 =
4

A4B2C2

{
A2C′2 − B2Ċ2 − A2B2

}
. (A8)

The higher-order f (G) terms appearing in Equation (17) are defined as

ψ1 =
4

A4B3C

{
A2BC′′ − B2ḂĊ− A2B′C′

}
, (A9)

ψ2 =
4

A3B4C

{
AB2C̈− A2 A′C′ − ȦB2Ċ

}
, (A10)

ψ3 =
4

A3B5C

{
A2 ȦB′C′ − A2 A′ ḂC′ − AB2ḂC̈− A2 ȦBC′′ + 2A2 A′BĊ′ (A11)

− AB2B̈Ċ + A2 A′′BĊ− 2AA′2BĊ + 3ȦB2ḂĊ− A2 A′B′Ċ
}

, (A12)

ψ4 =
4

A3B5C

{
ȦB2B′Ċ− A′B2ḂĊ− AB2B′C̈− A2 A′BC′′ + 2AB2ḂĊ′ (A13)

+ AB2B̈C′ − A2 A′′BC′ − 2ABḂ2C′ + 3A2 A′B′C′ − ȦB2ḂC′
}

, (A14)

ψ5 =
2

A3B2C
{

AḂC′ + A′BĊ− ABĊ′
}

. (A15)

Appendix B

The f (G)-corrections appearing in the conservation Equation (25) are

T (G) =

[
1

C2B2

{(
ψ1Ġ2 + ψ2G ′

2
+ ψ3ĠG ′

)
fGGG +

(
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ

+ψ5Ġ ′
)

fGG
}]

+
1

B4

[
ϕ1G ′

2 fGGG +
(

ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ
)

fGG
]
.

Another conservation equation follows from the equation, ∇µTµ
υ , for υ = t as

∇µTµ
t =

ρ̇

A
+

2Ċ
AC

[
ρ + P⊥ −

2α

A6

{
φ1G̈ + φ2Ġ + φ3G ′

}]
+

B
AḂ

[ρ + Pr

+
2α

A2C4

{
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′

}]
− 1

B
[
q′

+ 2q
(AC)′

AC

]
+X (D) = 0, (A16)
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where the value of X (D) is defined as

X (D) =
1

A2
d
dt

[
1

A6

{
φ1G̈ + φ2Ġ + φ3G ′

}
2α

]
+

(
A′

A
+

B′

B
+

C′

C

){
η1Ġ

+ η2G ′ + η3Ġ ′
}

2α +
d
dr
[{

η1Ġ + η2G ′ + η3Ġ ′
}

2α
]
+

1
A6

(
2

A′

A3

− Ḃ
B
− 2

Ċ
A2C

){
φ1G̈ + φ2Ġ + φ3G ′

}
2α +

1
A2C4

(
Ḃ
B
+ 2

Ċ
C

)
×
{

ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′
}

2α− α

4A2

{
2GĠ + A

A′
G2
}

.

The values of the higher-curvature terms arising due to f (G) gravity are given as

X (D)
1 =

3αĊ
BC

{
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

}
− 3αĊ

C3

{
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ

+ ψ5Ġ ′
}
+

3αĊ
B2C

{
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

}
− 3αC′

B2C
{

η1Ġ + η2G ′ + η3Ġ ′
}

− d
dt

[
1

A2

{
φ1G̈ + φ2Ġ + φ3G ′

}
− 1

B2

{
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

}
+

1
C2

{
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′}

]
α, (A17)

X (D)
2 =

2α

B4

(
1 +

A′

A
+ 2

C′

C

){
ϕ1G ′′ + ϕ2G ′ + ϕ3Ġ

}
− 2αA′

A3B2

{
φ1G̈ + φ2Ġ

+ φ3G ′
}
− 2αC′

B2C3

{
ψ1G̈ + ψ2G ′′ + ψ3G ′ + ψ4Ġ + ψ5Ġ ′

}
,

Y (D)
1 =

1
A2

d
dt

[
2α

A6

{
φ1G̈ + φ2Ġ + φ3G ′

}]
+

(
A′

A
+

B′

B
+

C′

C

){
η1Ġ + η2G ′

+ η3Ġ ′
}

2α +
d
dr
[{

η1Ġ + η2G ′ + η3Ġ ′
}

2α
]
+

1
A6

(
2

A′

A3 −
Ḃ
B
− 2

Ċ
A2C

)
×
{

φ1G̈ + φ2Ġ + φ3G ′
}

2α +
1

A2C4

(
Ḃ
B
+ 2

Ċ
C

){
ψ1G̈ + ψ2G ′′ + ψ3G ′

+ ψ4Ġ + ψ5Ġ ′
}

2α.
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