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Abstract: Time‑optimal trajectory planning is one of the most important ways to improve work ef‑
ficiency and reduce cost and plays an important role in practical application scenarios of robots.
Therefore, it is necessary to optimize the running time of the trajectory. In this paper, a robot time‑
optimal trajectory planning method based on quintic polynomial interpolation and an improved
Harris hawks algorithm is proposed. Interpolation with a quintic polynomial has a smooth angular
velocity and no acceleration jumps. It has widespread application in the realm of robot trajectory
planning. However, the interpolation time is usually obtained by testing experience, and there is no
unified criterion to determine it, so it is difficult to obtain the optimal trajectory running time. Be‑
cause the Harris hawks algorithm adopts a multi‑population search strategy, compared with other
swarm intelligent optimization algorithms such as the particle swarm optimization algorithm and
the fruit fly optimization algorithm, it can avoid problems such as single population diversity, low
mutation probability, and easily falling into the local optimum. Therefore, the Harris hawks algo‑
rithm is introduced to overcome this problem. However, because some key parameters in HHO
are simply set to constant or linear attenuation, efficient optimization cannot be achieved. There‑
fore, the nonlinear energy decrement strategy is introduced in the basic Harris hawks algorithm to
improve the convergence speed and accuracy. The results show that the optimal time of the pro‑
posed algorithm is reduced by 1.1062 s, 0.5705 s, and 0.3133 s, respectively, and improved by 33.39%,
19.66%, and 12.24% compared with those based on particle swarm optimization, fruit fly algorithm,
and Harris hawks algorithms, respectively. In multiple groups of repeated experiments, compared
with particle swarm optimization, the fruit fly algorithm, and the Harris hawks algorithm, the com‑
putational efficiency was reduced by 4.7019 s, 1.2016 s, and 0.2875 s, respectively, and increased by
52.40%, 21.96%, and 6.30%. Under the optimal time, the maximum angular displacement, angular
velocity, and angular acceleration of each joint trajectory meet the constraint conditions, and their
average values are only 75.51%, 38.41%, and 28.73% of the maximum constraint. Finally, the robot
end‑effector trajectory passes through the pose points steadily and continuously under the cartesian
space optimal time.

Keywords: time‑optimal trajectory planning; quintic polynomial interpolation; Harris hawks
algorithm; nonlinear energy decrement strategy

MSC: 49J30; 49L20

1. Introduction
In recent years, robots have been utilized extensively in welding, spraying, handling,

palletizing, and other forms of automated production [1]. Trajectory planning is the foun‑
dation of motion control for robots. It generates the time series of the robot’s position, ve‑

Axioms 2023, 12, 245. https://doi.org/10.3390/axioms12030245 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030245
https://doi.org/10.3390/axioms12030245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12030245
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030245?type=check_update&version=3


Axioms 2023, 12, 245 2 of 20

locity, and acceleration at each point along the smooth path, based on the required perfor‑
mance index [2]. The performance, motion stability, and energy consumption of industrial
robots are strongly influenced by the quality of their planning. Therefore, trajectory plan‑
ning has long been a topic of interest among experts at home and abroad [3]. The planning
of robot trajectories can be separated into cartesian space planning and joint space plan‑
ning. Planning trajectories in cartesian space require a continuous correlation between the
path of the end‑effector and the path in joint space. Its inverse solution requires a great
deal of calculation, and the process of solving [4] involves singular‑value problems. How‑
ever, the inverse solution of joint space trajectory planning takes less computing, allowing
the singular‑value problem to be avoided during the solution process. Moreover, it can
modify the time variation of the position, angular velocity, and angular acceleration of the
robot joints in real time in accordance with the design specifications [5]. Therefore, the
joint space trajectory planning method is utilized in this paper.

Time‑optimal trajectory planning aims tominimize the robot’s running time. Depend‑
ing on the motion law, a time‑optimal trajectory is planned based on the specified con‑
straints. Industrial robots must increase job efficiency and economic benefits [6]. In actual
production, however, the central issue is ensuring that the robot end‑effector completes
the task smoothly and stably and reaches the specified position in the shortest time pos‑
sible [7]. The robot trajectory generation method includes the case where interpolation is
required and the case where interpolation is not required [8,9]. The polynomial interpola‑
tion function makes it easy to determine the boundary state of a robot trajectory due to its
simple and fast calculation and is frequently used for robot trajectory planning [10]. There‑
fore, this paper primarily studies the time‑optimal trajectory planning problem in the case
of the polynomial interpolation function. Quintic polynomial interpolation not only solves
the problems of cubic polynomial interpolation’s non‑smooth angular velocity and jump
acceleration but also avoids the problems of cubic polynomial interpolation’s complex cal‑
culation methods and many constraints [11]. Therefore, it has apparent advantages.

The literature [12] proposed a robot trajectory planning method based on piecewise
continuous functions. This technique enhanced the velocity of quintic polynomial inter‑
polation by combining the properties of the trapezoidal function and the trigonometric
function. Finally, an experimental platform consisting of a 4‑DOF manipulator was used
to verify the trajectory. The results indicated that this strategy effectively reduces execu‑
tion time. Analooee A. et al. [13] proposed a novel trajectory planning method based on
explicit quintic polynomial curves. The boundary curvature constraint conditions were
constructed using the rotation coordinate reference for the border condition and standard‑
ized programming. It was demonstrated that the proposed method could create optimal
trajectory running time compared to previous methods. In the literature [14], the ideal
robot time trajectory was determined by adding restrictions for torque and acceleration
and using the convex optimization approach.

Although the methods mentioned above have yielded some results, it is difficult to
determine the optimal time trajectory due to the limitations of polynomial interpolation tra‑
jectory planning [15], such as its high order, lack of convex hull property, and a large num‑
ber of setting parameters. The emergence of intelligent optimization algorithms has made
time‑optimal trajectory planning with intelligent algorithms a worthy objective.
Li Y et al. [16] proposed the improved cuckoo search technique to optimize polynomial
interpolation time. A trajectory simulation was performed in a shared space using the
UR robot as the research object. The suggested technique delivers a better time‑optimal
trajectory under velocity limitations than the traditional cuckoo search algorithm, particle
swarm optimization algorithm, and genetic algorithm. The literature [17] proposed the
highly smoothing time‑optimal trajectory approach of a manipulator based on the adap‑
tive elite genetic algorithm. This strategy was combined with quintic polynomials. Ex‑
perimental results demonstrated that the proposed method was more effective than the
original genetic algorithm, ensuring the robot’s smooth and efficient operation. The lit‑
erature [18] indicated that variable weight particle swarm optimization was employed to
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optimize the robot’s running time. To ensure the accurate and secure operation of fracture
reduction and orthopedic robots, it is possible to avoid the issue of unequal soft and hard
traction rates.

Heidari et al. developed the Harris Hawks Optimization (HHO) algorithm in 2019
as a novel swarm intelligence optimization algorithm [19]. Similar to other swarm intel‑
ligent optimization algorithms such as particle swarm optimization (PSO) and fruit fly
optimization algorithms (FOA), it has the advantages of good applicability, robustness,
and easy implementation [20]. It is widely used in the fields of time series prediction, neu‑
ral network parameter optimization, task cooperative planning, and other fields [21]. The
difference is that HHO adopts a multi‑population search strategy. It can avoid problems
such as single population diversity, lowmutation probability, limited search space, and lo‑
cal extreme values of PSO and FOA. However, because some key parameters in HHO are
simply set to constant or linear attenuation, efficient optimization cannot be achieved [22].
Improved local and global optimization values were suggested as a means of enhancing
the performance of basic HHO. The literature [23] proposed the chaotic Harris hawks op‑
timization. Utilizing chaos mapping and a simulated annealing approach, the existing
optimal solution was optimized, and the HHO optimization accuracy was enhanced. Fan
Q et al. coupled the HHO method and a quasi‑reflection‑based learning mechanism and
evaluated it on 23 distinct benchmark function types and dimensions [24]. The results in‑
dicated that it significantly enhanced the convergence rate and solving precision of basic
HHO. In addition, hawks optimization was incorporated into HHO to improve the accu‑
racy with which reliability problems might be solved [25]. Many improvements focusing
on HHO were elaborated in the past few years, but few researchers could balance both
global and local extremes.

This paper proposes a robot time‑optimal trajectory‑planning approach based onquin‑
tic polynomial interpolation and the improved Harris hawks algorithm (IHHO). The start‑
ing point, two intermediate points, and the terminating point of the robot end‑effector are
provided. Inverse kinematics was used to determine the angular positions of each joint
when the end‑effector passed through the set path point. Each joint’s adjacent angular
positions are related by quintic polynomials. The angular velocity curve and the angular
acceleration curve can be derived from the diagonal position curve in the first and second
orders. HHO was utilized to optimize the running time within the limitations of the max‑
imum angular displacement, angular velocity, and angular acceleration of each joint to
overcome the challenge of calculating the best running time of polynomial interpolation
trajectory planning. Meanwhile, a nonlinear energy attenuation technique is presented to
improve the energy attenuation factor E1 to adapt and transition global search and local
mining and enhance convergence accuracy and speed. Finally, taking total running time
synchronization as the criterion, the maximum time of each joint in the same stage was ob‑
tained. Each joint’s kinematic constraints can be satisfied, and the optimal‑time trajectory
can be planned.

The rest of the paper is organized as follows: The robot kinematics model, quintic
polynomial interpolation algorithm, and objective function for trajectory optimization are
introduced in Section 2. Section 3 introduces the fundamental principle of HHO, its im‑
provement, and the planning procedure. In Section 4, the strategies for time‑optimal tra‑
jectory planning based on several biological algorithms are compared. Under optimal time,
the trajectory of each joint and end‑effector is analyzed. The superiority and efficacy of the
proposed procedures are verified. Under optimal time, the trajectory of each joint and
end‑effector is analyzed. Section 5 summarizes some conclusions and prospects.

2. Description of the Problem
2.1. Kinematic Model of Robot

The 6‑DOF rotary joint robot is utilized extensively in polishing, spraying, and other
applications. Currently, it is the most prevalent robot structure [26]. Therefore, this paper
takes the PUMA560 6‑DOF robot as the research object, and all joints are revolute joints.
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Its physical model and D‑H coordinate system are shown in Figure 1 [27]. In Figure 1,X, Y,
and Z axes are determined by the right‑hand rule. The base coordinate system is {0}, and
the coordinate system of connecting rod is {i}. The parameters of each connecting rod are
defined as follows [28]:

(1) ai−1 is the distance from Zi−1 to Zi along the Xi−1 axis.
(2) αi−1 is the angle of rotation from Zi−1 to Zi around the Xi−1 axis.
(3) di is the distance from Xi−1 to Xi along the Zi axis.
(4) θi is the angle of rotation from Xi−1 to Xi around the Zi axis.

Figure 1. (a) Physical model; (b) D‑H coordinate system.

The D‑H method is used for modeling, then the homogeneous transformation matrix
of the coordinate system i relative to the coordinate system i − 1 is:

i−1
i A =


cos θi − sin θi 0 αi−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 − sin αi−1di
sin θi sin αi−1 cos θi sin αi−1 cos αi−1 cos αi−1di

0 0 0 1

 (1)

where θi is the joint angle, ai is the length of the connecting rod, αi is the angle of the con‑
necting rod, and di is the offset distance of the connecting rod. Then the forward kinematics
of the robot can be solved as follows:

0 A6 = 0
1 A1

2 A2
3 A3

4 A4
5 A5

6 A (2)

where 0 A6 is the position and posture matrix of the robot terminal relative to the base
coordinate system.

The inverse kinematics solution describes the mapping relationship between the ter‑
minal cartesian space and the joint space of the robot. The inverse kinematic of each joint
variable is solved as follows [29]:

0
1 A−1 ×0 A6 = 1

2 A2
3 A3

4 A4
5 A5

6 A
1
2 A−1 ×0

1 A−1 ×0 A6 = 2
3 A3

4 A4
5 A5

6 A
2
3 A−1 × 1

2 A−1 ×0
1 A−1 ×0 A6 = 3

4 A4
5 A5

6 A
3
4 A−1 × 2

3 A−1 × 1
2 A−1 ×0

1 A−1 ×0 A6 = 4
5 A5

6 A
4
5 A−1 × 3

4 A−1 × 2
3 A−1 × 1

2 A−1 ×0
1 A−1 ×0 A6 = 5

6 A

(3)

2.2. Quintic Polynomial Interpolation
Cartesian space node positions of robot end‑effectors are known. Cartesian space is

converted into joint space by the inverse kinematics equation of the robot, and the path
node angle position θj1, θj2, · · · · · · θjn of each joint in joint space is solved. The time corre‑
sponding to each node angle position is tj1, tj2, · · · · · · tjn, where n is the number of nodes in
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the planned trajectory. Interpolation using quintic polynomials is widely employed in the
field of robot trajectory planning [30]. The angle values of 0 rad at 0 s, 25 rad at 3 s, 75 rad
at 6 s, 50 rad at 12 s, and 0 rad at 14 s were fitted and connected by quintic polynomial
interpolation. The angular velocity curve and angular acceleration curve were obtained
by calculating the first and second derivatives of the angular curve, respectively. Figure 2
showed the trajectory planning results of the quintic polynomial interpolation. The results
indicate that there are no apparent abrupt changes in the position, velocity, or acceleration
curves. The absence ofmechanical vibration and increased friction is beneficial to the robot.
Therefore, this paper employs quintic polynomial interpolation for trajectory planning.

Figure 2. Quintic polynomial interpolation trajectory planning result.

The starting point, intermediate point, and endpoint are fitted by quintic polynomial
interpolation. The relation between fitting time and angular position is:

θji(t) = aji0 + aji1tji + aji2tji
2 + aji3tji

3 + aji4tji
4 + aji5tji

5 (4)

where θji(t) is the angular position of the i‑th path node of the j‑th joint, aji0, aji1, aji2, aji3, aji4,
aji5 are the coefficients of the equation corresponding to the angle position of the i‑th path
node of the j‑th joint, and tji is the time corresponding to the angle position of the i‑th path
node of the j‑th joint.

Thus, the angular velocity is:
.
θ ji(t) = aji1 + 2aji2tji + 3aji3tji

2 + 4aji4tji
3 + 5aji5tji

4 (5)

Then, the angular acceleration is:
..
θ ji(t) = 2aji2 + 6aji3tji + 12aji4tji

2 + 20aji5tji
3 (6)

where aji0, aji1, aji2, aji3, aji4, aji5 satisfies:
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aji0 = θji

aji1 =
.
θ ji

aji2 = 0.5 ×
..
θ ji

aji3 =
20(θi+1−θi)−

(
8

.
θ ji+12

.
θ ji

)
h
′
ji−

(
3

..
θ ji−

..
θ ji+1

)
h
′
ji

2

2h′ji
3

aji4 =
30(θi−θi+1)−

(
14

.
θ ji+16

.
θ ji

)
h
′
ji−

(
3

..
θ ji−

..
θ ji+1

)
h
′
ji

2

2h′ji
4

aji5 =
12(θi+1−θi)−6

( .
θ ji+

.
θ ji

)
h
′
ji−

( ..
θ ji−

..
θ ji+1

)
h
′
ji

2

2h′ji
5

(7)

where h′ji = hji+1 − hji represents the time interval between adjacent nodes of the j‑th joint.
According to the above formula, the corresponding quintic polynomial coefficientma‑

trix can be solved when the joint angular position, angular velocity, and even angular ac‑
celeration are determined, and the time is given. In this paper, the joint angular position
and the starting and ending angular velocity are known and t is obtained by the IHHO.
Thus, a can be solved.

2.3. Trajectory Optimization Objective Function
The objective of quintic polynomial interpolation is to solve the unknown coefficients

of polynomials under the condition that the interpolation time of each segment is known,
hence determining the beginning and end trajectory of each joint. It is difficult to produce
a time‑optimal trajectory [31] because there is no consistent criterion for determining the
interpolation time of each segment during trajectory design, and the interpolation time is
typically determined by human experience. The primary objective of this paper is to use
the IHHO to determine the robot’s shortest movement time under kinematic constraints.
The objective function is as follows:

min f =
n−1

∑
i=1

hi (8)

The constraint conditions of angular position, angular velocity, and angular accelera‑
tion are as follows: 

∣∣θj(t)
∣∣ ≤ SCj∣∣∣ .

θ j(t)
∣∣∣ ≤ VCj∣∣∣ ..

θ j(t)
∣∣∣ ≤ WCj

(9)

where j = 1, 2, · · · · · · N is the joint number of the robot, i = 1, 2, · · · · · · n is the number
of path points, and SCj, VCj, WCj is their maximum value. In this paper, the trajectory is
optimally analyzed for i = 4, j = 6, and f = t1 + t2 + t3. Low values of f correspond to a
better fitness value.

3. Time‑Optimal Trajectory Optimization Method of Robot
3.1. Harris Hawks Optimization Algorithm

HHO is a new algorithm for population evolution proposed by Heidari et al. in
2019 [19]. The steps of the HHO process are as follows [32]:

(1) First, the population position is initialized, and the target matrix is set up to store the
fitness values of Harris hawks in each iteration. The initial position matrix XEagle is:

XEagle =

X11 . . . X1d
...

. . .
...

XN1 · · · XNd

 (10)
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where Xi,j represents the value of the j‑th dimension of the i‑th Harris hawk, N is the
total number of Harris hawks, and D represents the dimension of the question. The
target matrix ZFitness is:

ZFitness =


f = ([X11, X12, · · · , X1d])

...

...
f = ([Xn1, Xn2, · · · , Xnd])

 (11)

where f is the fitness function.

(2) All individual position dimensions generated during each iteration are examined.
The population position is updated, according to (12).

X′(i, :) = (X(i, :)× (FU + FL)) + UB × FU + LB × FL (12)

where X′(i, :) is the position of the i‑th updated Harris hawk, X(i,:) is the position of
the i‑th Harris hawk, FU is the matrix composed of a dimension of the i‑th Harris
hawk position greater than the upper limit of the search space, and FL is the matrix
composed of a dimension of the i‑thHarris hawk position smaller than the lower limit
of the search space.

(3) The value of the prey’s escape energy E determines the different behavior of Harris
hawks. Formula E is:

E = 2E0

(
1 − x

T

)
(13)

where x is the number of current iterations, E0 is the random number between (−1,1),
T is the maximum number of iterations, and E1 = 2(1 − x

T ) represents the nonlinear
energy attenuation factor.

(4) When |E| ≥ 1, the algorithm enters the stage of global search. Depending onwhether
q is greater than 0.5, it is divided into two predation strategies. The formula for the
global search stage is as follows:

X(x + 1) =
{

Xrand(x)− r1|Xrand(x)− 2r2X(x)| q ≥ 0.5
(Xrabbit(x)− Xm(x))− r3(LB + r4(UB − LB)) q < 0.5

(14)

where X(x + 1) represents the position of the next generation of Harris hawks.
Xrabbit(x) is the position of prey. Xm(x) represents the current average position of the
Harris hawk group, referring to (15). Xrand(x) represents the position of random in‑
dividuals in the Harris hawk group. X(x) is the current position of the Harris hawks.
r1, r2, r3, r4, q is the random number between (0, 1).

Xm(x) =
1
N

N

∑
i=1

Xi(x) (15)

where Xi(x) represents the position of each Harris hawk in iteration x.

(5) When |E| < 1, the Harris hawk group enters the local search phase and has four
round‑up methods, given below.

Soft besiege: When r ≥ 0.5 and |E| ≥ 0.5, the mathematical model at this stage is:

Xi(x + 1) = Xrabbit(x)− Xi(x)− E|JXrabbit(x)− Xi(x)| (16)

where J = 2(1 − r5) is the random jump intensity of the prey, and r5 is the random number
in the interval (0, 1) Hard besiege: When r ≥ 0.5 and |E| < 0.5, the model at this stage is:

Xi(x + 1) = Xrabbit(x)− E|Xrabbit(x)− Xi(x)| (17)
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Soft besiege with progressive rapid dives: When r < 0.5 and |E| ≥ 0.5, the model at
this stage is:

Xi(x + 1) =
{

Y F(Y) < F(Xi(x))
Z F(Z) < F(Xi(x))

(18)

where F(·) represents the fitness value of the minimization problem and Y and Z are:

Y = Xrabbit(x)− E|JXrabbit(x)− Xi(x)| (19)

Z = Y + S × LF(D) (20)

where S represents the random vector with size D × 1, D denotes the dimension of the
problem, and LF(•) is as follows:

LF(•) = 0.01 × u × σ

|v|1/β
, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )

1/β

(21)

where u and v are random numbers on (0,1), and β is set to 1.5.
Hard besiege with progressive rapid dives: When r < 0.5 and |E| < 0.5, the mathe‑

matical model of this stage is:

Xi(x + 1) =
{

Y F(Y) < F(Xi(x))
Z F(Z) < F(Xi(x))

(22)

where Y and Z are, respectively:

Y = Xrabbit(x)− E|JXrabbit(x)− Xm(x)| (23)

Z = Y + S × LF(D) (24)

(6) Determinewhether the current iteration times x reaches themaximum iteration times
T or the required precision. If so, output the current optimal solution; otherwise,
continue searching. The hunting behavior of Harris hawks is shown in Figure 3 [33].

Figure 3. Process of the hunting behavior of the Harris hawks.
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3.2. Improvement of HHO
From the basic HHO, it can be seen that the size of E1 plays an important role in

adjusting and transitioning global search and local mining. The smaller E1 is, the more
inclined HHO is to perform local mining, and the larger E1 is, the more inclined HHO
is to explore globally [34]. In addition, the prey energy decay factor E1 determines the
overall trend of escape energy E [35]. However, in the traditional HHO, E1 updates mode
decreases linearly from 2 to 0, which does not accurately describe the real process of energy
consumption of Harris eagles in nature when they hunt prey [34]. In other words, the
energy consumption of the prey during the initial days of the Harris hawks colony when
it was spotted and pursued varied greatly. As the prey eventually entered the ring of
encirclement, the Harris hawks group did nothing except circle around, and as the prey
regained some resting energy and its consumption slowed. In later periods, Harris Hawks
hunted prey, and the prey’s energy requirements were altered dramatically once more.
Alternatively, in the process of improvement, it is necessary not only to ensure the global
search capability in the early stage and the transition from global search to local search in
the middle stage but also to ensure the local development capability in the late stage and
accelerate the local search. Therefore, the nonlinear energy decline strategy is proposed to
improve E1, which is expressed as follows:

E1 = 2((
arccos( x

T − 1)
π

+
arccos( x

T − 1
T )

π
)− 0.5) (25)

Then, the improved E is expressed as:

E = 2E0((
arccos( x

T − 1)
π

+
arccos( x

T − 1
T )

π
)− 0.5) (26)

where x represents the number of iterations, T is the maximum number of iterations, and
E0 denotes a random number of (−1, 1).

Figure 4 shows the variation trend of the prey energy attenuation factor in the interval
(0,2) before and after improvement when the number of iterations T = 600. Comparedwith
the original E1, the improved E1 decreases rapidly in the early stage from 0 to 200 genera‑
tions, which controls the global search ability of the algorithm. The middle stage of 200 to
400 generations changes slowly, balancing global and local search capabilities. The later
stages of 400 to 600 generations were rapidly reduced to speed up the local search while
ensuring strong local development capabilities. The E1 updated pattern also matches the
actual energy expenditure of hunted prey. As shown in Figure 5, the overall change trend
of E is the same as that of E1. Processes and pseudocodes of IHHO are shown in Figure 6
and Algorithm 1.

Figure 4. Curves of improved E1 and original E1.
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Figure 5. (a) The original E. (b) The improved E.

Figure 6. Flowchart of IHHO.
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Algorithm 1. Pseudocode of IHHO.

  Inputs: N and T
  Outputs: Xrabbit
  Initialize Xi (i = 1, 2, . . . , N)
  While (Termination has not happened) do
Calculate the fitness values
Set Xrabbit as the best solution
for (each solution (Xi)) do
Update E0 and jump strength J E0 = 2 rand ()−1, J = 2(1‑rand ())
Update E refer to (26).
If (|E| ≥ 1) then Exploration phase (global search)
Updating process performs referring to (14).
If (|E| < 1) then Exploitation phase (local search)
If (r ≥ 0.5 and |E| ≥ 0.5) then
Updating process performs referring to (16).
else if (r ≥ 0.5 and |E| < 0.5) then
Updating process performs referring to (17).
else if (r < 0.5 and |E| ≥0.5) then
Updating process performs referring to (18).
else if (r < 0.5 and |E| < 0.5) then
Updating process performs referring to (22).
  Return Xrabbit

3.3. Planning Process
IHHO is used to optimize the time of the joint within the constraints of the maximum

angular position, angular velocity, and angular acceleration of each joint to produce the
optimal running time of the robot trajectory. A robot time‑optimal trajectory planning
method is proposed based on quintic polynomial interpolation and the improved Harris
hawks algorithm. The algorithm’s main flow is as follows:

Step 1. The parameters such as population size N, maximum Iteration times T, opti‑
mization dimension D, the upper limit of search space UB, the lower limit of search space
LB, and the initial fitness value f0 are initialized. The population location is also initialized.
In the optimal trajectory planning method based on quintic polynomial interpolation and
IHHO, t1, t2, and t3 are the parameters to be optimized and generated by IHHO.

Step 2. Check that all dimensions of the generated N group of times fall within the
specified range and adjust them for updates. Equation (8) is used to calculate the fitness
value fn of the updated N groups of time successively.

Step 3. The N sets of fitness values fn are compared with the initial fitness value f0.
The f ′n in N sets of fitness values fn that is less than initial fitness value f0 is retained. The
corresponding time group t′n is also preserved. Then the corresponding quintic polyno‑
mial coefficient matrix a of t′n is solved. Among them, the restrictions for solving a are the
angular position θ and the starting and ending angular velocity

.
θ of the optimized joint.

In the search dimension space of t′n1, t′
n2
, and t′n3, the angular position θ, angular veloc‑

ity
.
θ, and angular acceleration

..
θ equations in t′n1, t′

n2
, and t′n3 periods are established by a.

Then equations satisfying the constraints of maximum angular position θ, angular velocity
.
θ, and angular acceleration

..
θ are sought. The time group t′′n corresponding to the equa‑

tions satisfying the constraints are preserved. The fitness values of the time group t′′n are
traversed and compared in turn. The best time group tg and the best fitness value fg are
retained. The best fitness value fg is assigned to f0.

Step 4. According to the escape energy E of the prey, N groups time of the next gen‑
eration is generated, and steps 2 and 3 are repeated. The fitness value fgi is less than fg
and the corresponding time group tgi is obtained. The time group t′gi corresponding to the
equations satisfying the constraints is found. The optimal time group t′g and the optimal
fitness value f ′g of this generation are obtained by comparing the fitness of t′gi. The f ′g is
assigned to fg, and the position of the population is updated.
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Step 5. Determine whether the maximum number of iterations is reached or whether
the error meets the preset accuracy. If so, the iteration will be terminated, and the optimal
time group t′g and the optimal fitness value f ′g of the optimized joint will be output. The
flowchart of the process can be seen in Figure 7.

Figure 7. Robot time‑optimal trajectory planning process.

4. Simulation
4.1. Comparative Analysis of Time Optimization

The connecting rod parameters of PUMA560 robot are shown in Table 1. In order to
determine the angular position of each joint by solving inverse kinematics, a joint space–
time trajectory optimization study was performed. It is important to identify the path
points of the robot end‑effector in the cartesian coordinate system aswell as the constraints
of angular location, angular velocity, and angular acceleration of each joint. Table 2 dis‑
plays the path points of the end‑effector in the cartesian coordinate system for the denim‑
polishing process. As indicated in Table 3, the angular position of each joint corresponding
to the path points in cartesian coordinate systems was calculated using inverse kinematics.
Table 4 shows the maximum constraint values for the angular position, angular velocity,
and angular acceleration for each robot joint.

Table 1. Connecting rod parameter of PUMA560 robot.

Joint i θi αi−1( ◦) ai−1(m) di(m)

1 θ1 0 0 0
2 θ2 −90 0 0.14909
3 θ3 0 0.4318 0
4 θ4 −90 0.02032 0.43307
5 θ5 90 0 0
6 θ6 −90 0 0
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Table 2. Robot cartesian space path points.

Point Number Path Points (X, Y, Z, R, P, Y)

1 (0, −0.5, −0.5, 147.428◦, −23.673◦, 135.734◦)
2 (0, −0.5, 0.2, −187.016◦, −45.298◦, 115.573◦)
3 (−0.5, 0.5, 0.2, −180.635◦, −10.761◦, 74.146◦)
6 (−0.5, 0.5, 0.5, −162.523◦, −21.664◦, 52.376◦)

Table 3. Angular position of robot joint space (rad).

Joint i M0 M1 M2 M3

1 −1.2660 −1.2516 2.4861 2.5700
2 −1.4534 −0.5328 −0.3058 −0.7873
3 −0.2358 −0.3344 0.3495 −1.2022
4 −1.6788 −0.7987 1.5772 1.5983
5 −0.8348 −1.4315 −1.5757 −1.5092
6 −1.6513 −0.2664 1.1022 1.6851

Table 4. Maximum constraints of joint angular position, angular velocity, and angular acceleration.

Joint i θi (rad)
∣∣∣ .
θ(t)

∣∣∣ (rad/s) ∣∣∣ ..
θ(t)

∣∣∣ (rad/s2)
1 −2.7925~2.7925 1.7453 0.7854
2 −3.9250~1.7854 1.6581 0.6981
3 −1.7854~3.9250 1.7483 1.3090
4 −1.9199~2.9671 2.6179 1.2217
5 −1.7453~1.7453 2.2689 1.5708
6 −3.9444~3.9444 1.9199 1.3963

The performance of the proposed method was validated by simulating and compar‑
ing the time‑optimal trajectory planning based on PSO, FOA, HHO, and the algorithm
proposed in this paper. The following parameters were set for time‑optimal trajectory
planning based on PSO: Set population size N = 30, self‑learning factor C1 = 1.4, group
learning factor C2 = 1.4, inertia weight W = 0.8, maximum Iteration times T = 600, dimen‑
sion of optimization problem D = 3, the upper limit of search space UB = 4, lower limit
of search space LB = 0, initial fitness value f0 = 10, and initial speed and end speed are
both 0 [36]. The parameters of the time‑optimal trajectory planning based on FOA are set
as follows: Set population size N = 30, maximum Iteration times T = 600, optimization
dimension D = 3, the upper limit of search space UB = 4, the lower limit of search space
LB = 0, and initial fitness value f0 = 10. The search range LR = 10 and the flight distance
FR = 1. The parameters of the time‑optimal trajectory planning based on HHO and IHHO
are set as follows: Set population size N = 30, maximum Iteration times T = 600, optimiza‑
tion dimension D = 3, the upper limit of search space UB = 4, and the lower limit of search
space LB = 0. The initial fitness value f0 = 10 and E in IHHO is updated according to (26).
In accordance with the time‑optimal trajectory planning procedure, the time‑optimal so‑
lution for each joint under the motion constraint was subsequently determined. Table 5
exhibits the optimal time for each robot segment based on PSO, FOA, HHO, and IHHO.
The configuration of the workstation utilized for all calculations in this section is detailed
in Table 6.
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Table 5. The optimal interpolation time of each segment of each joint (s).

Joint i First Stage
PSO FOA HHO IHHO

1 1.9439 1.6946 1.4165 1.2808
2 1.2690 1.0772 0.7631 0.6517
3 0.9439 0.7946 0.6008 0.5469
4 1.6369 1.3987 1.1370 1.0235
5 1.2113 0.9876 0.7468 0.6345
6 1.4367 1.1539 0.8607 0.8231

Joint i Second Stage
PSO FOA HHO IHHO

1 1.4205 1.2318 0.9903 0.8906
2 0.6203 0.6114 0.4706 0.3932
3 0.5843 0.5819 0.4542 0.3572
4 0.9916 0.9671 0.7643 0.7303
5 0.4923 0.4910 0.4261 0.3165
6 0.6814 0.6335 0.5140 0.4669

Joint i Third Stage
PSO FOA HHO IHHO

1 1.4064 1.3293 1.2142 1.0064
2 0.9163 0.8367 0.8095 0.7246
3 1.1806 0.9311 0.9020 0.8396
4 1.2802 0.9918 0.9682 0.8972
5 0.1916 0.1715 0.1645 0.1543
6 1.0369 0.9182 0.8912 0.7945

Table 6. Configuration of the workstation.

Operating System Windows 10 (64 Bits)

CPU Intel Core i7‑10700 (32 cores, 2.9 GHz)
Memory 32 GB (DDR4)

Hard disk space SSD (2T)
Matlab version (MathWorks Inc., Na tick, MD, USA, 2018) 12.0

Due to the varying constraints of various joints, the time required for each joint to
reach its destination varies. In practice, however, the end‑effector accurately traverses the
path point in the task space, and the rotation time of each joint is identical when reach‑
ing the target point. In order to satisfy the motion constraints of each joint, the maximum
time of each segment is selected from all joints. Thus, the results of time‑optimal trajec‑
tory planning based on PSO are ti1 = 1.9439 s, ti2 = 1.4205 s, and ti3 = 1.4064 s; then, the
optimal time is 4.7708 s. The results of time‑optimal trajectory planning based on FOA
are ti1 = 1.6946 s, ti2 = 1.2318 s, and ti3 = 1.3293 s; then, the optimal time is 4.2557 s. The
results of time‑optimal trajectory planning based on HHO are ti1 = 1.3145 s, ti2 = 0.9903 s,
and ti3 = 1.1142 s; then, the optimal time is 3.6210 s. The results of time‑optimal trajectory
planning based on IHHO are ti1 = 1.2808 s, ti2 = 0.8906 s, and ti3 = 1.0064 s; then, the optimal
time is 3.1778 s. Compared with the optimal trajectory planning based on PSO, FOA, and
HHO, the optimal trajectory planning based on IHHO decreased by 1.1062 s, 0.5705 s, and
0.3133 s, respectively, and improved by 33.39%, 19.66%, and 12.24%. The effectiveness of
the proposed algorithm in robot trajectory time optimization was proven.

4.2. Comparative Analysis of Convergence of Algorithm
Due to the limited length of the article, joint 1, one of the first three joints that control

the robot’s position, was used as an example to demonstrate that the proposed algorithm
provided superior convergence speed and precision. The objective function and constraint
conditions for optimization remained unchanged. In 50 groups of repeated experiments,
the four algorithms discussed in this paper were utilized. The computational efficiency of
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the four algorithms is displayed in Table 7. Figure 8 depicts the iterative process of time
optimization for joint 1 by four optimization algorithms. Other joint algorithms yielded
similar optimization outcomes to joint 1.

Table 7. Computational efficiency results of four optimization algorithms.

Optimization Algorithm Average Calculation Time(s) Best Fitness Appear Earliest
Generation

PSO 8.9716 380
FOA 5.4713 350
HHO 4.5570 283
IHHO 3.2697 190

Figure 8. Iterative process of four optimization algorithms.

Tables 7 and 8 reveal that the average calculation time for the IHHO algorithm was
4.2697 s. Compared to PSO, FOA, and HHO, the average calculation time was reduced by
4.7019 s, 1.2016 s, and 0.2875 s or by 52.40%, 21.96%, and 6.30%, respectively. As shown
in Figure 8, the time optimization based on the IHHO algorithm has a low fitness in the
30th generation, and the best fitness is close to 3.1778 s in the 190th generation. In contrast,
the fitness of the time optimization based on PSO, FOA, and HHO decreased significantly
after the 30th generation. The optimal time for each algorithm appeared in 4.7708 s of the
380th generation, 4.2557 s of the 350th generation, and 3.6210 s of the 283rd generation,
in that order. They are all larger than 3.1778 s based on IHHO’s 190th generation. This
demonstrated the proposed algorithm’s superior convergence speed and precision.

Table 8. IHHO compared with the other three algorithms’ computational efficiency increase
percentage.

Optimization Algorithm Increase Percentage

PSO 52.40%
FOA 21.96%
HHO 6.30%

4.3. Joint and End‑Effector Trajectory Analysis
After determining the optimal running time of the robot using IHHO, MATLAB was

used to program it to achieve the optimal trajectory for each joint. Figure 9 depicts the
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time‑dependent angular position, angular velocity, and angular acceleration curves for
each of the six joints. The maximum angular displacement, angular velocity, and angular
acceleration of each joint trajectory at the optimal time are shown in Table 9.

Figure 9. Angular position, angular velocity, and angular acceleration curves of each joint.

Table 9. Maximum angular position, angular velocity, and angular acceleration of each joint under
optimal time (rad).

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

θ(t) 2.7812 −1.4534 −1.6812 1.8912 −1.4523 1.6011∣∣∣ .
θ(t)

∣∣∣ 1.7143 0.3750 0.4513 1.1253 0.1875 0.6253∣∣∣ ..
θ(t)

∣∣∣ 0.7513 0.1573 0.1672 0.2546 0.1489 0.1567

As depicted in Figure 9, the angular motion trajectory of each joint was smooth, and
the states of the beginning, end, andmiddle points are all in accordancewith the parameter
settings. During the motion, the angular position, angular velocity, and angular acceler‑
ation had no mutation. Additionally, each joint’s position change was relatively smooth,
which aided in reducing the running time. The speed of the second segment of the first
joint was close to the maximum permitted speed, which was conducive to efficiency im‑
provement. The maximum constraint percentage of the angular position, angular velocity,
and angular acceleration of each joint is shown in Table 10. The maximum angular posi‑
tions of the joints are„ in percentage terms, 99.60%, 37.03%, 94.16%, 98.51%, 83.21%, and
40.59%, respectively, of the maximum constraint angular positions. The maximum an‑
gular speeds are 98.22%, 22.62%, 25.81%, 42.98%, 8.26%, and 32.57%, respectively, of the
maximum constrained angular speeds. The maximum angular accelerations were 95.71%,
22.53%, 12.77%, 20.99%, 9.48%, and 11.22% of the maximum constrained angular acceler‑
ations, respectively. At the angular position level, the average value was only 75.51% of
the maximum constraint, 38.41% of the maximum constraint at the angular velocity level,
and 28.73% of the maximum constraint at the angular acceleration level. Each robot joint’s
angular position curve, angular velocity curve, and angular acceleration value can satisfy
the constraint conditions. Within the constraints, the optimal trajectory time obtained by
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the algorithm ensured smooth, stable, and continuous angular displacement, velocity, and
acceleration curves for each joint.

Table 10. Angular position, angular velocity, and angular acceleration of each joint accounted for
the maximum constraint percentage.

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Average
Percentage

θ(t) 99.60% 37.03% 94.16% 98.51% 83.21% 40.59% 75.21%
.
θ(t) 98.22% 22.62% 25.81% 42.98% 8.26% 32.57% 38.41%
..
θ(t) 95.71% 22.53% 12.77% 20.99% 9.48% 11.22% 28.73%

As depicted in Figure 10, the SerialLink, Fkine, and Transl functions of the Robotics
Toolbox in MATLAB were used to perform robot simulation modeling, forward kinemat‑
ics calculation, and draw the end‑effector trajectory under the optimal time in cartesian
space. The black dot represents the path point, and it can be seen that the trajectory of
the robot end‑effector passed through the path point stably without interruption. The last
waypoint is reunited with the end‑effector. It demonstrated that the proposed algorithm
yielded the optimal trajectory time in joint space and also ensured the accurate and stable
continuation of the robot end‑effector trajectory in cartesian space. It was demonstrated
that the proposed algorithm is feasible.

Figure 10. The end‑effector trajectory under the optimal time in Cartesian space.

5. Conclusions and Future Work
This paper proposes a time‑optimal trajectory planning method for robots based on

quintic polynomial interpolation and an improved Harris hawks algorithm. The nonlin‑
ear energy reduction strategy is introduced in the basic HHO to improve the convergence
speed and precision. The PUMA560 robot serves as the platform for experimental verifi‑
cation. Using quintic polynomial trajectory interpolation, the starting point, intermediate
point, and endpoint of each joint are fitted in the joint space. Under the constraints of
angular displacement, angular velocity, and angular acceleration, the IHHO was utilized
to optimize the trajectory time of each joint, with the target being the sum of each run‑
ning time. Total running time synchronization was used to determine the optimal running
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time of the robot. The experimental results demonstrated that the proposed algorithm de‑
creases the maximum time by 1.1062 s, 0.5705 s, and 0.3133 s, respectively, and improves
by 33.39%, 19.66%, and 12.24% when compared to algorithms based on PSO, FOA, and
HHO, respectively. In multiple groups of repeated experiments, the computational effi‑
ciency was reduced by 4.7019 s, 1.2016 s, and 0.2875 s relative to PSO, FOA, and HHO and
increased by 52.40%, 21.96%, and 6.30%, respectively. It demonstrated that the proposed
algorithm converges more quickly and precisely. Themaximum angular position, angular
velocity, and angular acceleration of each joint trajectory satisfy the constraint conditions
under the optimal time. Their average values fell short of the maximum limit by 75.51%,
38.41%, and 28.73%, respectively. Under optimal time in cartesian space, the trajectory
of the robot’s end‑effector passed through the pose point continuously and continuously.
Verification of the feasibility of the proposed algorithm.

However, this method also has some drawbacks, most notably the following: The
proposed method only optimizes the robot’s running time for a single objective, but op‑
timizing the robot for multiple objectives is a study‑worthy problem. On the other hand,
parameters in the optimization process are determined based on previous research and a
large number of simulation experiments rather than a strict mathematical derivation. Sev‑
eral refinements and additional investigations of the proposed method are scheduled for
the future. These include the determination of appropriate optimization parameters, multi‑
objective robot optimization, and physical robot testing.
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Nomenclature

Acronym and Variable Definition
HHO harris hawks algorithm
PSO particle swarm optimization
FOA fruit fly optimization algorithm
A homogeneous transformation matrix
n nodes number
N population size
T maximum iteration times
UB upper limit of search space
LB lower limit of search space
D optimization problem dimension
f fitness function
XEagle initial position matrix
E value of the prey’s escape energy
ZFitness target matrix
x number of current iterations
E0 random number between (−1,1)
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r,r1,r2,r3,r4,q,u,v random number between (0,1)
J jump intensity
Xrabbit prey position
E1 nonlinear energy attenuation factor.
f0 initial fitness value
t optimize the time variable
fn N sets of fitness values
f ′n fitness value less than f0
t′n corresponding to the time group of f ′n
a quintic polynomial coefficient matrix
.
θ angular velocity
..
θ angular acceleration
t′ The time groups in t′n that satisfy the constraints
tg best time group
fg best fitness value
fgi The fitness value produced by the next generation
t′gi The time group produced by the next generation
t′g The optimal time group produced by the next generation
f ′g The optimal fitness value generated by the next generation
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