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Abstract: On the setM of mean functions, the symmetric mean of M with respect to mean M0 can be
defined in several ways. The first one is related to the group structure onM, and the second one is
defined trough Gauss’ functional equation. In this paper, we provide an answer to the open question
formulated by B. Farhi about the matching of these two different mappings called symmetries on the
set of mean functions. Using techniques of asymptotic expansions developed by T. Burić, N. Elezović,
and L. Mihoković (Vukšić), we discuss some properties of such symmetries trough connection with
asymptotic expansions of means involved. As a result of coefficient comparison, a new class of means
was discovered, which interpolates between harmonic, geometric, and arithmetic mean.
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1. Introduction

Function M : R+ × R+ → R is called a mean if for all s, t ∈ R+

min(s, t) ≤ M(s, t) ≤ max(s, t). (1)

Mean M is symmetric if for all s, t ∈ R+

M(s, t) = M(t, s)

and homogeneous (of degree 1) if for all λ, s, t ∈ R+

M(λs, λt) = λM(s, t).

This paper was motivated by the problem of matching two different mappings on the
set of mean functions formulated in paper [1] in which author introduced algebraic and
topological structures on the setMD of symmetric means on a symmetric domain D with
additional property

M(s, t) = s⇒ s = t, ∀(s, t) ∈ D.

The first mapping is related to the group structure and the second one is defined trough
Gauss’ functional equation. It was found that those mappings coincide for arithmetic,
geometric, and harmonic mean, but the question of the existence of other solutions remained
open. We shall take D = R+ × R+.

First, let AD be set of all functions f : D → R such that

(∀(x, y) ∈ D) f (x, y) = − f (y, x).

(AD ,+) is an abelian group with the neutral element 0. Function ϕ : MD → AD defined by
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ϕ(M)(x, y) :=

{
log
(
−M(x,y)−x

M(x,y)−y

)
, x 6= y,

0, x = y,

is a bijection. The composition law ∗ : MD ×MD →MD is defined by

M1 ∗M2 = ϕ−1(ϕ(M1) + ϕ(M2)).

Thus (MD , ∗) is an abelian group with the neutral element ϕ−1(0) = A. It can also easily
be shown that the explicit formula for the composition law ∗ holds:

(M1 ∗M2)(x, y) =

{ x(M1−y)(M2−y)+y(M1−x)(M2−x)
(M1−x)(M2−x)+(M1−y)(M2−y) , x 6= y,

x, x = y.
(2)

For the sake of simplicity, variables (x, y) were omitted. By sum and difference of means,
we assume usual pointwise addition and subtraction. More on the topological structures
on set of bivariate means can also be found in [2].

Based on the operation ∗ defined in (2), the first type of the symmetry was defined.

Definition 1 ([1]). The symmetric mean M2 to a mean M1 with respect to mean M0 via the group
structure (MD , ∗) is defined with the expression

SM0(M1) = M2 ⇔ M1 ∗M2 = M0 ∗M0. (3)

Combining (3) with (2), the explicit formula for symmetric mean of mean M1 with
respect to M0 can easily be calculated:

SM0(M1) =
x(M1 − x)(M0 − y)2 − y(M0 − x)2(M1 − y)
(M1 − x)(M0 − y)2 − (M0 − x)2(M1 − y)

. (4)

We shall see the behavior of SM0 for some basic well known means M0. For (s, t) ∈
D = R+ × R+ let

A(s, t) =
s + t

2
, G(s, t) =

√
st, H(s, t) =

2st
s + t

,

be the arithmetic, geometric, and harmonic means, respectively.

Example 1 ([1]). For any mean M ∈ MD , we have:

1. SA(M) = 2A−M,

2. SG(M) = G2

M ,
3. SH(M) = HM

2M−H .

Notice that the denominator in SH(M) from Example 1 cannot be equal to 0, since
M = 1

2 H does not satisfy the left hand side inequality in (1) and, hence, it is not a mean.
Another type of symmetry, independent of the group structure (MD , ∗), can also be

defined.

Definition 2 ([1]). Mean M2 is said to be functional symmetric mean of M1 with respect to M0 if
the following functional equation is satisfied:

σM0(M1) = M2 ⇔ M0(M1, M2) = M0. (5)

We can also say that mean M0 is the functional middle of M1 and M2. Defining
equation on the right side of the equivalence relation (5) is known as the Gauss functional
equation. Some authors refer to means M1 and M2 as a pair of M0-complementary means.
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Mean M0 is also said to be (M1, M2)-invariant. For recent related results, see [3–6] and also
survey article on invariance of means [7] and references therein. Furthermore, if functional
symmetric mean exists, then it is unique.

With respect to the same means as in the latter exmple, we may calculate the symmetric
means. For instance, when M0 = H, we have

H(M, σH(M)) = H ⇔ 2MσH(M)
M+σH(M)

= H ⇔ 2MσH(M) = H(M + σH(M))⇔ σH(M) = HM
2M−H .

Other symmetric pairs, with respect to A and G, are obtained in similar manner.

Example 2 ([1]). For any mean M ∈ MD , we have:

1. σA(M) = 2A−M,

2. σG(M) = G2

M ,
3. σH(M) = HM

2M−H .

Taking into account Examples 1 and 2, in which the same mappings appear with
respect to arithmetic, geometric, and harmonic mean appear, the author in [1] states the
following.

Open question. For which mean functions M0 on D = R+ × R+ do the two symme-
tries, S and σ, with respect to M0, coincide?

The goal of this paper is to analyze the open question and offer the answer in the setting
of symmetric homogeneous means, which possess the asymptotic expansion. Techniques of
asymptotic expansions were developed in [8–10] and appeared to be very useful in compari-
son and finding inequalities for bivariate means ([11,12]), comparison of bivariate parameter
means ([10]), finding optimal parameters in convex combinations of means ([12,13]), and
solving the functional equations of the form B(A(x)) = C(x), where asymptotic expan-
sions of B and C are known ([14]). In the latter example, A, B, and C are functions of a
real variable, which possess asymptotic expansion as x → ∞ with respect to asymptotic
sequences (xw−n)n∈N0 , (xu−n)n∈N0 , and (xv−n)n∈N0 , respectively, where w, u, and v are
real numbers. When used with B(x) = f (x) and C(x) = 1

t−s
∫ t

s f (x + u) du, finding A(x) is

then equivalent to determining integral f -mean I f (x + s, x + t) = f−1
(

1
t−s
∫ x+t

x+s f (u) du
)

for a given function f as it was described in detail in above mentioned paper. We may
perceive the significance of this approach when explicit formula for the inverse function is
not known, which is case for the digamma function.

Techniques and results applyed in this paper were described in Section 2. In the next
step, we obtained the algorithm for calculating the coefficients in the asymptotic expan-
sions of means MS

2 = SM0(M1) and Mσ
2 = σM0(M1). Comparing the first few obtained

coefficents, we anticipated the general form of the coefficients in the asymptotic expansion
of mean M0 for which symmetries SM0 and σM0 coincide, i.e., such that MS

2 = Mσ
2 .

At the beginning of Section 3, we found closed formula and explored some properties,
such as limit behavior and monotonocity with respect to the parameter. We proved that
proposed function represents the well defined one parameter class of means. We have
shown that it also covers, as the special cases, means from Examples 1 and 2.

Lastly, in Section 4, we have proved that this class of means answered the open
question and stated the hypothesis that there were not any other solutions in the context of
homogeneous symmetric means, which possess asymptotic power series expansions.

In addition, methods presented in this paper may be useful with similar problems
regarding functional equations, especially in case when the explicit formula for included
function was not known.

2. Asymptotic Expansions

Recall the definition of an asymptotic power series expansion as x → ∞.
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Definition 3. The series ∑∞
n=0 cnx−n is said to be an asymptotic expansion of a function f (x) as

x → ∞ if for each N ∈ N

f (x) =
N

∑
n=0

cnx−n + o(x−N).

Main properties of asymptotic series and asymptotic expansions can be found in [15].
Taylor series expansion can also be seen as an asymptotic expansion, but the converse is not
generally true, and the asymptotic series may also be divergent. The main characteristic
of asymptotic expansion is that it provides good approximation using a finite number of
terms while letting x → ∞.

Beacause of the intrinsity (1), mean M would possess the asymptotic power series as
x → ∞ of the form

M(x + s, x + t) =
∞

∑
n=0

cn(s, t)x−n+1

with c0(s, t) = 1. For a homogeneous symmetric mean, the coefficients cn(s, t) are also
homogeneous symmetric polynomials of degree n in variables s and t, and for s = −t, they
have a simpler form. Let the means included possess the asymptotic expansions as x → ∞
of the form

M0(x− t, x + t) =
∞

∑
n=0

cnt2nx−2n+1, (6)

M1(x− t, x + t) =
∞

∑
n=0

ant2nx−2n+1,

M2(x− t, x + t) =
∞

∑
n=0

bnt2nx−2n+1.

Conversely, it can also be shown that the expansion in variables (x− t, x + t) is sufficent to
obtain the so-called two variable expansion, i.e., the expansion in variables (x + s, x + t).
Furthermore, note that

a0 = b0 = c0 = 1. (7)

In this section, we will find the asymptotic expansions of means MS
2 = SM0(M1) and

Mσ
2 = σM0(M1).

2.1. Symmetry SM0

Recall the recently developed results for tansformations of asymptotic series, i.e., the
complete asymptotic expansions of the quotient and the power of asymptotic series.

Lemma 1 ([10], Lemma 1.1.). Let function f (x) and g(x) have the following asymptotic expan-
sions (a0 6= 0, b0 6= 0) as x → ∞:

f (x) ∼
∞

∑
n=0

anx−n, g(x) ∼
∞

∑
n=0

bnx−n.

Then, asymptotic expansion of their quotient f (x)/g(x) reads as

f (x)
g(x)

∼
∞

∑
n=0

cnx−n,

where coefficients cn are defined by

cn =
1
b0

(
an −

n−1

∑
k=0

bn−kck

)
.
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Lemma 2 ([8,16]). Let m(x) be a function with asymptotic expansion (c0 6= 0):

m(x) ∼
∞

∑
n=0

cnx−n, (x → ∞).

Then, for all real r, it holds

[m(x)]r ∼
∞

∑
n=0

P[n, r, (cj)j∈N0 ]x
−n

where
P[0, r, (cj)j∈N0 ] = cr

0,

P[n, r, (cj)j∈N0 ] =
1

nc0

n

∑
k=1

[k(1 + r)− n]ckP[n− k, r, (cj)j∈N0 ].
(8)

Symmetric mean with respect to mean M0 of mean M1 via the group structure (MD , ∗)
as a consequence of (4) can be expressed as:

MS
2 (x− t, x + t) = SM0(M1)(x− t, x + t)

=
(x− t)(M1 − x + t)(M0 − x− t)2 − (x + t)(M0 − x + t)2(M1 − x− t)

(M1 − x + t)(M0 − x− t)2 − (M0 − x + t)2(M1 − x− t)

=
(x− t)(M1 + t)(M0 − t)2 − (x + t)(M0 + t)2(M1 − t)

(M1 + t)(M0 − t)2 − (M0 + t)2(M1 − t)

= x +
2t2M0 − t2M1 −M2

0M1

t2 + M2
0 − 2M0M1

,

where Mi, i = 1, 2, 3, stands for Mi − x. The variables (x− t, x + t) were omitted for the
sake of symplicity. Further calculations reveal that:

MS
2 (x− t, x + t) = x + t2x−1

[
(2c1 − a1)+

+
∞

∑
n=0

(
2cn+2 − an+2 +

n

∑
k=0

( k

∑
j=0

(
cj+1ck−j+1

)
an+1−k

))
t2n+2x−2n−2

]
×

×
[
1 +

∞

∑
n=0

n

∑
k=0

ck+1(cn−k+1 − 2an−k+1)t2n+2x−2n−2
]−1

.

Coefficients bS
n for n ≥ 1 are obtained using Lemma 1 for the division of asymptotic series.

Hence, we have the following:

bS
0 = 1,

bS
n = numn −

n−2

∑
k=0

denn−1−kbS
k+1, n ≥ 1,

where (numn)n∈N0 and (denn)n∈N0 dentote auxiliary sequences, which appear in the nu-
merator and the denominator:

num0 = 2c1 − a1,

numn = 2cn+1 − an+1 +
n−1

∑
k=0

(
k

∑
j=0

(cj+1ck−j+1)an−k

)
, n ≥ 1,
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and
den0 = 1,

denn =
n−1

∑
k=0

ck+1(cn−k − 2an−k), n ≥ 1.

We shall calculate the first few coefficients:

bS
0 = 1,

bS
1 = 2c1 − a1,

bS
2 = 2c2 − a2 − 2c1(a1 − c1)

2,

bS
3 = 2c3 − a3 − 2(a1 − c1)(2a2c1 + c2

1(2a2
1 − 3a1c1 + c2

1) + (a1 − 3c1)c2),

bS
4 = 2c4 − a4 − 2(a2

2c1 + 4a4
1c3

1 + 4a3
1c1(−3c3

1 + c2)

+ 2a2((3a1 − 2c1)(a1 − c1)c2
1 + (a1 − 2c1)c2)

+ a2
1(13c5

1 − 15c2
1c2 + c3) + 2a1(a3c1 − 3c6

1 + 8c3
1c2 − c2

2 − 2c1c3)

+ c1(−2a3c1 + c6
1 − 5c3

1c2 + 3c2
2 + 3c1c3)),

bS
5 = 2c5 − a5 − 2(−2a4c2

1 + 8a5
1c4

1 + 4a3c4
1 − c9

1 − 4a3c1c2 + 7c6
1c2 − 10c3

1c2
2

+ c3
2 + a2

2(6a1c2
1 − 5c3

1 + c2) + 4a4
1c2

1(−7c3
1 + 3c2)− 5c4

1c3 + 6c1c2c3

+ 2a3
1(19c6

1 − 24c3
1c2 + c2

2 + 2c1c3) + 2a2(a3c1 + 8a3
1c3

1 − 3c6
1 + 8c3

1c2

− c2
2 + 6a2

1c1(−3c3
1 + c2)− 2c1c3 + a1(13c5

1 − 15c2
1c2 + c3)) + 3c2

1c4

+ a2
1(6a3c2

1 − 5c1(5c6
1 − 13c3

1c2 + 3c2
2 + 3c1c3) + c4) + 2a1(a4c1

+ a3(−5c3
1 + c2) + 2(2c8

1 − 9c5
1c2 + 6c2

1c2
2 + 4c3

1c3 − c2c3 − c1c4))).

2.2. Symmetry σM0

The problem of functional symmetic mean corresponds the functional equation

M0(x− t, x + t) = M0(M1(x− t, x + t), M2(x− t, x + t))

which we will solve in terms of asymptotic series. To this end, we shall use the following
result from Burić and Elezović about the asymptotic expansion of the composition of means.

Theorem 1 ([17], Theorem 2.2.). Let M and N be given homogeneous symmetric means with
asymptotic expansions

M(x− t, x + t) =
∞

∑
k=0

akt2kx−2k+1, N(x− t, x + t) =
∞

∑
k=0

bkt2kx−2k+1,

and let F be homogeneous symmetric mean with expansion

F(x− t, x + t) =
∞

∑
k=0

γkt2kx−2k+1.

Then, the composition H = F(M, N) has asymptotic expansion

H(x− t, x + t) =
∞

∑
k=0

hnt2nx−2n+1,

where coefficients (hn) are calculated by

hn =
b n

2z c

∑
k=0

γk

n−2zk

∑
j=0

P[j, 2k, (dm)m∈N0 ]P[n− 2zk− j,−2k + 1, (cm)m∈N0 ].
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Sequences (cn) and (dn) are defined by

cn =
1
2
(an + bn), dn =

1
2
(an+z − bn+z), n ≥ 0,

where z is the smallest number such that dn 6= 0.

Applying Theorem 1 on M = M1, N = M2 (or equivalently M = M2, N = M1) and
F = M0, we obtain the asymptotic expansion of the composition M0(M1, M2). Since the
equation M0 = M0(M1, M2) holds, on the other side, in Theorem 1, we also have H = M0.
The coeficients in the asymptotic expansion of the composition M0(M1, M2) equal the
coefficients cn in the asymptotic expansion of mean M0. In the end, we obtain the recursive
algorithm for coefficients cn:

c0 = 1;

cn =
b n

2z c

∑
k=0

ck

n−2zk

∑
j=0

P[j, 2k, ( 1
2 (am − bσ

m))m≥z]P[n− 2zk− j,−2k + 1, ( 1
2 (am + bσ

m))m∈N0 ], (9)

where P[n, r, (cm)m∈N0 ], n ∈ N0 denotes the n-th coefficient in the asymptotic expansion
of r-th power of the asymptotic seires with coefficients (cm)m∈N0 , as it was defined in (8).
Because of (7), z is always greater or equal to 1.

For z = 1 we calculate the first few coefficients:

c0 = 1,

c1 =
1
2
(a1 + bσ

1 ),

c2 =
1
2
(a2 + bσ

2 ) +
1
4
(a1 − bσ

1 )
2c1,

c3 =
1
2
(a3 + bσ

3 )−
1
8
(a1 − bσ

1 )(a2
1 − 4a2 − (bσ

1 )
2 + 4bσ

2 )c1,

c4 =
1
2
(a4 + bσ

4 ) +
1

16
((a4

1 + 4a2
2 − 8a3bσ

1 + (bσ
1 )

4 + 2a2((bσ
1 )

2 − 4bσ
2 )

− 2a2
1(3a2 + (bσ

1 )
2 − bσ

2 )− 6(bσ
1 )

2bσ
2 + 4(bσ

2 )
2

+ 4a1(2a3 + bσ
1 (a2 + bσ

2 )− 2bσ
3 ) + 8bσ

1 bσ
3 )c1 + (a1 − bσ

1 )
4c2),

c5 =
1
2
(a5 + bσ

5 )−
1

32
((a5

1 + a4
1bσ

1 − 4a2
2bσ

1 + 16a4bσ
1 − 4a3(bσ

1 )
2 + (bσ

1 )
5

− 2a3
1(4a2 + (bσ

1 )
2) + 16a3bσ

2 − 8(bσ
1 )

3bσ
2 + 12bσ

1 (b
σ
2 )

2

− 8a2(2a3 + bσ
1 bσ

2 − 2bσ
3 ) + 2a2

1(6a3 − (bσ
1 )

3 + 4bσ
1 bσ

2 − 2bσ
3 ) + 12(bσ

1 )
2bσ

3

− 16bσ
2 bσ

3 − 16bσ
1 bσ

4 + a1(12a2
2 − 16a4 − 8a3bσ

1 + (bσ
1 )

4 + 8a2((bσ
1 )

2 − bσ
2 )

− 4(bσ
2 )

2 − 8bσ
1 bσ

3 + 16bσ
4 ))c1 − (a1 − bσ

1 )
3(3a2

1 − 8a2 − 3(bσ
1 )

2 + 8bσ
2 )c2).

The connetcion between bσ
n and cn with the highest index n in each equation is linear.

In the expression (9), bσ
n appears ony in the second part

P[n− 2zk− j,−2k + 1, ( 1
2 (am + bσ

m))m∈N0 ], (10)

when k = j = 0. Then, (10) becomes P[n, 1, ( 1
2 (am + bσ

m))m∈N0 ], which represents the n-th
coefficient in the ∑∞

n=0
1
2 (an + bσ

n)t2nx−2n+1 to the power of 1, which equals 1
2 (an + bσ

n). So,
we can easily extract bσ

n . The first few coefficients bσ
n are:

bσ
0 = 1,

bσ
1 = 2c1 − a1,
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bσ
2 = 2c2 − a2 −

1
2

c1(a1 − bσ
1 ),

bσ
3 = 2c3 − a3 +

1
4
(a1 − bσ

1 )(a2
1 − 4a2 − (bσ

1 )
2 + 4bσ

2 )c1,

bσ
4 = 2c4 − a4 −

1
8
((a4

1 + 4a2
2 − 8a3bσ

1 + (bσ
1 )

4 + 2a2((bσ
1 )

2 − 4bσ
2 )

− 2a2
1(3a2 + (bσ

1 )
2 − bσ

2 )− 6(bσ
1 )

2bσ
2 + 4(bσ

2 )
2

+ 4a1(2a3 + bσ
1 (a2 + bσ

2 )− 2bσ
3 ) + 8bσ

1 bσ
3 )c1 + (a1 − bσ

1 )
4c2),

bσ
5 = 2c5 − a5 +

1
16

((a5
1 + a4

1bσ
1 − 4a2

2bσ
1 + 16a4bσ

1 − 4a3(bσ
1 )

2 + (bσ
1 )

5

− 2a3
1(4a2 + (bσ

1 )
2) + 16a3bσ

2 − 8(bσ
1 )

3bσ
2 + 12bσ

1 (b
σ
2 )

2

− 8a2(2a3 + bσ
1 bσ

2 − 2bσ
3 ) + 2a2

1(6a3 − (bσ
1 )

3 + 4bσ
1 bσ

2 − 2bσ
3 ) + 12(bσ

1 )
2bσ

3

− 16bσ
2 bσ

3 − 16bσ
1 bσ

4 + a1(12a2
2 − 16a4 − 8a3bσ

1 + (bσ
1 )

4 + 8a2((bσ
1 )

2 − bσ
2 )

− 4(bσ
2 )

2 − 8bσ
1 bσ

3 + 16bσ
4 ))c1 − (a1 − bσ

1 )
3(3a2

1 − 8a2 − 3(bσ
1 )

2 + 8bσ
2 )c2).

For beter understanding the role of the parameter z, we shall recall the idea behind
the proof of Theorem 1. The composition F(M, N) has the asymptotic expansion

F(M(x− t, x + t), N(x− t, x + t)) =

= F
(

M + N
2

− N −M
2

,
M + N

2
+

N −M
2

)
=

∞

∑
k=0

γk

(
N −M

2

)2k(M + N
2

)−2k+1
.

Larger z corresponds with the equating ai and bσ
i and some parts of the coefficients cn

reduce. Observation of the cases with z > 1 in sequel did not provide any new information
about the ceofficients cn.

2.3. Comparison of Coefficients

Sequences (bS
n)n∈N0 and (bσ

n)n∈N0 represent the coefficients in asymptotic expansions
of means, which are results of mappings SM0(M1) and σM0(M1), respectively. Since we are
looking for a mean M0 such those mappings coincide, bS

n and bσ
n need to be equal. Since the

equality must hold for any mean M1, we may suppose that z = 1, which is equivalent with
a1 6= c1. Equating bS

0 with bσ
0 and bS

1 with bσ
1 does not provide any new information, except

b0 = bS
0 = bσ

0 = 1 and b1 = bS
1 = bσ

1 = 2c1 − a1.

With such bσ
1 we may express bσ

2 as

bσ
2 = 2c2 − a2 − 2c1(a1 − c1)

2,

which is already equal to bS
2 . Now, we can substitute

b2 = bS
2 = bσ

2 = 2c2 − a2 − 2c1(a1 − c1)
2,

in bσ
3 to obtain

bσ
3 = 2c3 − a3 − 2c1(a1 − c1)(2a2 + 2c1(a1 − c1)

2 + c2
1 − a1c1 − 2c2),

which, after equating with bS
3 , gives the following condition

(a1 − c1)
2(c2

1 + c3
1 + c2) = 0.
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Since we assumed that a1 and c1 are not equal, it is necessarily

c2 = −c2
1(1 + c1).

Now, we have

b3 = bS
3 = bσ

3 = 2c3 − a3 − 2c1(a1 − c1)
(
(3− 4a1)c2

1 + a1(2a1 − 1)c1 + 2a2 + 4c3
1

)
.

After substitutions, we observe the next coefficient

bσ
4 = 2c4 − a4 − 2c1

(
2a2c1

(
−a1(6c1 + 1) + 3a2

1 + 2c1(2c1 + 1)
)

+ c1
(
c1
(
−4a3

1(4c1 + 1) + a2
1(2c1 + 1)(15c1 + 2)− 2a1c1(14c1(c1 + 1) + 3)

+ 4a4
1 + c2

1(c1(11c1 + 15) + 5)
)
− 2a3

)
+ 2c3(c1 − a1) + a2

2 + 2a1a3
)

which, after equating with bS
4 , gives the following condition:

(a1 − c1)
2
(

2c3
1(c1 + 1)2 − c3

)
= 0,

and we conclude that it must be

c3 = 2c3
1(1 + c1)

2.

We continue with this procedure as it was described above. Further calculations reveal that
the first few coefficients cn have the following form:

c0 = 1,

c1 = c,

c2 = −c2(1 + c),

c3 = 2c3(1 + c)2,

c4 = −5c4(1 + c)3,

c5 = 14c5(1 + c)4,

c6 = −42c6(1 + c)5.

After these first steps, it is natural to state the following hypothesis about the general
formula for the coefficients in the asymptotic expansion of mean M0:

c0 = 1,

cn = (−1)n−1Cn−1cn(1 + c)n−1, n ≥ 1, (11)

where Cn denotes the n-th Catalan number. Catalan numbers appear in many occasions,
and their behavior has been widely explored. Here, we mention only a few properties,
which we will use in sequel. Catalan numbers are defined by

Cn =
1

n + 1

(
2n
n

)
, n ∈ N0

and they satisfy the recursive relation

Cn+1 =
n

∑
k=0

CkCn−k, n ∈ N0.

Based on this recursive relation, the generating function for Catalan numbers can be
obtained ([18]):
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∞

∑
n=0

Cnyn =
1−

√
1− 4y

2y
, (12)

which is convergent for |y| < 1
4 .

3. New Mean Function

In this section, we shall find closed a form for a mean whose coefficients are given in
(11). We start from asymptotic expansion (6):

M0(x− t, x + t) = x +
∞

∑
n=1

(−1)n−1Cn−1cn(1 + c)n−1t2nx−2n+1

= x +
∞

∑
n=0

(−1)nCncn+1(1 + c)nt2n+2x−2n−1

= x + ct2x−1
∞

∑
n=0

Cn

[
− c(1 + c)t2

x2

]n

. (13)

Introducing the substitution y = − c(1+c)t2

x2 , as x → ∞ and thereby y→ 0, yields

M0(x− t, x + t) = x + ct2x−1
∞

∑
n=0

Cnyn,

and, then, according to the formula (12), for c + 1 6= 0, we obtain

M0(x− t, x + t) = x + ct2x−1 1−
√

1− 4y
2y

=
1 + 2c

2(1 + c)
x +

1
2(1 + c)

√
x2 + 4c(1 + c)t2. (14)

Abandoning series expansion in this moment, from the Equation (14) with substitution

x =
a + b

2
, t =

b− a
2

,

we obtain the expression for M0 in terms of variables a and b. For c ∈ R \ {−1} and a, b > 0
we define function Lc : R+ × R+ → R+

Lc(a, b) =
a + b

2
1 + 2c

2(1 + c)
+

1
2(1 + c)

√(
a + b

2

)2
+ 4c(1 + c)

(
b− a

2

)2
. (15)

Remark 1. Function Lc is well defined for all (a, b) ∈ R+ × R+ as we can rearrange terms under
the square root:(

a + b
2

)2
+ 4c(1 + c)

(
b− a

2

)2
=

1
4

(
(a + b)2 + 4c(1 + c)(b− a)2

)
=

1
4

(
(1 + 2c)2(a− b)2 + 4ab

)
> 0.

Remark 2. For c = −1 function Lc corresponds to the harmonic mean which will be proved in
sequel. Therefore, definition (15) can be considered for all c ∈ R.

Remark 3. Formula for Lc can also be written in a following way:

Lc(a, b) = A(a, b)
1 + 2c

2(1 + c)
+

1
2(1 + c)

√
A(a, b)2 + 4c(1 + c)(A(a, b)2 − G(a, b)2). (16)
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3.1. Limit Cases and Monotonicity

In this subsection, we study properties of Lc with respect to parameter c. First, we
state the following proposition, which can be proved using basic methods of mathematical
analysis.

Proposition 1. For a fixed pair (a, b) ∈ R+ × R+, function Lc holds

1. lim
c→−∞

Lc(a, b) = min(a, b),

2. lim
c→−1−

Lc(a, b) = lim
c→−1+

Lc(a, b) =
2ab

a + b
= H(a, b)

3. lim
c→+∞

Lc(a, b) = max(a, b),

It is well known that the following double inequality holds

H < A < G.

Also, H = Lc for c→ −1, G = Lc for c = − 1
2 , and A = Lc for c = 0. In the next Theorem,

we explore the ordering of means Lc with respect to parameter c.

Theorem 2. For a fixed pair (a, b) ∈ R+ × R+, a 6= b, function f : R \ {−1} → R,

f (c) = Lc(a, b)

is strictly increasing.

Proof. Starting form the (16), with A = A(a, b) and G = G(a, b), we have

f (c) = A
1 + 2c

2(1 + c)
+

1
2(1 + c)

√
g(c),

where
g(c) = A2 + 4c(1 + c)

(
A2 − G2

)
> 0

according to Remarks 1 and 3. The first derivative of function f equals

f ′(c) =
1

2(1 + c)2

(
A + 2(1 + 2c)(1 + c)(A2 − G2)g(c)−

1
2 − g(c)

1
2

)
=

1

2(1 + c)2g(c)
1
2

(
Ag(c)

1
2 + 2(1 + 2c)(1 + c)(A2 − G2)− g(c)

)
=

1

2(1 + c)2g(c)
1
2

(
Ag(c)

1
2 + 2(1 + c)(A2 − G2)− A2

)
.

So, the condition f ′(c) > 0 is equivalent to

Ag(c)
1
2 > A2 − 2(1 + c)(A2 − G2).

If the right-hand side is negative, than the inequality obviusly holds. If it is positive, then
we may observe the squared inequality:

A2g(c) > A4 − 4(1 + c)(A2 − G2)A2 + 4(1 + c)2(A2 − G2)

which is equivalent to

4c(1 + c)A2(A2 − G2) > −4(1 + c)(A2 − G2)A2 + 4(1 + c)2(A2 − G2)
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and
(A2 − G2)(1 + c)2G2 > 0

which is true for a 6= b and c 6= 1.

Since Lc assumes values between minimum and maximum of a and b, we may con-
clude the following.

Corollary 1. For c ∈ R funcion Lc is a mean.

Remark 4. Notice that we proved that Lc is a strict mean, i.e., for a 6= b, strict inequalities hold:

min(a, b) < M(a, b) < max(a, b).

3.2. Special Cases

Before we continue further, let us see what happens with some of the special cases of
parameter c. We shall also connect results form this paper with the previously obtained
asymptotic expansions of classical means.

Example 3. (a) c = −1. Then mean has two non-zero coefficients:

c0 = 1, c1 = c, cn = 0, n ≥ 2.

Corresponding asymptotic expansion is finite. From (13), we obtain

Lc(x− t, x + t) = x− t2x−1,

which, after substitution x = a+b
2 , t = b−a

2 becomes

Lc(a, b) =
a + b

2
− (b− a)2

4
· 2

a + b
=

2ab
a + b

= H(a, b).

(b) c = 0. All coefficients except c0 equal zero. Then, either from the (13) or (14), we obtain

Lc(x− t, x + t) = x,

and after the substitution

Lc(a, b) =
a + b

2
= A(a, b).

(c) c = − 1
2 . The coefficients are

c0 = 1, cn = − 1
22n−1 Cn−1, n ≥ 1. (17)

Coefficients (17) correspond to the coefficients in asymptotic expansion of geometric mean
obtained in [9] for α = 0 and β = t, and also to coefficients of power mean Mp with p = 0
obtained in [10]. On the other side, from the formula (14), we obtain

Lc(x− t, x + t) =
√

x2 − t2,

and, after substitution
Lc(a, b) =

√
ab = G(a, b).

From the example above, we see that we covered the cases of means for which in [1]
was stated that symmetries S and σ coincide.
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4. Answer to the Open Question

Theorem 3. For mean Lc, c ∈ R, defined in (15), symmetries SLc and σLc coincide.

Proof. Let us rewrite mean Lc in the following manner:

Lc(a, b) =
1

4(1 + c)

[
(1 + 2c)(a + b) +

√
(a + b)2 + 4c(1 + c)(b− a)2

]
.

For M0 = Lc and variable mean M1 = M, there exists symmetric mean σ = σLc(M), i.e.,
the condition Lc(M, σ) = Lc holds, which yields (for the sake of brevity, the variables will
be ommited):

1
4(1 + c)

[
(1 + 2c)(M + σ) +

√
(M + σ)2 + 4c(1 + c)(M− σ)2

]
= Lc,

or equivalently√
(M + σ)2 + 4c(1 + c)(M− σ)2 = 4(1 + c)Lc − (1 + 2c)(M + σ).

We rearrange the terms and, because of the existence of mean σ = σLc(M), we may square
the latter expression:

M2(1 + 2c)2 + 2Mσ(1− 4c− 4c2) + σ2(1 + 2c)2

= [4(1 + c)Lc − (1 + 2c)M]2 − 2[4(1 + c)Lc − (1 + 2c)M]2 + σ2(1− 2c)2.

The terms σ2(1− 2c)2 cancel from both sides. Further calculation gives

2M(1− 4c− 4c2)σ + 2
(
4(1 + c)Lc − (1 + 2c)M

)
(1 + 2c)σ

= −M2(1 + 2c)2 +
(
4(1 + c)Lc − (1 + 2c)M

)2,

and finally

σ =
Lc
(
(1 + 2c)M− 2(1 + c)Lc

)
2cM− (1 + 2c)Lc

. (18)

Thus, we obtained the explicit expression for mean σ = σLc(M) in terms of M and Lc.
On the other side, from (4), we know that

SLc(M) =
a(M− a)(Lc − b)2 − b(Lc − a)2(M− b)
(M− a)(Lc − b)2 − (Lc − a)2(M− b)

,

which may be written as

SLc(M) =
K1M− K2

K0M− K1
, (19)

where

K0 = (Lc − b)2 − (Lc − a)2,

K1 = a(Lc − b)2 − b(Lc − a)2,

K2 = a2(Lc − b)2 − b2(Lc − a)2.

By equating the results of mappings σ and S with respect to mean Lc of a mean M and
employing Formulas (18) and (19), we obtain

Lc
(
(1 + 2c)M− 2(1 + c)Lc

)
2cM− (1 + 2c)Lc

=
K1M− K2

K0M− K1
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which needs to be proved. We calculate

Lc[2(1 + c)Lc − (1 + 2c)M](K0M− K1) = [(1 + 2c)Lc − 2cM](K1M− K2).

Grouping by the powers of M yields

[M0(1 + 2c)K0 − 2cK1]M2 + 2
[
K2c− (1 + c)L2

c K0

]
M

+ Lc[2(1 + c)LcK1 − (1 + 2c)K2] = 0. (20)

Now, we simplify each coefficient by the powers of M. First,

M0(1 + 2c)K0 − 2cK1 =

= M0(1 + 2c)
[
(Lc − b)2 − (Lc − a)2

]
− 2c

[
a(Lc − b)2 − b(Lc − a)2

]
= (a− b)

[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
,

second,

cK2 − (1 + c)L2
c K0 =

= c
[

a2(Lc − b)2 − b2(Lc − a)2
]
− (1 + c)L2

c

[
(Lc − b)2 − (Lc − a)2

]
= −(a− b)Lc

[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
,

and third

2(1 + c)LcK1 − (1 + 2c)K2 =

= 2(1 + c)Lc

[
a(Lc − b)2 − b(Lc − a)2

]
− (1 + 2c)

[
a2(Lc − b)2 − b2(Lc − a)2

]
= (a− b)Lc

[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
.

Hence, the equation (20) factorizes as

(a− b)
[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
](

M2 − 2Lc M + L2
c

)
= 0. (21)

Notice that the mean Lc defined in (15) is one of the solutions of quadratic equation

2(1 + c)L2
c − (a + b)(1 + 2c)Lc + 2abc,

and the condition (21) is fulfilled, which proves the theorem.

We will close this section with a conjecture. Based on the analysis in this paper, we
may conclude the following.

Hypothesis 1. Symmetric homogeneous mean, which has the asymptotic power series expansion
and fulfills the requirements of the open question from [1] necessarily has the same coefficients as
mean Lc, c ∈ R.

5. Concluding Remarks

Using techniques of asymptotic expansions, we were able to compare two symmetries
of different origins on the set of mean functions. Finding asymptotic series expansion for
both of them, in terms of recursive algorithm for their coefficients, enabled us to carry out
the coefficient comparison, which resulted in obtaining a class of means, which interpolates
between harmonic, geometric, and arithmetic mean.
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Methods presented in this paper may be useful with various problems regarding
bivariate means and further. For example, in case of dual means, generalized inverses of
means and similar problems where some functional connection is given, and especially
when the explicit formula for some of the means involved, was not known.
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