
Citation: Smessaert, H.; Demey, L.

Aristotelian Diagrams for the

Proportional Quantifier ‘Most’.

Axioms 2023, 12, 236. https://

doi.org/10.3390/axioms12030236

Academic Editor: Oscar Castillo

Received: 31 January 2023

Revised: 21 February 2023

Accepted: 22 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Aristotelian Diagrams for the Proportional Quantifier ‘Most’
Hans Smessaert 1,* and Lorenz Demey 2,3

1 Department of Linguistics, KU Leuven, 3000 Leuven, Belgium
2 Center for Logic and Philosophy of Science, KU Leuven, 3000 Leuven, Belgium
3 KU Leuven Institute for Artificial Intelligence, KU Leuven, 3000 Leuven, Belgium
* Correspondence: hans.smessaert@kuleuven.be

Abstract: In this paper, we study the interaction between the square of opposition for the Aristotelian
quantifiers (‘all’, ‘some’, ‘no’, and ‘not all’) and the square of opposition generated by the proportional
quantifier ‘most’ (in its standard generalized quantifier theory reading of ‘more than half’). In a first
step, we provide an analysis in terms of bitstring semantics for the two squares independently. The
classical square for ‘most’ involves a tripartition of logical space, whereas the degenerate square for
‘all’ in first-order logic (FOL) involves a quadripartition, due to FOL’s lack of existential import. In
a second move, we combine these two squares into an octagon of opposition, which was hitherto
unattested in logical geometry, while the meet of the original tri- and quadripartitions yields a
hexapartition for this octagon. In a final step, we switch from FOL to a logical system, which does
assume existential import. This yields an octagon of the well known Lenzen type, and its bitstring
semantics is reduced to a pentapartition.

Keywords: square of opposition; octagon of opposition; logical geometry; bitstring semantics;
proportional quantification; Aristotelian quantifiers; existential import; first-order logic; syllogistics
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1. Introduction

In the framework of logical geometry [1,2], a central object of investigation is the so-
called ‘Aristotelian square’ or ‘square of opposition’, visualising ARISTOTELIAN RELATIONS,
i.e., logical relations of opposition and implication. Two propositions α and β are said to be

a. contradictory CD(α,β) iff α and β cannot be true together and
α and β cannot be false together,

b. contrary CR(α,β) iff α and β cannot be true together but
α and β can be false together,

c. subcontrary SCR(α,β) iff α and β can be true together but
α and β cannot be false together,

d. in subalternation SA(α,β) iff α entails β but β does not entail α.

An ARISTOTELIAN DIAGRAM (AD, for short) consists of a fragment F of a language L,
i.e., a subset of formulas of that language, and a logical system S. The formulas in F are
typically assumed to be S-contingent and pairwise non-S-equivalent, and the fragment is
standardly also assumed to be closed under negation: if a formula α belongs to F , then
its negation ¬α also belongs to F . More concretely, an Aristotelian diagram for F relative
to S visualises a vertex- and edge-labeled graph G. The vertices of G are labeled by the
elements of F , whereas the edges of G are labeled by all the Aristotelian relations holding
between those elements in S.

The central aim of this paper is to study the interaction between two four-formula
fragments that independently yield an AD. The first fragment—Fmost—is generated on the
basis of the formula most(A,B). On its standard reading in generalized quantifier theory [3,4],
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the proportional quantifier most is taken to be equivalent to more than half. In other words,
the sentence most A are B is true iff the number of As that are B is strictly greater than the
number of As that are not B. Starting from this basic formula most(A,B), we can then negate
either the complete formula, or the predicate B, or both. This yields the fragment Fmost,
which is listed here, together with the formulas’ denotations in the standard set-theoretical
notation format of GQT:

Fmost := { most(A,B), |A ∩ B| > |A \ B|
¬most(A,B), |A ∩ B| ≤ |A \ B|
most(A,¬B), |A ∩ B| < |A \ B|
¬most(A,¬B) } |A ∩ B| ≥ |A \ B|

Completely analogously, the second fragment—Fall — contains the four Aristotelian
quantifiers [5], which are listed below, together with their denotations in GQT format and
with equivalent formulations that clearly exhibit how this fragment is generated on the
basis of all(A,B):

Fall := { all(A,B), |A \ B| = 0 all(A,B)
not all(A,B), |A \ B| > 0 ¬all(A,B)

no(A,B), |A ∩ B| = 0 all(A,¬B)
some(A,B) } |A ∩ B| > 0 ¬all(A,¬B)

In the past, authors such as Peterson [6,7], Brown [8], Veloso and Veloso [9], and
Murinová and Novák [10,11] have already proposed Aristotelian diagrams for most (and
other modulated/intermediate/generalized quantifiers). However, in the present paper,
we will study these diagrams from the specific perspective of logical geometry, focusing
(inter alia) on the partitions of logical space that are induced by such diagrams.

The paper is organised as follows. In a first major step, the two fragments Fmost and
Fall are analysed independently of one another by distinguishing the two radically different
ADs that they give rise to in first-order logic (FOL), i.c., a classical square for ‘most’ versus
a degenerate square for ‘all’ (Section 2.1), and by computing the corresponding bitstring
semantics in terms of a tripartition versus a quadripartition of logical space (Section 2.2).
Notice that, by analysing Fmost in FOL, we do not mean to suggest that most(A,B) is first-
order definable—which it famously is not [3]—but, merely, wish to emphasise that we are
working in a logical system without existential import, in which the predicates A and B are
thus allowed to have empty extensions. In a second move, the two fragments Fmost and
Fall are combined into the eight-formula fragment Fallmost. The AD for Fallmost relative
to FOL is an octagon hitherto unattested in logical geometry (Section 3.1), with bitstring
semantics involving a hexapartition of logical space (Section 3.2). In a final step, we switch
from FOL—which does not assume existential import—to a new logical system, SYL (from
‘syllogistics’)—which does assume existential import. The AD for Fallmost relative to SYL is
another octagon, this time of the familiar Lenzen type (Section 4.1), with a pentapartition
for its bitstring semantics (Section 4.2). We finish off with some concluding remarks and
issues for further research (Section 5).

2. Aristotelian Squares for ‘Most’ versus ‘All’
2.1. Aristotelian Relations for ‘Most’ versus ‘All’

The definitions of the Aristotelian relations and the characterisation of the fragment
Fmost in Section 1 give rise to the so-called CLASSICAL ARISTOTELIAN SQUARE in Figure 1,
which uses the by now standard graphical conventions: two contradiction (CD) relations on
the diagonals, two subalternation (SA) relations on the vertical edges, and one contrariety
(CR) and one subcontrariety (SCR) relation on the horizontal edges. Note, furthermore, that
(positive occurrences of) the proportional quantifier most always have existential import:
even in FOL, most A are B entails that there is at least one A (semantically: |A ∩ B| > |A \ B|
entails |A ∩ B| > 0, and hence |A| > 0). (However, the negated quantifier not most lacks
existential import: not most A are B is true in case there are no A’s, i.e., if |A| = 0 then



Axioms 2023, 12, 236 3 of 13

|A ∩ B| = 0 ≤ 0 = |A \ B|.) The Aristotelian quantifiers all and no, by contrast, lack
existential import in FOL: neither all A are B nor no A are B entails in FOL that there is at least
one A. The resulting constellation is the so-called DEGENERATE ARISTOTELIAN SQUARE for
Fall in Figure 2, sometimes also referred to as an ‘X of opposition’ [12].

Figure 1. Classical Aristotelian square for the proportional quantifier ‘most’, relative to FOL.

Figure 2. Degenerate Aristotelian square for the Aristotelian quantifiers, relative to FOL.

In such a degenerate square, only the two contradiction (CD) relations on the diagonals
remain, i.e., there is no contrariety (C) between all and no, no subcontrariety (SC) between
some and not all, and no subalternation (SA) from all to some, nor from no to not all. The four
pairs of formulas on the outer edge of the square are said to be UNCONNECTED, i.e., they
stand in no Aristotelian relation whatsoever.

Finally, it bears emphasising that the squares for Fmost and Fall are both DUALITY

SQUARES, as well. For example, in Figure 1, we observe that most(A,B) and ¬most(A,¬B)
are dual to each other, just like all(A,B) and some(A,B) = ¬all(A,¬B) are dual to each other
in Figure 2. The fact that a classical and a degenerate Aristotelian square are both duality
squares clearly illustrates the conceptual independence between the Aristotelian relations
on the one hand, and the duality relations on the other. This issue has been studied
extensively in logical geometry [13–15]. However, we will not pursue it further in this
paper, but focus exclusively on the Aristotelian relations that hold among the formulas of
Fmost and Fall.

2.2. Bitstring Semantics for ‘Most’ versus ‘All’

Bitstring semantics is a technique developed within the research framework of logical
geometry [1,16–18], which allows us to systematically compute combinatorial represen-
tations of a given number of propositions, thus providing a concrete grip on their logical
behavior. Given a logical system S and fragment F , we first compute the PARTITION

induced by F in S, denoted ΠS(F ), as follows:

ΠS(F ) := {
∧

ϕ∈F
±ϕ |

∧
ϕ∈F
±ϕ is S-consistent},

where +ϕ = ϕ and −ϕ = ¬ϕ. The fragment Fmost defined in Section 1 can be shown to
induce the following partition in FOL:

ΠFOL(Fmost) = { α1: more than half (A,B), |A ∩ B| > |A \ B|
α2: exactly half (A,B), |A ∩ B| = |A \ B|
α3: less than half (A,B) } |A ∩ B| < |A \ B|

The elements of a partition, which are called ANCHOR FORMULAS, are (i) jointly exhaustive,
that is, |=S

∨
ΠS(F ), and (ii) mutually exclusive, that is, |=S ¬(α ∧ β) for distinct α, β ∈
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ΠS(F ); for example, the tripartition of logical space ΠFOL(Fmost) consists of the three
anchor formulas α1 ≡ most(A,B) ∧ ¬most(A,¬B), α2 ≡ ¬most(A,B) ∧ ¬most(A,¬B), and
α3 ≡ most(A,¬B) ∧ ¬most(A,B), the remaining three conjunctions—most(A,B) ∧ most(A,¬B),
most(A,B) ∧ ¬most(A,B), and most(A,¬B) ∧ ¬most(A,¬B)—being inconsistent. Finally, note
that α1 and α3 both entail |A| > 0, whereas α2 holds even in case |A| = 0.

In a second step, the bitstring semantics is defined, not just for the fragment F itself,
but rather for its entire BOOLEAN CLOSURE in S, denoted BS(F ) and defined as the smallest
set C ⊆ LS, such that (i) F ⊆ C and (ii) C is closed under the Boolean operations (up
to logical equivalence), i.e., for all ϕ, ψ ∈ C, there exist α, β ∈ C such that α ≡S ϕ ∧ ψ
and β ≡S ¬ϕ. The bitstring semantics βFS : BS(F ) → {0, 1}|ΠS(F )| maps every formula
ϕ ∈ BS(F ) onto its bitstring representation βFS (ϕ), which is a sequence of |ΠS(F )| bits
that will have the value 1 in its ith bit position iff |=S αi → ϕ. Given that |ΠFOL(Fmost)| = 3,
the BITSTRING SEMANTICS βmost

FOL for BFOL(Fmost) is defined in terms of bitstrings of length
three. In particular, the resulting bitstrings for the formulas of Fmost are:

βmost
FOL(most(A, B)) = 100 |A ∩ B| > |A \ B|

βmost
FOL(¬most(A, B)) = 011 |A ∩ B| ≤ |A \ B|

βmost
FOL(most(A,¬B)) = 001 |A ∩ B| < |A \ B|

βmost
FOL(¬most(A,¬B)) = 110 |A ∩ B| ≥ |A \ B|

Let us now turn to the partition induced by the second fragment that was introduced in
Section 1, namely, Fall :

ΠFOL(Fall) = { α′1: all A are B & there are A’s, |A \ B| = 0 & |A| > 0
α′2: some but not all A are B, |A \ B| > 0 & |A ∩ B| > 0
α′3: no A are B & there are A’s, |A ∩ B| = 0 & |A| > 0
α′4: there are no A’s } |A| = 0

In contrast to the tripartition ΠFOL(Fmost) above, the quadripartition of logical space
ΠFOL(Fall) consists of the four anchor formulas α′1, α′2, α′3 and α′4. Crucially, the fourth an-
chor formula α′4 takes care of the lack of existential import with the Aristotelian quantifiers
in FOL: both the formulas all A are B and no A are B make perfect sense—they are true in
fact—if there are no As. As a consequence, the bitstring semantics βall

FOL for BFOL(Fall) is
defined in terms of bitstrings of length four. In particular, the resulting bitstrings for the
formulas of Fall are as follows:

βall
FOL(all(A, B)) = 1001 |A \ B| = 0

βall
FOL(not all(A, B)) = 0110 |A \ B| > 0

βall
FOL(no(A, B)) = 0011 |A ∩ B| = 0

βall
FOL(some(A, B)) = 1100 |A ∩ B| > 0

Observe that the βall
FOL-bitstrings for both all(A,B) and no(A,B) have a value 1 in their fourth

bit position—these formulas are true if there are no As, i.e., they do not have existential
import in FOL—whereas those for not all(A,B) and some(A,B) have a value 0 in their fourth
bit position—these formulas are false if there are no As, i.e., they do have existential import.
The two ADs in Figures 3 and 4—which are the respective counterparts of Figures 1 and 2,
but with the bitstring representations added—nicely reflect the standard result from logical
geometry that a classical square only requires bitstrings of length 3, whereas a degenerate
square requires bitstrings of length 4 [1].

Figure 3. Classical square with bitstrings of length 3 for Fmost, relative to FOL.
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Figure 4. Degenerate square with bitstrings of length 4 for Fall , relative to FOL.

3. A First Aristotelian Octagon for ‘Most’ and ‘All’

Having provided the ADs and the bitstring semantics for the two four-formula frag-
ments Fmost and Fall independently in the previous section, we now continue work-
ing in FOL, and combine these two fragments into one large eight-formula fragment
Fallmost := Fall ∪ Fmost, whose formulas are listed again below, together with their denota-
tions in GQT format:

Fallmost = { all(A,B), |A \ B| = 0
no(A,B), |A ∩ B| = 0

most(A,B), |A ∩ B| > |A \ B|
most(A,¬B), |A ∩ B| < |A \ B|
¬most(A,¬B), |A ∩ B| ≥ |A \ B|
¬most(A,B), |A ∩ B| ≤ |A \ B|

some(A,B), |A ∩ B| > 0
¬all(A,B) } |A \ B| > 0

In Section 3.1 we will first of all look at the Aristotelian relations holding among the eight
formulas of this new fragment Fallmost and the octagonal AD that these relations give rise
to in FOL. In Section 3.2, we will then compute the partition induced by Fallmost in FOL and
consider the resulting bitstring semantics in full detail.

3.1. Aristotelian Relations in the First Octagon

The first, and perhaps the most obvious type of additional Aristotelian relations that
show up in Fallmost are relations of subalternation between one formula from the classical
square and one formula from the degenerate square. The first two SA relations given below
go from a formula in Fmost to a formula in Fall , whereas the last two SA relations go from
Fall to Fmost. Next to each subalternation, we have also added its semantic justification in
GQT format.

SA[ most(A,B), some(A,B) ] if |A ∩ B| > |A \ B| then |A ∩ B| > 0
SA[ most(A,¬B), ¬all(A,B) ] if |A ∩ B| < |A \ B| then |A \ B| > 0
SA[ all(A,B), ¬most(A,¬B) ] if |A \ B| = 0 then |A ∩ B| ≥ |A \ B|
SA[ no(A,B), ¬most(A,B) ] if |A ∩ B| = 0 then |A ∩ B| ≤ |A \ B|

These four SA relations allow us to interlock the two squares from Figures 1 and 2 into
the octagonal AD in Figure 5. This octagon furthermore yields two additional contrariety
relations (CR) and two additional subcontrariety relations (SCR) between a formula from
Fmost and a formula from Fall , namely:

CR[ all(A,B), most(A,¬B) ] CR[ most(A,B), no(A,B) ]
SCR[ ¬most(A,¬B), ¬all(A,B) ] SCR[ some(A,B), ¬most(A,B) ]
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Figure 5. Octagon for Fallmost, relative to FOL.

Hence, in addition to the original classical square for Fmost, the octagonal AD in
Figure 5 also contains two further classical squares. We will refer to these two as MIXED

SQUARES, since they consist of two formulas from Fmost and two formulas from Fall . The
three classical squares embedded in Figure 5 visualise the following three subfragments
of Fallmost:

Fallmost−square1 := Fmost
Fallmost−square2 := { all(A,B), most(A,¬B), ¬most(A,¬B), ¬all(A,B) }
Fallmost−square3 := { most(A,B), no(A,B), some(A,B), ¬most(A,B) }

The original classical square forFallmost−square1 sits horizontally stretched inside the octagon
in Figure 5. The mixed classical square for Fallmost−square2 is tilted 22.5◦ clockwise in
Figure 5; it comprises the second and third additional SA relations mentioned above,
together with the additional (S)CR relations on the left. Finally, the mixed classical square
for Fallmost−square3 is tilted 22.5◦ counterclockwise in Figure 5, and comprises the first and
fourth additional SA relations and the additional (S)CR relations on the right.

Completely analogously, we now observe that, in addition to the original degenerate
square for Fall , the octagonal AD in Figure 5 also contains two further mixed degenerate
squares. These three degenerate squares embedded in Figure 5 visualise the following
subfragments of Fallmost:

Fallmost−square4 := Fall
Fallmost−square5 := { most(A,B), all(A,B), ¬all(A,B) , ¬most(A,B) }
Fallmost−square6 := { no(A,B), most(A,¬B), ¬most(A,¬B), some(A,B) }

The original degenerate square Fallmost−square4 sits vertically stretched inside the octagon in
Figure 5, whereas the two mixed squares—Fallmost−square5 and Fallmost−square6—are again
tilted 45◦ counterclockwise and clockwise, respectively.

It is important to stress that, although this type of Aristotelian octagon—containing
three classical and three degenerate squares—was known in theory as one of the 18 families
of Aristotelian octagons, the AD in Figure 5 can be considered the first ‘non-artificial’
instance of this family. (In a completely different application context, Frijters [19] has
recently found another instance of this family.) Furthermore, this AD naturally fits into a
series of families of octagons in which the number of degenerate squares increases from
zero (with the families of Moretti and Lenzen octagons [20,21]) over one (with the families
of Béziau and Buridan octagons [22–24]) and two (with the family of Keynes-Johnson
octagons [25,26]) to three (with the family to which Fallmost in Figure 5 belongs).

3.2. Bitstring Semantics for the First Octagon

In order to compute the bitstring semantics for Fallmost in FOL, we start from the two
basic partitions computed in Section 2.2 for Fmost and Fall , which are repeated here for the
sake of convenience:
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ΠFOL(Fmost) = { α1: more than half (A,B), |A ∩ B| > |A \ B|
α2: exactly half (A,B), |A ∩ B| = |A \ B|
α3: less than half (A,B) } |A ∩ B| < |A \ B|

ΠFOL(Fall) = { α′1: all A are B & there are A’s, |A \ B| = 0 & |A| > 0
α′2: some but not all A are B, |A \ B| > 0 & |A ∩ B| > 0
α′3: no A are B & there are A’s, |A ∩ B| = 0 & |A| > 0
α′4: there are no A’s } |A| = 0

We now compute ΠFOL(Fallmost) by taking the meet of these two original partitions,
i.e., ΠFOL(Fallmost) := ΠFOL(Fmost) ∧FOL ΠFOL(Fall), which consists of all FOL-consistent
conjunctions αi ∧ α′j of an anchor formula αi ∈ ΠFOL(Fmost) and an anchor formula α′j ∈
ΠFOL(Fall) (for more details, see [1]). This initially yields |ΠFOL(Fmost)| × |ΠFOL(Fall)| =
3× 4 = 12 conjunctions. After elimination of the FOL-inconsistent conjunctions—such as
α3 ∧ α′1, where |A \ B| cannot simultaneously be equal to and strictly greater that zero—we
obtain the following hexapartition:

ΠFOL(Fallmost) = { α′′1 : all A are B and there are A’s, |A ∩ B| > |A \ B| = 0
α′′2 : most but not all A’s are B, |A ∩ B| > |A \ B| > 0
α′′3 : exactly half the A’s are B, |A ∩ B| = |A \ B| > 0
α′′4 : most but not all A’s are not B, 0 < |A ∩ B| < |A \ B|
α′′5 : no A’s are B, but there are A’s, 0 = |A ∩ B| < |A \ B|
α′′6 : there are no A’s } 0 = |A ∩ B| = |A \ B|

Given this partition, the bitstring semantics βallmost
FOL for BFOL(Fallmost) is defined in terms

of bitstrings of length six. In particular, the resulting bitstrings for the formulas of Fallmost
are as follows:

βallmost
FOL (all(A, B)) = 100001 |A \ B| = 0

βallmost
FOL (no(A, B)) = 000011 |A ∩ B| = 0

βallmost
FOL (most(A, B)) = 110000 |A ∩ B| > |A \ B|

βallmost
FOL (most(A,¬B)) = 000110 |A ∩ B| < |A \ B|

βallmost
FOL (¬most(A,¬B)) = 111001 |A ∩ B| ≥ |A \ B|

βallmost
FOL (¬most(A, B)) = 001111 |A ∩ B| ≤ |A \ B|

βallmost
FOL (some(A, B)) = 111100 |A ∩ B| > 0

βallmost
FOL (not all(A, B)) = 011110 |A \ B| > 0

Observe, once again, that the βallmost
FOL -bitstrings for all(A,B) and no(A,B) have a value 1 in

their sixth bit position—these formulas are true if there are no A’s, i.e., they do not have
existential import in FOL. Finally, the AD in Figure 6 is the counterpart of Figure 5, with
the bitstring representations added to it.

Figure 6. Octagon with bitstrings of length 6 for Fallmost, relative to FOL.
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4. A Second Aristotelian Octagon for ‘Most’ and ‘All’

At this point, we want to switch from FOL—which does not assume existential import—
to a new logical system, SYL—which does assume existential import, i.e., it only assigns
non-empty sets as extensions of unary predicates. This switch does not fundamentally
affect the semantics of Fmost, and hence the classical square from Figure 3 and the induced
partition remain unchanged—i.e., ΠSYL(Fmost) = ΠFOL(Fmost). (Note, however, that the
interpretation of the anchor formula α2 changes slightly upon moving from FOL to SYL:
relative to FOL, situations in which |A| = 0 are taken into consideration, and α2 is said to
be true in them; however, relative to SYL, such situations are no longer considered to begin
with.) By contrast, the semantics of Fall is quite different from before; relative to SYL, it
now looks as follows (in GQT format):

Fall = { all(A,B), |A \ B| = 0 & |A| > 0
¬all(A,B), |A \ B| > 0

no(A,B), |A ∩ B| = 0 & |A| > 0
some(A,B) } |A ∩ B| > 0

This fragment induces the following partition in SYL:

ΠSYL(Fall) = { α′1: all A are B & there are A’s, |A \ B| = 0 & |A| > 0
α′2: some but not all A are B, |A \ B| > 0 & |A ∩ B| > 0
α′3: no A are B & there are A’s } |A ∩ B| = 0 & |A| > 0

When we compare ΠSYL(Fall) with ΠFOL(Fall) from before, we note that the anchor
formulas α′1, α′2 and α′3 have remained the same, whereas α′4 is no longer present, because
it has gone from FOL-consistent to SYL-inconsistent. As a consequence, the bitstring
semantics βall

SYL for BSYL(Fall) is defined in terms of bitstrings of length three, since the
fourth bit position from the βall

FOL-bitstrings has been deleted. In particular, the resulting
bitstrings for the formulas of Fall are given as follows:

βall
SYL(all(A, B)) = 100 |A \ B| = 0 & |A| > 0

βall
SYL(¬all(A, B)) = 011 |A \ B| > 0

βall
SYL(no(A, B)) = 001 |A ∩ B| = 0 & |A| > 0

βall
SYL(some(A, B)) = 110 |A ∩ B| > 0

This move from the quadripartition ΠFOL(Fall) to the tripartition ΠSYL(Fall) has
important consequences for the Aristotelian relations in Fall . In particular, in addition
to the two contradiction relations on the diagonals in Figure 7, Fall also has the vertical
subalternation arrows from all to some and from no to not all, as well as the horizontal
contrariety between all and no and the horizontal subcontrariety between some and not all.
In other words, we move from the degenerate square for Fall relative to FOL in Figure 4—
with bitstrings of length 4—to the classical square for Fall relative to SYL in Figure 7—with
bitstrings of length 3. This contrast between a degenerate and a classical square is the
standard example of the LOGIC-SENSITIVITY of Aristotelian diagrams, which is a well
known phenomenon in logical geometry [1,27,28]: although we are dealing with one and
the same fragment Fall , this fragment gives rise to very different ADs relative to different
logical systems (FOL versus SYL).

Figure 7. Classical square with bitstrings of length 3 for Fall , relative to SYL.
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In Section 3 we combined Fmost and Fall into the eight-formula fragment Fallmost,
and studied it relative to FOL. We now return to Fallmost, and study it relative to SYL.
As expected, the semantics (in GQT format) looks different from before:

Fallmost = { all(A,B), |A \ B| = 0 & |A| > 0
no(A,B), |A ∩ B| = 0 & |A| > 0

most(A,B), |A ∩ B| > |A \ B|
most(A,¬B), |A ∩ B| < |A \ B|
¬most(A,¬B), |A ∩ B| ≥ |A \ B|
¬most(A,B), |A ∩ B| ≤ |A \ B|

some(A,B), |A ∩ B| > 0
¬all(A,B) } |A \ B| > 0

In Section 4.1, we will first of all look at the Aristotelian relations holding among the
eight formulas of the fragment Fallmost and the octagonal AD that these relations give rise
to in SYL. In Section 4.2, we will compute the partition induced by Fallmost in SYL and
consider the resulting bitstring semantics in full detail.

4.1. Aristotelian Relations in the Second Octagon

When we interlock the two classical squares for Fmost and Fall from Figures 3 and 7,
we obtain the octagonal AD in Figure 8. Comparing this octagon for Fallmost in SYL to
the octagon for Fallmost in FOL given in Figure 5, we observe that the former contains six
additional subalternation relations. Two of them, of course, come from Fall being a classical
square in SYL instead of a degenerate one. The remaining four resemble the ones given at
the beginning of Section 3.1, in that they hold between one formula from Fmost and one
formula from Fall :

SA[ all(A,B), most(A,B) ] SA[ ¬most(A,B), ¬all(A,B) ]
SA[ no(A,B), most(A,¬B) ] SA[ ¬most(A,¬B), some(A,B) ]

Figure 8. Octagon for Fallmost, relative to SYL.

Moving from Fallmost in FOL (Figure 5) to Fallmost in SYL (Figure 8), we also get three
additional contrariety relations and three additional subcontrariety relations. Again, one of
each is due to Fall being a classical square in SYL, whereas the remaining two pairs hold
between one formula from Fmost and one formula from Fall :

CR[ all(A,B), ¬most(A,B) ] CR[ ¬most(A,¬B), no(A,B) ]
SCR[ most(A,B), ¬all(A,B) ] SCR[ some(A,B), most(A,¬B) ]

The fundamental differences in overall Aristotelian constellations between the two octago-
nal ADs can be summarised as follows:
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relations in Fallmost . . . relative to FOL . . . relative to SYL

contradiction 4 4
contrariety 3 6
subcontrariety 3 6
subalternation 6 12
unconnectedness 12 0
total ( 8×7

2 ) 28 28

All twelve pairs of formulas which are unconnected—i.e., stand in no Aristotelian relation
whatsoever—in FOL and which thus characterise the three degenerate squares embedded
in the octagon in Figure 6, turn out to stand in a (proper) relation of (sub)contrariety or
subalternation in SYL. In other words, the octagonal AD in Figure 8 no longer contains any
degenerate squares, and instead consists of six classical squares, which visualise the six
subfragments of Fallmost that we already encountered before:

Fallmost−square1 = Fmost
Fallmost−square2 = { all(A,B), most(A,¬B), ¬most(A,¬B), ¬all(A,B) }
Fallmost−square3 = { most(A,B), no(A,B), some(A,B), ¬most(A,B) }
Fallmost−square4 = Fall
Fallmost−square5 = { most(A,B), all(A,B), ¬all(A,B) , ¬most(A,B) }
Fallmost−square6 = { no(A,B), most(A,¬B), ¬most(A,¬B) , some(A,B) }

The first two mixed squares (i.e., consisting of two formulas from Fmost and two formulas
from Fall), namely, Fallmost−square2 and Fallmost−square3, are identical relative to FOL and
to SYL: in both systems they are classical squares. (In this sense, they also resemble
Fallmost−square1 = Fmost.) By contrast, the last two mixed squares, namely, Fallmost−square5
and Fallmost−square6, are degenerate squares relative to FOL, but classical squares relative to
SYL. (In this sense, they also resemble Fallmost−square4 = Fall .)

Notice that with the octagonal AD in Figure 8—consisting of six interlocking classical
squares, but no degenerate squares—we return to a well documented family of octagons,
namely, the so-called Lenzen octagon [20]. Furthermore, this contrast between the two
families of octagons (Figure 5 versus Figure 8) constitutes a more complex and rich illus-
tration of the logic sensitivity of Aristotelian diagrams: once again, we are dealing with a
single fragment, Fallmost, which gives rise to very different ADs relative to different logical
systems (FOL versus SYL).

4.2. Bitstring Semantics for the Second Octagon

In order to compute the bitstring semantics for Fallmost in SYL, we start from the two
tripartitions that we calculated for Fmost and Fall in SYL, which we repeat here for the sake
of convenience:

ΠSYL(Fmost) = { α1: more than half (A,B), |A ∩ B| > |A \ B|
α2: exactly half (A,B), |A ∩ B| = |A \ B|
α3: less than half (A,B) } |A ∩ B| < |A \ B|

ΠSYL(Fall) = { α′1: all A are B & there are A’s, |A \ B| = 0 & |A| > 0
α′2: some but not all A are B, |A \ B| > 0 & |A ∩ B| > 0
α′3: no A are B & there are A’s, } |A ∩ B| = 0 & |A| > 0

We now take the meet of these two partitions, i.e., ΠSYL(Fallmost) := ΠSYL(Fmost) ∧SYL
ΠSYL(Fall), which results in the following pentapartition:

ΠSYL(Fallmost) = { α′′1 : All A are B and there are A’s, |A ∩ B| > |A \ B| = 0
α′′2 : Most but not all A’s are B, |A ∩ B| > |A \ B| > 0
α′′3 : Exactly half the A’s are B, |A ∩ B| = |A \ B| > 0
α′′4 : Most but not all A’s are not B, 0 < |A ∩ B| < |A \ B|
α′′5 : No A’s are B, but there are A’s, } 0 = |A ∩ B| < |A \ B|
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Note that in comparison to ΠFOL(Fallmost), the anchor formula α′′6 is no longer present,
because it has gone from FOL-consistent to SYL-inconsistent. As a consequence, the bitstring
semantics βallmost

SYL for BSYL(Fallmost) is defined in terms of bitstrings of length five, since the
sixth bit position from the βallmost

FOL -bitstrings has been deleted. In particular, the resulting
bitstrings for the formulas of Fallmost are given as follows:

βallmost
SYL (all(A, B)) = 10000 |A \ B| = 0 & |A| > 0

βallmost
SYL (no(A, B)) = 00001 |A ∩ B| = 0 & |A| > 0

βallmost
SYL (most(A, B)) = 11000 |A ∩ B| > |A \ B|

βallmost
SYL (most(A,¬B)) = 00011 |A ∩ B| < |A \ B|

βallmost
SYL (¬most(A,¬B)) = 11100 |A ∩ B| ≥ |A \ B|

βallmost
SYL (¬most(A, B)) = 00111 |A ∩ B| ≤ |A \ B|

βallmost
SYL (some(A, B)) = 11110 |A ∩ B| > 0

βallmost
SYL (not all(A, B)) = 01111 |A \ B| > 0

The AD in Figure 9 is the counterpart of Figure 8, with the bitstring representations added
to it.

Figure 9. Octagon with bitstrings of length 5 for Fallmost, relative to SYL.

5. Conclusions

In Table 1, we provide an overview of the fragments, logics, partitions and Aristotelian
diagrams discussed in this paper. The starting point of our analysis are two four-formula
fragments, namely, Fmost for the proportional quantifiers (generated on the basis of ‘most’),
and Fall for the standard Aristotelian quantifiers (generated on the basis of ‘all’). Relative
to FOL as well as to SYL, the fragment Fmost induces a tripartition of logical space—i.e.,
|ΠFOL(Fmost)| = 3 = |ΠSYL(Fmost)|—and yields a classical square with bitstrings of
length three. By contrast, the fragment Fall induces a quadripartition relative to FOL—
i.e., |ΠFOL(Fall)| = 4—and yields a degenerate square with bitstrings of length four, but
this same fragment induces a tripartition relative to SYL—i.e., |ΠSYL(Fall)| = 3—and
yields a classical square with bitstrings of length three. The difference between these two
ADs for (and partitions induced by) the fragment Fall relative to FOL and to SYL is the
standard example of the well known logic sensitivity of Aristotelian diagrams.

Combining Fmost with Fall , we obtained the eight-formula fragment Fallmost. Rela-
tive to FOL, this fragment induces a hexapartition—i.e., |ΠFOL(Fallmost)| = 6—and bit-
strings of length six, but relative to SYL, this same fragment induces a pentapartition—
i.e., |ΠSYL(Fallmost)| = 5—and bitstrings of length five. In Figure 10 the two resulting
octagonal ADs are juxtaposed. The AD for Fallmost in FOL is an octagon—of a type hitherto
only known ‘in theory’ in logical geometry—in which three classical and three degener-
ate squares are embedded. By contrast, the AD for Fallmost in SYL is a standard Lenzen
octagon, with six embedded classical squares. The difference between these two ADs for
(and partitions induced by) the fragment Fallmost relative to FOL and to SYL constitutes a
more complex and rich illustration of the logic-sensitivity of Aristotelian diagrams.
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Table 1. Overview of fragments, logics, partitions and Aristotelian diagrams.

F |F| S |ΠS(F)| Aristotelian Diagram

Fmost 4 FOL 3 classical square
Fmost 4 SYL 3 classical square

Fall 4 FOL 4 degenerate square
Fall 4 SYL 3 classical square

Fallmost 8 FOL 6 new type of octagon
Fallmost 8 SYL 5 Lenzen octagon

Figure 10. Octagons with bitstrings of length 6 and length 5 for Fallmost, relative to resp. FOL

and SYL.

In future research, we intend to consider alternative interpretations for the fragment
Fmost available in the formal semantics literature on proportional quantification [29,30]
and investigate their interaction with the fragment Fall from the point of view of logic-
sensitivity. In addition, we continue our search for natural instances of the 18 families of
octagonal ADs, many of which are known to exist in theory, but have not been attested in
the literature so far.
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