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Abstract: It is well-known that the Kummer quadratic transformation formula is valid provided that
its parameters fulfill some specific conditions (see Gradshteyn, Ryzhik, Tables of Integrals, Series
and Products, 9.130, 9.134.1). Very recently, one of us established a new identity when one of these
conditions is not fulfilled. In this paper, we aim to discuss another isolated case which completely
different from the first. Moreover, in the end, we mention two interesting consequences of these two
new results.
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1. Introduction

Gauss [1] defined his famous infinite series as follows

1 +
ab
c

z
1!

+
a(a + 1)b(b + 1)

c(c + 1)
z2

1!
+ · · · (1)

This infinite series (1) is usually denoted by the notation 2F1(a, b; c; z) or simply F and
is commonly known as the Gauss’s function or the hypergeometric series. Gauss’s function
or the hypergeometric series is a solution of a second order differential equation.
The convergence conditions of 2F1 are as follows,

• a hypergeometric series terminates if a or b is equal to a negative integer or zero. For
c = −n(n = 0, 1, 2, · · · ), the hypergeometric series is indeterminate if neither a nor b
is equal to −m (where m < n and m is a natural number),

• if we exclude these values of the parameters a, b, c, a hypergeometric series converges
in the unit circle |z| < 1. 2F1 then has a branch point at z = 1. Then we have the
following conditions for convergence on the unit circle:

1. 0 ≤ <(a + b− c) < 1, the series converges throughout the entire unit circle, except at
the point z = 1,

2. <(a + b− c) < 0, the series converges (absolutely) throughout the entire unit circle,
3. <(a + b− c) ≥ 1, the series diverges on the entire unit circle.

It is well-known that the Kummer quadratic transformation formula

2F1(α, β; 2α; z) = (1− z
2
)−β

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)

. (2)

is valid provided that {2α + 1, α + 3
2} are not natural numbers and α− β is not an integer

(see Gradshteyn, Ryzhik, Tables of Integrals, Series and Products, 9.130, 9.134.1). Very
recently, one of us established a new identity for an isolated case where α− β is an integer
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by letting α to be a negative integer and β to be an even positive integer which we extended
here into any even integer not necessarily positive and where we gave explicitly the
expressions u(β)

α (z) such that [2]

2F1(α, β; 2α; z) = (1− z
2
)−β

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
+ u(β)

α (z).

In this paper, we aim to discuss another isolated case with α to be a negative integer
and β to be an odd integer where we gave explicitly the expressions v(β)

α (z) such that

2F1(α, β; 2α; z) = (1− z
2
)−β

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
+ v(β)

α (z).

The results for u(β)
α (z) and for v(β)

α (z) are completely different. The expressions
for u(β)

α (z) and v(β)
α (z) are given in the paper. Moreover, in the end, we mention two

interesting consequences of our main result involving a symmetric role for u(β)
α (z) with an

odd β and v(β)
α (z) with an even β.

In this paper, we deal with Gauss’s function and exactly with its connection with the
following interesting and useful Kummer’s quadratic transformation [2] for the hypergeo-
metric function 2F1 (2). This quadratic transformation is valid for {2α + 1, α + 3

2} are not
natural numbers and α− β is NOT an integer. In this paper, we consider the case when
α− β is an integer.

This transformation formula is recorded in several standard texts on special functions
and handbooks of mathematics, for example, in the standard text of I.S. Gradshteyn and
I.M. Ryzhik [3] (9.134 and 9.134.1) and G. Andrews and al. [4] (3.1.7 page 127 with a
slight modification), in the handbook by Abramowitz-Stegun [5] (15.3.20) and in DLMF:
NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/ [6], accessed on 15
December 2022, 15.8.13.

As usual, N is the set of all natural number {1, 2, 3, · · · }, Z the set of all integer
{· · · ,−2, −1, 0, 1, 2, · · · } and Z− the set of all integer {· · · ,−2,−1, 0}. In a previous paper
we considered the case where α− β is an integer by taking β an even integer (i.e., β ∈ 2Z)
and α is a negative integer and we gave the right identity [7]. In this contribution, we
consider the case where α− β is an integer by taking β ∈ 1 + 2Z (i.e., β is an odd integer)
and α is a negative integer and we give and prove the new identity. The aim of this paper
is to prove the following theorem.

Theorem 1. For the isolated cases (α is a negative integer and β ∈ 2Z or β ∈ 1 + 2Z), the
Kummer’s hypergeometric quadratic transformations become

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= (1− z

2
)β

2F1(α, β; 2α; z)

+
2
√

π( β
2 )−α+1

Γ(−α + 1
2 )

(4z− 4)α−β(2− z)β+1

z2α+1−β 2F1

(
1− β

2
,

1
2
+ α− β

2
;

3
2

; (
2
z
− 1)2

)
, (3)

α ∈ Z−, β ∈ 2Z, which we wrote under the form

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= (1− z

2
)β

2F1(α, β; 2α; z) + u(β,even)
α , α ∈ Z−, β ∈ 2Z,

https://dlmf.nist.gov/
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and

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= (1− z

2
)β

2F1(α, β; 2α; z)

−
√

π( β+1
2 )−α

Γ(−α + 1
2 )

(4z− 4)α−β(2− z)β

z2α−β 2F1

(
1
2
− β

2
, α− β

2
;

1
2

; (
2
z
− 1)2

)
, (4)

α ∈ Z−, β ∈ 1 + 2Z, which we wrote under the form

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= (1− z

2
)β

2F1(α, β; 2α; z) + v(β,odd)
α , α ∈ Z−, β ∈ 2Z,

and as a consequence we prove that

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= −v(β,even)

α , α ∈ Z−, β ∈ 2Z,

and

2F1

(
β

2
,

β + 1
2

; α +
1
2

; (
z

2− z
)2
)
= u(β,odd)

α , α ∈ Z−, β ∈ 1 + 2Z.

Please note here that when β is either an even or odd non-positive integer then the
series 2F1(

β
2 , β+1

2 ; α + 1
2 ; ( z

2−z )
2) is well-defined with finitely many terms and the series

2F1

(
1
2 −

β
2 , α− β

2 ; 1
2 ; ( 2

z − 1)2
)

is a series with infinitely many terms and when β is either

an even or odd positive integer then the series 2F1

(
β
2 , β+1

2 ; α + 1
2 ; ( z

2−z )
2
)

is well-defined

with infinitely many terms and the series 2F1

(
1
2 −

β
2 , α− β

2 ; 1
2 ; ( 2

z − 1)2
)

is a series with

finitely many terms thus the restriction due to the their convergence should be satisfied
once, i.e., either | z

2−z |< 1 or | 2−z
z |< 1 (not simultaneously).

Let us first give the Maple instructions in order to assure the readers that the results
we are giving are true and right.

restart; F1 := proc (alpha, beta, z) options operator, arrow;
hypergeom([(1/2)*beta, (1/2)*beta+1/2], [alpha+1/2], z^2/(2-z)^2)
end proc; F2 := proc (alpha, beta, z) options operator, arrow;
(1-(1/2)*z)^beta*hypergeom([alpha, beta], [2*alpha], z) end proc; u
:= proc (alpha, beta, z) options operator, arrow;
2*(z/(2-z))^(beta-1-2*alpha)*sqrt(Pi)*pochhammer((1/2)*beta,
-alpha+1)
*hypergeom([1-(1/2)*beta, 1/2+alpha-(1/2)*beta], [3/2], (2-z)^2/z^2)
*((4*z-4)/(2-z)^2)^(alpha-beta)/GAMMA(-alpha+1/2) end proc;
v := proc (alpha, beta, z) options operator, arrow;
-(z/(2-z))^(beta-2*alpha)*sqrt(Pi)*pochhammer((1/2)*beta+1/2,
-alpha)
*hypergeom([alpha-(1/2)*beta, 1/2-(1/2)*beta], [1/2], (2-z)^2/z^2)
*((4*z-4)/(2-z)^2)^(alpha-beta)/GAMMA(-alpha+1/2) end proc;
simplify(F1(-8, 4, z)-F2(-8, 4, z)-u(-8, 4, z));
0
simplify(F1(-8, -5, z)-F2(-8, -5, z)-v(-8, -5, z));
0
simplify(F1(-8, 4, z)+v(-8, 4, z));
0
simplify(F1(-8, -5, z)+u(-8, -5, z));
0
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We change the notations to be much more convenient. The letter n denotes, in general,
the integers so let us denote by α := −n + 1, n is an integer greater than 0. The expression
α− β should be an integer then we take β = 2a with

a ∈ {· · · ,−5
2

,−2,−3
2

,−1,−1
2

, 0,
1
2

, 1,
3
2

, 2,
5
2

, · · · }

Taking into account the quantity ( z
2−z )

2, if we replace ± z
2− z

by z (2) becomes

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

). (5)

Here we have two situations for the integer 2a:

• either a is itself an integer, i.e., a ∈ Z and in this case we have

1. either a is itself a positive integer, i.e., a ∈ N, this situation was considered in a
previous paper [7] where we proved that (5) remains true for n = 0 but for n = 1
(5) becomes

2F1(a, a +
1
2

;
1
2

; z2) =
(1 + z)−2a + (1− z)−2a

2

=
1

(1∓ z)2a ±
2x(2a− 1)Γ(a + 1) 2F1(1− a,−a + 1

2 ; 3
2 ; 1

z2 )

Γ(a)(z2 − 1)2a

=
1

(1∓ z)2a ±
(z− 1)−2a − (z + 1)−2a

2
,

and for n ≥ 2 (5) should be written as

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)

±
2
√

πΓ(n + a)z2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1
,

(6)

which, using the notation

u(a)
n :=

2
√

πΓ(n + a)z2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1
(7)

we wrote it under the form

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)± u(a)
n , (8)

2. or a is itself a negative integer, i.e., a ∈ Z− and this situation is solved only by

using the Pochhammer symbol in the formula of u(a)
n :

u(a)
n :=

2
√

π(a)nz2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(n− 1
2 )(z

2 − 1)n+2a−1
, (9)

and (8) remains true,
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• or a is not an integer but half of an integer, i.e., a ∈ {· · · , 7
2 ,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , 7

2 , · · · }
and, in this case, we prove that (5) remains true for n = 0 but for n = 1 and using the
fact that (−1)2a = −1 (5) becomes

2F1(a, a +
1
2

;
1
2

; z2) =
(1 + z)−2a + (1− z)−2a

2
=

1
(1∓ z)2a ±

(1 + z)−2a + (z− 1)−2a

2
,

and for n ≥ 2, a ∈ {· · · ,− 5
2 ,− 3

2 ,− 1
2 , 1

2 , 3
2 , 5

2 , 7
2 , · · · } and z 6= 0 we prove that

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)

∓
z2a−2+2n√π(a + 1

2 )n−1 2F1(
1
2 − a, 1− n− a; 1

2 ; 1
z2 )(z2 − 1)−n+1−2a

Γ(n− 1
2 )

,
(10)

which using the notation

vn(a) = −
z2a−2+2n√π(a + 1

2 )n−1 2F1(
1
2 − a, 1− n− a; 1

2 ; 1
z2 )(z2 − 1)−n+1−2a

Γ(n− 1
2 )

, (11)

we write

2F1(a, a +
1
2

;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)± vn(a), (12)

As an interesting consequence of our new expressions u(a)
n and v(a)

n we prove that

2F1(a, a +
1
2

;−n +
3
2

; z2) = −u(a)
n , a ∈ {· · · ,−5

2
,−3

2
,−1

2
,

1
2

,
3
2

,
5
2

, · · · }

2F1(a, a +
1
2

;−n +
3
2

; z2) = −v(a)
n , a ∈ Z.

(13)

Please note the following that this paper is a continuation of [7].
Many authors dealt with the quadratic transformation (2) recorded in [8–11] but

always with the restrictions {2α + 1, α + 3
2} are not natural numbers and α− β is not an

integer (see Gradshteyn, Ryzhik, 9.130). This paper deals with some isolated cases related
to α− β as an integer and will be organized as follows. First we prove promptly that the
result published in [7] does not hold for a ∈ {· · · , 7

2 ,− 5
2 ,− 3

2 ,− 1
2 , 1

2 , 3
2 , 5

2 , 7
2 , · · · }. Second,

for any a ∈ R we give and prove some relations involving 2F1(a, a + 1
2 ;−n + 3

2 ; z2) and
1

(1±z)2a 2F1(2a,−n + 1;−2n + 2; ±2z
1±z ). Finally we prove (12) and (13).

2. No Concordance with Previous Result

For a ∈ { 1
2 , 3

2 , 5
2 , 7

2 , · · · } let us prove first that

2F1(a, a +
1
2

;−n +
3
2

; z2) 6= 1
(1± z)2a 2F1(2a,−n + 1;−2n + 2;

±2z
1± z

),

and

2F1(a, a +
1
2

;−n +
3
2

; z2) 6= 1
(1± z)2a 2F1(2a,−n + 1;−2n + 2;

±2z
1± z

)

±
2
√

πΓ(n + a)z2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(a)Γ(n− 1
2 )(z

2 − 1)n+2a−1
.
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Proof. In fact, with n = 2 and a = 5
2 and taking into account the "+" sign we get

2F1(
5
2

, 3;−1
2

; z2)− 1
(1 + z)5 2F1(5,−1;−2;

2z
1 + z

) = −2(3z4 + 42z2 + 35)z3

(z2 − 1)6 .

and

2F1(
5
2

, 3;
1
2

; z2)− 1
(1 + z)5 2F1(5, 1;−2;

2z
1 + z

)− u( 5
2 )

2 = − (6z− 1)
(z− 1)6 .

One can use the following Maple instructions

restart; F1 := proc (n, a, z) options operator, arrow;
hypergeom([a+1/2, a], [-n+3/2], z^2) end proc; F2 := proc (n, a, z)
options operator, arrow; hypergeom([2*a, -n+1], [-2*n+2],
2*z/(1+z))/(1+z)^(2*a) end proc; u := proc (n, a, z) options
operator, arrow; 2*z^(2*a-3+2*n)*sqrt(Pi)*pochhammer(a, n)
*hypergeom([1-a, 3/2-n-a], [3/2], 1/z^2)
*(z^2-1)^(-n+1-2*a)/GAMMA(n-1/2) end proc;
factor(simplify(F1(2, 5/2, z)-F2(2, 5/2, z))); factor(simplify(F1(2,
5/2, z)-F2(2, 5/2, z)-u(2, 5/2, z)));

Here is another curious counter-example. If we take n = 2, a = 1
2 and z = − 1

2 we find

2F1(
1
2

, 1;−3
2

;
1
4
) =

4
9

,

1
(1− 1

2 )
2F1(1,−1;−2;

−1
1− 1

2
) = 0

and f or z = −1
2

, u( 1
2 )

2 = −4
9

.

3. Relations between These Hypergeometric Series

In order to use all the results of [7], we need to find some relations involving the first
sum 2F1(a, a + 1

2 ;−n + 3
2 ; z2) and the second sum 1

(1±z)2a 2F1
(
2a,−n + 1;−2n + 2; ±2z

1±z
)
.

3.1. Relations Involving the First Sum

In the following lemma, we give three relations involving 2F1(a, a + 1
2 ;−n + 3

2 ; z2).

Lemma 1. For any positive integer n and for any a ∈ R we have the following results

d
dz

(
2F1(a, a +

1
2

;−n +
3
2

; z2)

)
= −2a(2a + 1)z

(2n− 3) 2F1(a + 1, a +
3
2

;−n +
5
2

; z2), (14)

2F1(a +
1
2

, a + 1;−n +
3
2

; z2) = 2F1(a, a +
1
2

;−n +
3
2

; z2)

− (2a + 1)z2

(2n− 3) 2F1(a + 1, a +
3
2

;−n +
5
2

; z2), (15)

2F1(a, a +
1
2

;−(n + 1) +
3
2

; z2) = 2F1(a, a +
1
2

;−n +
3
2

; z2)

+
(2a)(2a + 1)z2

(2n− 1)(2n− 3) 2F1(a + 1, a +
3
2

;−n +
5
2

; z2). (16)
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Proof. The proof of (14) is a direct consequence of the following formula [6], 15.5.1, [3–5]

d
dz

(
2F1(a, b; c; z)

)
=

ab
c 2F1(a + 1, b + 1; c + 1; z). (17)

Second, let us prove (15).

2F1(a, a +
1
2

;−n +
3
2

; z2)− 2a + 1
2n− 3

z2
2F1(a + 1, a +

3
2

;−n +
5
2

; z2)

= ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )k

z2k

k!
− 2a + 1

2n− 3 ∑
k≥0

(a + 1)k(a + 3
2 )k

(−n + 5
2 )k

z2k+2

k!

= ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )k

z2k

k!
+ ∑

k≥1

a + 1
2

−n + 3
2

(a + 1)k−1(a + 3
2 )k−1

(−n + 5
2 )k−1

z2k

(k− 1)!

using (z)k = z(z + 1)k−1 we get

2F1(a, a +
1
2

;−n +
3
2

; z2)− 2a + 1
2n− 3

z2
2F1(a +

1
2

, a + 1;−n +
1
2

; z2)

= ∑
k≥0

(a)k(a + 1
2 )k

(−n + 3
2 )k

z2k

k!
+ ∑

k≥1

k(a + 1)k−1(a + 1
2 )k

(−n + 3
2 )k

z2k

k!

= 1 + ∑
k≥1

((a)k + k(a + 1)k−1)
(a + 1

2 )k

(−n + 3
2 )k

z2k

k!

using (z)k + k(z + 1)k−1 = (z + 1)k we get

2F1(a, a +
1
2

;−n +
3
2

; z2)− 2a + 1
2n− 3

z2
2F1(a +

1
2

, a + 1;−n +
1
2

; z2)

= 1 + ∑
k≥1

(a + 1)k
(a + 1

2 )k

(−n + 3
2 )k

z2k

k!

= ∑
k≥0

(a + 1)k
(a + 1

2 )k

(−n + 3
2 )k

z2k

k!
= 2F1(a +

1
2

, a + 1;−n +
3
2

; z2).

Let us prove (16). It is easy to see that

2F1(a, a +
1
2

;−(n + 1) +
3
2

; z2)− 2F1(a, a +
1
2

;−n +
3
2

; z2)

=
(2a)(2a + 1)z2

(2n− 1)(2n− 3) 2F1((a + 1), (a + 1) +
1
2

;−(n− 1) +
3
2

; z2).

In fact

2F1(a, a +
1
2

;−(n + 1) +
3
2

; z2)− 2F1(a, a +
1
2

;−n +
3
2

; z2)

= ∑
k≥1

(a)k(a + 1
2 )kz2k

k!

(
1

(−n + 1
2 )k
− 1

(−n + 3
2 )k

)

= ∑
k≥1

(a)k(a + 1
2 )kz2k

(−n + 3
2 )k−1k!

(
1

−n + 1
2
− 1
−n + k + 1

2

)

= ∑
k≥1

(a)k(a + 1
2 )kz2k

(−n + 3
2 )k−1(k− 1)!

1
(−n + 1

2 )(−n + k + 1
2 )

= ∑
k≥1

a(a + 1
2 )(a + 1)k−1(a + 5

2 )k−1z2k

(−n + 1
2 )(−n + 3

2 )(−n + 5
2 )k−1(k− 1)!

.
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3.2. Relations Involving the Second Sum

In the following lemma we give three relations involving 1
(1±z)2a+1 2F1

(
2a + 1,−n +

1;−2n + 2; ±2z
1±z

)
.

Lemma 2. For any positive integer n and for any a ∈ R we have the following results

d
dz

(
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)

)
= −2a(2a + 1)z

(2n− 3)
1

(1± z)2a+2 2F1

(
2a + 2,−n + 2;−2n + 4;

±2z
1± z

)
, (18)

1
(1± z)2a+1 2F1

(
2a + 1,−n + 1;−2n + 2;

±2z
1± z

)
=

1
(1± z)2a 2F1

(
2a,−n + 1;−2n + 2;

±2z
1± z

)
(19)

− 2a + 1
2n− 3

z2

(1± z)2a+2 2F1

(
2a + 2,−n + 2;−2n + 4;

±2z
1± z

)
,

1
(1± z)2a 2F1

(
2a,−(n + 1) + 1;−2(n + 1) + 2;

±2z
1± z

)
=

1
(1± z)2a 2F1

(
2a,−n + 1;−2n + 2;

±2z
1± z

)
(20)

+
(2a)(2a + 1)

(2a− 1)(2n− 3)
z2

(1± z)2a+2 2F1

(
2(a + 1),−(n− 1) + 1;−2(n− 1) + 2;

±2z
1± z

)
.

Proof. First, let us prove (18) and let us prove it for the "+"sign,

d
dz

(
1

(1 + z)2a+1 2F1(2a + 1,−n + 1;−2n + 2;
2z

1 + z
)

)
=

2a
(1 + z)2a+2

(
2F1(2a + 1,−n + 2;−2n + 3;

2z
1 + z

)

)
−(z + 1) 2F1

(
2a,−n + 1;−2n + 2;

2z
1 + z

)

)
,

To prove (19) we begin by considering the following change of variable for the + sign

1
y
=

2z
z + 1

, (21)

whereas for the − sign we assume

1
y
=
−2z
−z + 1

.



Axioms 2023, 12, 221 9 of 14

For the + sign, we should prove that

2F1(2a,−n + 1;−2n + 2;
1
y
)− (2a + 1)

4(2n− 3)y2 2F1(2a + 2,−n + 2;−2n + 4;
1
y
)

− (2y− 1)
2y 2F1(2a + 1,−n + 1;−2n + 2;

1
y
) = 0. (22)

Let us prove (22). The LHS of (22) gives

2F1(2a,−n + 1;−2n + 2;
1
y
)− (2a + 1)

4(2n− 3)y2 2F1(2a + 2,−n + 2;−2n + 4;
1
y
)

− 2F1(2a + 1,−n + 1;−2n + 2;
1
y
) +

1
2y 2F1(2a + 1,−n + 1;−2n + 2;

1
y
).

Using the following relation

2F1(2a,−n + 1;−2n + 2;
1
y
)− 2F1(2a + 1,−n + 1;−2n + 2;

1
y
)

= − 1
2y 2F1(2a + 1,−n + 2;−2n + 3;

1
y
)

the LHS of (22) becomes

− (2a + 1)
4(2n− 3)y2 2F1(2a + 2,−n + 2;−2n + 4;

1
y
)

+
1

2y 2F1(2a + 1,−n + 1;−2n + 2;
1
y
)− 1

2y 2F1(2a + 1,−n + 2;−2n + 3;
1
y
).

Using the following relation

1
2y 2F1(2a + 1,−n + 1;−2n + 2;

1
y
)− 1

2y 2F1(2a + 1,−n + 2;−2n + 3;
1
y
)

=
(2a + 1)

4(2n− 3)y2 2F1(2a + 2,−n + 2;−2n + 4;
1
y
)

the LHS vanishes.

Lemma 3. In the following lemma, we give these relations involving u(a)
n and v(a)

n .

u(a)
n+1 = u(a)

n +
(2a)(2a + 1)z2

(2n− 1)(2n− 3)
u(a+1)

n−1 . (23)

as well as

v(a)
n+1 = v(a)

n +
(2a)(2a + 1)z2

(2n− 1)(2n− 3)
v(a+1)

n−1 . (24)

Proof. The proof of (23) is a direct consequence of the combination of (8) with (16) and (20),
whereas the proof of (24) is a direct consequence of the combination of (12) with (16) and
(20).

3.3. Relations between New Added Terms

Using this lemma, (2) and results given in [7] we give the following result

Theorem 2. For any a ∈ R we have the following results

v(a+ 1
2 )

n = u(a)
n −

2a + 1
2n− 3

z2u(a+1)
n−1
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as well as
u(a+ 1

2 )
n = v(a)

n −
2a + 1
2n− 3

z2v(a+1)
n−1 .

Proof. Using (19) and (2) we have

2F1(a +
1
2

, a + 1;−n +
3
2

; z2) = 2F1(a, a +
1
2

;−n +
3
2

; z2)− 2a + 1
2n− 3

z2
2F1(a + 1, a +

3
2

;−n +
5
2

; z2)

and

1
(1± z)2a+1 2F1(2a + 1,−n + 1;−2n + 2;

±2z
1± z

) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

)

− 2a + 1
2n− 3

z2 1
(1± z)2a+2 2F1(2a + 2,−n + 2;−2n + 4;

±2z
1± z

).

Using results of [7] we have

2F1(a +
1
2

, a + 1;−0 +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−0 + 1;−0 + 2;
±2z
1± z

),

2F1(a +
1
2

, a + 1;−1 +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−1 + 1;−2 + 2;
±2z
1± z

)− u(a)
1 ,

and for n ≥ 2 we have

2F1(a +
1
2

, a + 1;−n +
3
2

; z2) =
1

(1± z)2a 2F1(2a,−n + 1;−2n + 2;
±2z
1± z

) + u(a)
n .

If we combine all these quantities together we obtain

v(a+ 1
2 )

n = u(a)
n −

2a + 1
2n− 3

z2u(a+1)
n−1 .

In the following proposition, we give the simplified expression of v(a)
n

Lemma 4.

v(a)
n = −

√
π(a + 1

2 )n−1z2n+2a−2
2F1(

1
2 − a,−n− a + 1; 1

2 ; 1
z2 )

Γ(n− 1
2 )(z

2 − 1)n+2a−1
. (25)

Proof. We have just proved that

v(a+ 1
2 )

n = u(a)
n −

(2a + 1)
(2n− 3)

z2u(a+1)
n−1 .

Using (7) we get
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v(a)
n =

2
√

π(a)nz2n+2a−3
2F1(1− a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(n− 1
2 )(z

2 − 1)n+2a−1

− (2a + 1)
(2n− 3)

z2 2
√

π(a + 1)n−1z2n+2a−3
2F1(−a, 3

2 − n− a; 3
2 ; 1

z2 )

Γ(n− 3
2 )(z

2 − 1)n+2a

=
2
√

π(a)nz2n+2a−3

Γ(n− 1
2 )(z

2 − 1)n+2a

(
(z2 − 1) 2F1(1− a,

3
2
− n− a;

3
2

;
1
z2 )−

(a + 1
2 )z

2

a 2F1(−a,
3
2
− n− a;

3
2

;
1
z2 )

)
=

2
√

π(a)nz2n+2a−3

Γ(n− 1
2 )(z

2 − 1)n+2a

(
z2

2F1(1− a,
3
2
− n− a;

3
2

;
1
z2 )− z2

2F1(−a,
3
2
− n− a;

3
2

;
1
z2 )−

2F1(1− a,
3
2
− n− a;

3
2

;
1
z2 )−

z2

2a 2F1(−a,
3
2
− n− a;

3
2

;
1
z2 )

)

=
2
√

π(a)nz2n+2a−3

Γ(n− 1
2 )(z

2 − 1)n+2a

(
2a + 2n− 3

3 2F1(1− a,
5
2
− n− a;

5
2

;
1
z2 )− 2F1(1− a,

3
2
− n− a;

3
2

;
1
z2 )

− z2

2a 2F1(−a,
3
2
− n− a;

3
2

;
1
z2 )

)

=
2
√

π(a)nz2n+2a−3

Γ(n− 1
2 )(z

2 − 1)n+2a

(
−2(n + a)

3 2F1(1− a,
3
2
− n− a;

5
2

;
1
z2 )−

z2

2a 2F1(−a,
3
2
− n− a;

3
2

;
1
z2 )

)

=

√
π(a)nz2n+2a−1

aΓ(n− 1
2 )(z

2 − 1)n+2a

(
−4a(n + a)

3z2 2F1(1− a,
3
2
− n− a;

5
2

;
1
z2 )− 2F1(−a,

3
2
− n− a;

3
2

;
1
z2 )

)

=

√
π(a + 1)n−1z2n+2a−1

Γ(n− 1
2 )(z

2 − 1)n+2a

(
2F1(−a,

1
2
− n− a;

1
2

;
1
z2 )

)
= v(a+ 1

2 )
n

where

v(a)
n = −

√
π(a + 1

2 )n−1z2n+2a−2
2F1(

1
2 − a,−n− a + 1; 1

2 ; 1
z2 )

Γ(n− 1
2 )(z

2 − 1)n+2a−1
.

Notation 1. In the sequel, we denote by

(Fv)(a)
n = 2F1(a, a +

1
2

;−n +
3
2

; z2) + v(a)
n , a ∈ Z

and

(Fu)(a)
n = 2F1(a, a +

1
2

;−n +
3
2

; z2) + u(a)
n , a ∈ {· · · ,−5

2
,−3

2
,−1

2
,

1
2

,
3
2

,
5
2

, · · · }.

Consequence 1. For any a ∈ Z we have the following result

(Fv)(a)
n = 2F1(a, a +

1
2

;−n +
3
2

; z2) + v(a)
n = 0.

For any a ∈ {· · · ,− 5
2 ,− 3

2 ,− 1
2 , 1

2 , 3
2 , 5

2 , · · · } we have the following result

(Fu)(a)
n = 2F1(a, a +

1
2

;−n +
3
2

; z2) + u(a)
n = 0.
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Proof. Let us begin by proving that (Fv)(a)
n = 0, a ∈ Z and n ∈ N ∪ {0}. Let us compute

first (Fv)(a)
0 and (Fv)(a)

1 :

(Fv)(a)
0 = 2F1(a, a +

1
2

;
3
2

; z2) + v(a)
0 =

1
2z(−1 + 2a)

(−(1 + z)1−2a + (1− z)1−2a)

+
1

2z(−1 + 2a)
(z2 − 1)−2a((z− 1)(1 + z)2a + (1 + z)(1− z)2a) = 0

because 2a− 1 is an odd integer (among the conditions of the convergence of the series we
should add z /∈ {−1, 0, 1}).

The same calculations lead to

(Fv)(a)
1 = 2F1(a, a +

1
2

;
1
2

; z2) + v(a)
1 =

1
2
((1 + z)−2a + (1− z)−2a)

− (1 + z)2a + (−1 + z)2a

2
((1 + z)(−1 + z))−2a = 0

because 2a is an even integer.
Using (24) and (16) we easily get for all n ∈ N and a ∈ Z

(Fv)(a)
n+1 = (Fv)(a)

n +
(2a)(2a + 1)z2

(2n− 1)(2n− 3)
(Fv)(a+1)

n−1 . (26)

With n = 1 in (26) we get

(Fv)(a)
2 = (Fv)(a)

1 + (2a)(2a + 1)z2(Fv)(a+1)
0

which, taking into account (Fv)(a)
0 = 0 and (Fv)(a)

1 = 0, gives (Fv)(a)
2 = 0. Similarly with

n = 2 in (26) we get

(Fv)(a)
3 = (Fv)(a)

2 +
(2a)(2a + 1)z2

(3)(1)
z2(Fv)(a+1)

0

which gives (Fv)(a)
3 = 0. Then, by recurrence, it is easy to prove that (Fv)(a)

n = 0, n ∈ N.

The same steps lead to the proof of (Fv)(a)
n = 0.

Remark 1. The explanation of the consequence is as follows: for some values of a ∈ {· · · ,− 5
2 ,−2,

− 3
2 ,−1,− 1

2 , 0, 1
2 , 1, 3

2 , 2, 5
2 , · · · } and for some values of n ∈ N ∪ {0} we have arrived to write a

new identity between a well-defined series with infinitely many terms and a well-defined series with
finitely many terms as follows

• for a ∈ N∪ {0} and n ∈ N\{1} the series 2F1(a, a + 1
2 ;−n + 3

2 ; z2) is well defined with in-

finitely many terms is equal to the series
z2a−2+2n√π(a+ 1

2 )n−1 2F1(
1
2−a,1−n−a; 1

2 ; 1
z2 )(z

2−1)−n+1−2a

Γ(n− 1
2 )

which is well-defined with finitely many terms.
• For a ∈ Z−\{0} and n ∈ N∪ {0} the series 2F1(a, a + 1

2 ;−n + 3
2 ; z2) is well defined with

finitely many terms whereas the series
z2a−2+2n√π(a+ 1

2 )n−1 2F1(
1
2−a,1−n−a; 1

2 ; 1
z2 )(z

2−1)−n+1−2a

Γ(n− 1
2 )

is

well defined with finitely many terms provided that 1− a < n.
• For a ∈ { 5

2 , 7
2 , · · · } and n ∈ N ∪ {0} the series 2F1(a, a + 1

2 ;−n + 3
2 ; z2) is well defined

with infinitely many terms is equal to the series
2
√

π(a)nz2n+2a−3
2F1(1−a, 3

2−n−a; 3
2 ; 1

z2 )

Γ(n− 1
2 )(z

2−1)n+2a−1 which

is well-defined with finitely many terms. For a ∈ {· · · ,− 5
2 ,− 3

2 ,− 1
2} and n ∈ N ∪ {0}

the series 2F1(a, a + 1
2 ;−n + 3

2 ; z2) is well defined with infinitely many terms whereas the
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series
2
√

π(a)nz2n+2a−3
2F1(1−a, 3

2−n−a; 3
2 ; 1

z2 )

Γ(n− 1
2 )(z

2−1)n+2a−1 is well defined with finitely many terms provided

that 3
2 − a < n.

One can use the following Maple instructions

restart; F1 := proc (n, a, z) options operator, arrow;
hypergeom([a+1/2, a], [-n+3/2], z^2) end proc; F2 := proc (n, a, z)
options operator, arrow; hypergeom([2*a, -n+1], [-2*n+2],
2*z/(1+z))/(1+z)^(2*a) end proc; u := proc (n, a, z) options
operator, arrow; 2*z^(2*a-3+2*n)*sqrt(Pi)*pochhammer(a, n)
*hypergeom([1-a, 3/2-n-a], [3/2], 1/z^2)
*(z^2-1)^(-n+1-2*a)/GAMMA(n-1/2) end proc;
v := proc (n, a, z) options operator, arrow;
-z^(2*a-2+2*n)*sqrt(Pi)*pochhammer(a+1/2, n-1)
*hypergeom([1/2-a, 1-n-a], [1/2], 1/z^2)
*(z^2-1)^(-n+1-2*a)/GAMMA(n-1/2) end proc;
factor(simplify(F1(2, -5, z)-F2(2, -5, z)-u(2, -5, z)));
0
factor(simplify(F1(2, -5/2, z)-F2(2, -5/2, z)-v(2, -5/2, z)));
0
factor(simplify(F1(n, a+1/2, z)-F1(n, a, z)+ (2*a+1)*z^2*F1(n-1,
a+1, z)/(2*n-3)));
0
factor(simplify(F2(n, a+1/2, z)-F2(n, a, z)+ (2*a+1)*z^2*F2(n-1,
a+1, z)/(2*n-3)));
0
factor(simplify(u(n, a+1/2, z)-v(n, a, z) +(2*a+1)*z^2*v(n-1, a+1,
z)/(2*n-3)));
0
factor(simplify(v(n, a+1/2, z)-u(n, a, z) +(2*a+1)*z^2*u(n-1, a+1,
z)/(2*n-3)));
0

4. Open Problem

By the same technique, we are working on other well-known quadratic transforma-
tions available in the literature. The work is under investigation and will form a part of the
subsequent paper in this direction.
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