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Abstract: Considering that chaotic systems are immersed in multiple areas of science and nature and
that their dynamics are governed by a great sensitivity to the initial conditions and variations in
their parameters, it is of great interest for the scientific community to have tools to characterize and
reproduce these trajectories. Two dynamic chaotic systems whose equations are based on the jerky
system are used as benchmarks, i.e., the Memristive Shaking Chaotic System (MSCS) and the Unstable
Dissipative System of type I (UDSI). One characteristic common to them is their simple mathematical
structure and the complexity of their solutions. Therefore, this paper presents a strategy for identifying
chaotic trajectories using a recurrent wavelet first-order neural network (RWFONN) that is trained
online with an error filtering algorithm and considering the Morlet-wavelet as an activation function.
The parameters of the network are adjusted considering the Euclidean distance between the solutions.
Finally, the results depict proper identification of the chaotic systems studied through analysis and
numerical simulation to validate the behavior and functionality of the proposed network.

Keywords: dynamic systems; chaos theory; artificial neural network; error filter algorithm; Morlet-
wavelet activation function

MSC: 34H10; 70K99; 93B30; 93C10

1. Introduction

Chaotic systems are of great importance to the scientific community today given the
complexity that can occur in their trajectories over time. Furthermore, in nature, they are
present in multiple areas [1]. Current examples of applications of these systems, to mention
a few, are: in the generation of chaotic trajectories mobile robots [2] and secure information
transmission in cryptography [3,4], in the search algorithms in computer technology utiliz-
ing chaotic lattices [5], and in the evolution of convolutional neural network architectures
for the classification of brain tumors using magnetic resonance imaging [6].

For those reasons, in recent decades, particular interest has been placed on the design
of strategies for the generation of complex trajectories [7], analysis of the characteristics of
chaotic solutions [8,9], multistability prediction in chaotic systems [10], and the design of
control methods for the generation and suppression of chaotic behavior [2], among other
topics related to the study of their behavior—for example, in the synchronization and
coupling of states [11,12] and the generation and analysis of time series to implement them
for modulation schemes or encrypt them in communication systems [13].
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Some interesting systems to study in this sense are those whose equations are defined
by the jerky equation, and their dynamics are governed by a commutation or control law
dependent on the position of one of its states, for example, in the case of the unstable
dissipative systems of type I [14], which are linear systems based on the jerky equation
whose only non-linearity is given by a linear affine vector that changes value depending
on the position of the state x. This type of system has the characteristic that depending on
the commutation law that is used, it is possible to obtain solutions that present a complex
multi-scrolling behavior in the projection of their phase states. In a similar sense, the simple
characterization of the second-order system based also on the jerky equation of the second
degree, with the introduction of a control non-linearity based on the memristor behavior, is
proposed in [15]. This system, which was found with an exhaustive numerical searching
algorithm, presents a complex behavior with three degrees of freedom that results in
chaotic behavior and a strange attractor. A common feature in both systems is that they
can be implemented electronically for the physical verification of their real complex states,
as presented in [8,15].

Regarding the identification of characteristics in dynamic systems, much progress
has been made today thanks to the new proposals and methods of artificial intelligence.
A characteristic that is important to consider in this sense is the evolution in time of
these systems, since although their equations may not present an explicit dependence on
time, the flow of the orbits is very sensitive to the positions of the current states and the
direction of displacement thanks to forces of attraction and repulsion of their equilibrium
points [10,16]. That is why important work has been presented with recurrent neural
networks in identifying, characterizing, and predicting future states in chaotic dynamics.
Consider the case of the work presented in [17], where predictions of regime changes and
the durations of the orbits were made, in the chaotic trajectories of a system using an Eko
state network (ESN). It achieved predictions of the future states of the system with accuracy
in a few hundred steps of the iteration method. In this same sense, in [18], its authors
proposed a feed-forward (multi-layer perceptron) neural network to classify the states of the
Lorenz system between stable and unstable, and to improve with their results the automated
decision-making while employing sequential decision making (SDM) framework.

The activation functions were used for the controlled application of different dynamic
systems, such as the Gaussian or the Mexican hat; however, other works used the Morlet
wavelet activation function for the estimation and prediction of time series [19]. Therefore,
the Morlet wavelet activation function in this work is used to identify the dynamics of
piecewise chaotic systems.

Recurrent wavelet first-order neural networks, or RWFONN, have been used for
the implementation of neural controllers of electrical machines, emulated energy storage
systems online, and identify the trajectories of the system. As in a recent work [20],
the authors designed a super-twisting neural controller to emulate an energy storage
system using an RWFONN for the identification of the states of the mathematical models
of a permanent magnet synchronous machine (PMSM) and a direct current machine. They
trained the neural network with the error filtering algorithm to adjust the synaptic weights
of the network and guarantee that the tracking errors would converge to zero. Once the
neural identification was achieved, they performed the synthesis of the controller through
the proposed neural network structure, using the block control linearization technique and
the super-twisting algorithm, thereby controlling the energy storage system emulated by
the two electric machines.

In this work, we present a fast and adjustable alternative for the identification and
reproduction of complex chaotic trajectories through an RWFONN. One advantage of using
these first-order neural networks that adjust their synaptic weights thanks to their online
training is the speed with which they work and identify the trajectory of the system, since
they are trained with the current states and the error between the states of the neurons and
the desired states of the system. They are an efficient alternative for the identification of
complex systems that require real-time analysis and rapid adaptation to changes in their
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trajectories [21]. In addition, it is intended to design a general first-order artificial neural
network structure to identify different types of chaotic systems.

The rest of the article is divided as follows: in Section 2 we present the theory involved
and particularities of the dynamic chaotic systems; Section 3 presents the specifications
of the RWFONN; Section 4 describes the adjustments and settings of the network for
identifying each of the chaotic systems; in Section 5 discussions on the results are presented.
Finally, the main conclusions are presented in Section 6.

2. Chaotic Dynamical Systems
2.1. Simple Memristive Jerk System

The MSCS represents the behavior of a simple memristive jerk system described as one
of the most algebraically simple chaotic trajectories [15]. It presents the following structure:

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −x3 − ax2

3 −W(x1)x2 + b,
(1)

where x1 corresponds to the internal memristor variable that stands for the magnetic flux,
and x2 and x3 represent external variables. The flux control memductance is represented
by W(x1) = 1.3x2

1 − 1, with a, b ∈ R commonly adjusted in a chaotic state by a = 0.239 and
b = 1. The maximum Lyapunov exponent (MLE) of the system for these parameter values
is 0.0529, calculated by the Wolf et al. algorithm presented in [22], proving that the system
presents chaotic behavior.

The system results in a projection depicting a hidden attractor with no equilibria, see
Section 4.2.

2.2. Unstable Dissipative System of Type I (UDSI)

The second system based on the jerky equations follows the same structure presented
in [8,14], considering the class of piecewise linear systems given by:

Ẋ = AX + B, (2)

where X = [x1, x2, x3]
T ∈ R3 is the state vector, B ∈ R3 represents an affine discrete real

vector, and A = [aij] ∈ R3×3 with i, j = 1, 2, 3 denotes a nonsingular linear matrix. The
equilibria of the systems are located at X∗ = −A−1B. Additionally, as it is described in
Definition 2.1 in [14], a system with a stability index of type I will be defined as a UDS type
I. Furthermore, the following considerations must be fulfilled to determine that the system
given in (2) is a UDS and it generates a scrolling attractor A.

1. The linear part of the systems must be dissipative, satisfying ∑3
i=1 λi < 0, where

λi, i = 1, 2, 3, are the eigenvalues of A. Consider that an eigenvalue λi must be neg-
ative real, and two λi must be complex and conjugated with the positive real part
Re{λi} > 0, resulting in an unstable equilibrium focus-saddle point X∗. This equilib-
rium presents an stable manifold Ms = span{λ1} ∈ R3 with a fast eigendirection and
an unstable manifold Mu = span{λ2, λ3} ∈ R3 with a slow spiral eigendirection.

2. The affine vector B must be considered as a discrete function that changes domains
Di ⊂ R3 depending on where the trajectory is located. Thus, R3 = ∪k

i=1Di.

Therefore, a hybrid system based on the continuous linear system given by (2) and the
discrete function B will be given by:
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Ẋ = AX + B(X),

B(X) =


B1, if X ∈ D1;
B2, if X ∈ D2;
...

...
Bk, if X ∈ Dk.

(3)

Now, to generate hybrid multi-scroll systems, the matrix A and the affine vector B can
be given by:

A =

 0 1 0
0 0 1
−1.5 −1 −1

, B =

 0
0
b

; (4)

resulting in the following eigenvalues: Λ = {−1.20, 0.10± 1.11i}. The system (3) has its
equilibria at X∗ = −A−1B(X) = [2/3b, 0, 0]T . Therefore, the component b of B is governed
by a commutation control law to generate 2 scrolls, depending on the value that the state
x1 takes in the following manner:

b(x1) =

{
2, if x1 ≥ 1;
1, otherwise.

(5)

In Figure 1, the projection of the system (2) with (4) and (5) onto the (x1, x2) plane is
depicted, resulting in a two-scroll attractor oscillating around the equilibria of the system
depicted in red asterisks. The red lines correspond to the stable fast eigendirections, and
the blue ones stand for the unstable slow eigendirections. Notice that the displacement of
the scrolls occurs along the x axis, as the commutation surface and equilibria determine.
The black vertical slashed line represents the position of the commutation surfaces given
in (5), depicting the two existing domains (i.e., left and right) of the system and resulting in
a scroll for the attractor on each one of them R3 = ∪2

i=1Di.

-1 -0.5 0 0.5 1 1.5 2

 x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 x
2

b)

Figure 1. Projection of the system (2) with (4) and the commutation laws given in: (a) (5); (b) (6)—onto
the (x1, x2) plane. Both were initialized at X0 = [1, 0, 1]T .

Now, the numbers of domains and resulting scrolls in the attractor can be adjusted by
a specific commutation law. Consider the following commutation control law:

b(x1) =


1.8, if x1 ≥ 0.9;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 ≤ x1 < 0.3;
−0.9, otherwise.

(6)

In this case, the system presents 4 domains R3 = ∪4
i=1Di for its four equilibrium

points. Therefore, the attractor of the system will result in the following 4-scroll projection,
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as depicted in Figure 1, which presents a projection of the system (2) with (4) and (6)
onto the (x1, x2) plane. The maximum Lyapunov exponent (MLE) of the system for these
parameter values and commutation law is MLE = 0.1020, proving that the system presents
chaotic behavior.

3. Materials and Methods
3.1. Recurrent Wavelet First-Order Neural Network

In the recent works [20,23], the authors controlled different systems through a RW-
FONN, where they showed the efficiency of the artificial neural network. The general
structure of the system is given by

ẏi
j = −αi

jy
i
j + (wi

jk)
>ψi

jk, (7)

where yi
j is the state of the i-th neuron; αi

j > 0 for i = 1, 2, . . . , n is part of the underlying

network architecture, and it is fixed during the training process; wi
jk is the k-th adjustable

synaptic weight connecting the j-th state to the i-th neuron; and ψi
jk is a Morlet wavelet

activation function defined by ψ(χ) = e(−χ2/β)cos(µχ), where χ is the state of the original
system to identify; the parameters β and µ are the expansion and dilation terms.

The systems (1) and (2) were identified online using the RWFONN, where the synaptic
weights were adjusted via the filtered error algorithm.

3.2. Filtered Error Algorithm

The identification scheme starts from the differential equation that describes the
unknown system:

χ̇i
j = −αi

jχ
i
j + (wi

jk)
∗>ψi

jk. (8)

Based on (8), the identifier can be chosen as

ẏi
j = −αi

jy
i
j + (wi

jk)
>ψi

jk. (9)

In this way, the identification error is defined as ξ
′i
j = yi

j − χi
j such that

ξ̇
′i
j =ẏi

j − χ̇i
j

=− αi
jy

i
j + (wi

jk)
>ψi

jk − (−αi
jχ

i
j + (wi

jk)
∗>ψi

jk)

=− αi
jy

i
j + (wi

jk)
>ψi

jk + αi
jχ

i
j − (wi

jk)
∗>ψi

jk

=− αi
j(y

i
j − χi

j) + (wi>
jk − wi∗>

jk )ψi
jk.

(10)

Equation (10) can be rewritten as

ξ̇
′i
j = −αi

jξ
i
j + w̃i

jψ
i
jk, (11)

where w̃i
j = wi

j − w∗ij . The synaptic weights wi
j for i = 1, 2, . . . , n are adjusted according to

the learning law [24]:

ẇi
j = −γi

jψ
i
jkξ
′i
j (12)

called “filtered error”.

Theorem 1. Consider the RWFONN model whose weights are adjustable according to (12) for
each i = 1, 2, . . . , n, so that

1. ξ
′i
j , wi

j∈ L∞ (i.e., ξ
′i
j and wi

j are uniformly bounded);
2. limt→∞ ξi(t) = 0.
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Proof. Proof see [24,25].

In Appendix A, we present the boundedness of the identification error ξ
′i
j given by the

synaptic weights wi
j.

4. Neural Identification Results

In order to identify the UDSI and MSCS dynamical states, we propose a RWFONN
with the following structure:

ẏ1 =− α1y1 + δ1w1ψ1(χ1) + y2,

ẏ2 =− α2y2 + δ2w2ψ2(χ2) + y3,

ẏ3 =− α3y3 + δ3w3ψ3(χ3) + u.

(13)

It is worth mentioning that u is the same input (b) of the chaotic systems to be identified.
In this section, we present the results of the numerical simulation of the neural identification
of the systems MSCS and UDSI (1) and (2), through the neural network structure (13).
The simulations were performed using Matlab/Simulink (MatlabTM) with a Runge–Kutta
algorithm with a 0.01 step size.

4.1. Analysis of Identification via the Euclidean Distance between Trajectories

The identification of the system through the neural network can be further analyzed
by computing the Euclidean distance between trajectories. This distance has been defined
as follows:

d(t) :=
√
(d1(ti))2 + (d2(ti))2 + (d3(ti))2, (14)

where d1(ti) = (x1(ti)− y1(ti)), d2(ti) = (x2(ti)− y2(ti)), d3(ti) = (x3(ti)− y3(ti)), and ti
corresponds to each time step iterated using numerical integration. In this case, a value
of d(t) = 0 corresponds to a synchronous solution, whereas d(t) 6= 0 corresponds to
uncorrelated behavior.

4.2. Neural Identification for MSCS

For neural identification of the MSCS, the parameter values were adjusted to α1 = α2 =
α3 = δ1 = δ2 = δ3 = 5; the filtered error parameters to γ1 = γ2 = γ3 = 5000; the parame-
ters of Morlet wavelet activation functions to µ1 = µ2 = µ3 = 0.01 and β1 = β2 = β3 = 100.
Figure 2a–c show the neural identification of states of the MSC. In Figure 2a, the identi-
fication of state variable x1 is the red dashed line, and the solid blue line represents the
state of the RWFONN (y1). To show the convergence of these results, the initial conditions
are given as x1 = 0 and y1 = 0.2. Note that in the detail of the figure, the identification
convergence is given as 0.2 s, approximately. Table 1 shows the neuronal identification
results for the variables x2 (see Figure 2b) and x3 (see Figure 2c), where we present the
initial conditions for each variable and the convergence time. It is worth mentioning that
the simulations were carried out with time in seconds but divided into step sizes of 0.01 s.

Table 1. Neural identification results for x2 and x3 states of MSCS.

Figure State Line Initial
Condition Convergence

Figure 2b x2 and y2
Red dashed and
blue continuous

x2 = −2 and
y2 = −2.1 0.2 s

Figure 2c x3 and y3
Red dashed and
blue continuous

x3 = −2 and
y3 = −1.9 0.3 s
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Figure 2. States of the MSCS given by (1) and the neural identification in (13) over the iterated time
for the following states: (a) x1 and y1 behavior. (b) x2 and y2. (c) x3 and y3. All the graphics have
zooms to appreciate the convergence times of the states of the neural identification and the states of
the system.

Figure 3a shows the projection of the state spaces in the (x1, x2) planes from the MSCS
given by Equation (1), and Figure 3b shows the projection of the (y1, y2) plane with the state
variables of the RWFONN in Equation (13). In addition, the Euclidean distance between the
states of the system and the RWFONN according to Equation (14) is presented in Figure 3c
for a range of time between 0 ≤ ti ≤ 200. Notice that after a brief period, the value of d(t)
drops to almost zero. However, it presents small perturbations of length d(ti > 10) < 0.02,
proving that the identification made by the RFWONN is almost identical.
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Figure 3. Projection of the system MSCS and RWFONN: (a) MSCS state space: x1 and x2; (b)
RWFONN state space: y1 and y2. (c) Euclidian distance between the states of the system and the
RWFONN, as presented in Equation (14).

4.3. Neural Identification for UDSI

The neuronal identification for UDSI was obtained using the same neural network
structure (13) and parameters. In Figure 4a, the identification of state variable x1 of USDI
is the red dashed line, and the blue solid line represents the state of the RWFONN (y1).
To show the convergence of these results, the initial conditions are given as: x1 = 1 and
y1 = 0.9. Note that in the detail of the figure, the identification convergence is given in
0.4 s, approximately. This can be better appreciated with the Euclidean distance between
the states of the system and the RWFONN according to Equation (14), as is depicted in
Figure 5c for a range of time between 0 ≤ ti ≤ 50. Notice that after a brief period, the
value of d(t) drops to almost zero, nearly 2 s. After this time, the size of the distance
remains d(ti >) < 5× 10−4, proving that the identification made by the RFWONN is
almost identical.

Table 2 shows the neuronal identification results for the variables x2 (see Figure 4b)
and x3 (see Figure 4c) of UDSI, where we present the initial conditions for each variable
and the convergence time.

Table 2. Neural identification results for x2 and x3 states of UDSI.

Figure State Line Initial
Condition Convergence

Figure 4b x2 and y2
Red dashed and
blue continuous

x2 = 0 and
y2 = 0.1 0.4 s

Figure 4c x3 and y3
Red dashed and
blue continuous

x3 = 1 and
y3 = 1.1 0.3 s
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Figure 4. States of the UDSI given by (2) with (4) and (6) and the neural identification in (13) over
the iterated time for the following states: (a) x1 and y1 behavior. (b) x2 and y2. (c) x3 and y3. All
the graphics present zooms with more detail to appreciate the convergence time of the states of the
neural identification and the states of the system.

Figure 5 shows the projection of the state spaces in the (x1, x2) planes from the UDSI,
and in the (y1, y2) plane with the state variables of the RWFONN, respectively.
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Figure 5. Projection of the system USDI and RWFONN: (a) UDSI state space: x1 and x2; (b) RWFONN
state space: y1 and y2. (c) Euclidian distance between the states of the system and the RWFONN.

5. Discussion

Regarding the parameters used for the RWFONN in the identification of the MSCS
and UDSI chaotic systems: The values presented in Sections 4.2 and 4.3 were chosen
considering the study of the maximum Euclidean distance discussed in Appendix B. Notice
that there is a slight difference in the simulation results of the Euclidean distance presented
in Figures 3 and 5; notwithstanding, the error is very low. This may be caused by the
difference in the equations of the systems and the parameter selection carried out in the
activation function, which can be further adjusted for an improvement in the results.
In this light, in a recent work [23], an artificial neural network structure, RWFONN, was
proposed to identify and control an Erbium-doped fiber laser system which also presents
multistable chaotic behavior (similarly to the UDSI system). Therefore, we can mention that
the network’s parameters can be adjusted for greater accuracy in the neuronal identification
process, as long as the error is low and the resulting values of the filtered error algorithm
in (12) remain considerably low depending on the required application.

6. Conclusions

The results of the simulation in this work show the neural identification of the state
variables of the MSCS and UDSI chaotic systems through the proposed artificial neural
network. It should be noted that there are works that apply neural networks to approxi-
mate mathematical models, but here we tested the application of a new neural network,
specifically, a RWFONN, on a model of unstable chaotic systems. The numerical results
showed good identification of the states of systems (1) and (2), due to the convergence
time. Furthermore, as future work, it is intended to implement the RWFONN for electronic
circuits, to predict regime changes and generate hyperchaotic multi-scroll systems. Based
on the results obtained from neural identification with the same network structure, we can
mention that a general structure has been designed to identify different chaotic systems,
using only three neurons in the artificial neural network, since it was not necessary to
include more neurons in the neural identification of systems (1) and (2), because if more
neurons are used in artificial neural networks to achieve neuronal identification, a higher
computational cost is required to achieve it.
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Finally, due to the numerical results presented here and the results mentioned in
the works that were referenced in Section 3, this approximation is useful in the study of
other types of physical systems, in which the model equations are not necessary—only the
measurable or observable variables that they might present are necessary.
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Appendix A. Identification Error Boundedness

Suppose that systems (1) and (2), and further, model (7), are initially in the same state,
y(0) = χ(0). Then, for any ε > 0 and any finite T > 0, there exists an integer L and a
matrix w∗ ∈ RL×n such that the state y(t) of the RWFONN model (7) and weight values
w = w∗ satisfy

sup
0≤t≤T

|y(t)− χ(t)| ≤ ε.

Next, using the Bellman–Gronwall Lemma [26], the identification error ξ
′i
j = yi

j − χi
j is

bounded by ∥∥ξ ′
∥∥ ≤ ε

2
. (A1)

Proof. See reference [27].

Appendix B. Network Parameter Adjustment

To determine the values of the parameters of the RWFONN α1,2,3, δ1,2,3, the filtered
error parameters γ1,2,3, and the parameters of the Morlet wavelet activation functions
µ1,2,3 and β1,2,3, the following study was performed. Variation of the parameter was
implemented to determine the maximum Euclidean distance, as presented in (14) for each
corresponding value. In Figure A1 are the results for the MSCS system and the RWFONN.
First, in Figure A1a, the values of the parameter are 0.25 ≤ α1,2,3 ≤ 50. In Figure A1b, they
are 100 ≤ γ1,2,3 ≤ 1× 104. In Figure A1c, they are 0 < µ1,2,3 ≤ 1. In Figure A1d, they are
10 ≤ β1,2,3 ≤ 500. Notice that for the selected values presented in Section 4.2, the graphs
depict a low Euclidean distance.

http://a.uaslp.mx/axiom2168578
https://youtu.be/vWuonhdNHNo
https://youtu.be/vWuonhdNHNo
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Figure A1. Maximum Euclidean distance between the states of the MSCS and the RWFONN, as
presented in Equation (14) for the variations in the following network parameters: (a) 0.25 ≤ α1,2,3 ≤
50. (b) 100 ≤ γ1,2,3 ≤ 1× 104. (c) 0 < µ1,2,3 ≤ 1. (d) 10 ≤ β1,2,3 ≤ 500.

A similar case is presented in Figure A2, as it is depicts the results for the UDSI system
and the RWFONN for the same parameters.
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Figure A2. Maximum Euclidean distance between the states of the UDSI and the RWFONN, as
presented in Equation (14), for the variations of the following network parameters: (a) 0.25 ≤ α1,2,3 ≤
50. (b) 100 ≤ γ1,2,3 ≤ 1× 104. (c) 0 < µ1,2,3 ≤ 1. (d) 10 ≤ β1,2,3 ≤ 500.
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