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Abstract: A graph G has a (d, h)-decomposition if there is a pair (D, F) such that F is a subgraph of G
and D is an acyclic orientation of G− E(F), where the maximum degree of F is no more than h and
the maximum out-degree of D is no more than d. This paper proves that toroidal graphs having no
adjacent triangles are (3, 1)-decomposable, and for {i, j} ⊆ {3, 4, 6}, toroidal graphs without i- and
j-cycles are (2, 1)-decomposable. As consequences of these results, toroidal graphs without adjacent
triangles are 1-defective DP-4-colorable, and toroidal graphs without i- and j-cycles are 1-defective
DP-3-colorable for {i, j} ⊆ {3, 4, 6}.
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1. Introduction

The coloring of graphs coming from the famous four-color conjecture has always been
one of the significant research topics in the field of graph theory. Colorings of graphs
have a strong application background and have been widely used in computer science,
optimization problems, network design and other fields. The concept of classical coloring
of graphs has been extended to many aspects. List coloring, online list coloring, and
DP-coloring are significant research topics in the field of graph coloring.

The graph mentioned in this paper is finite, without multiple edges and loops. For
undefined notation and terminology, one can see [1].

Defective coloring was introduced by Harary, Jones [2], Andrews, Jacobson [3], and
Cowen, Cowen and Woodall [4], independently. Let d be a nonnegative integer, and let
G = (V, E) be a graph. We use ∆(G) to represent the maximum degree of G. If G has
a coloring of the vertices such that each vertex v has at most d neighbors receiving the
same color as v, i.e., the collection of vertices having same color form a subgraph F so that
∆(F) ≤ d, then we say the G has a d-defective coloring. For a positive integer k, if there is a
color set consisting of k colors so that G admits a d-defective coloring, then we say that G is
d-defective k-colorable. For any vertex v, if there exists a mapping L distributing v a collection
of k available colors, then L is named as a k-list assignment of G. For a k-list assignment
L, if G has a d-defective coloring ψ satisfying ψ(v) ∈ L(v) for any v ∈ V(G), then G is
referred to as d-defective L-colorable. For any k-list assignment L, if graph G is d-defecitive
L-colorable, we say G is d-defective k-choosable.

Defective coloring and defective list coloring has been concerned extensively in [5–9].
Škrekovski [8] showed that all planar graphs are 2-defective and 3-choosable, any planar
graphs without triangles are 1-defective and 3-choosable. Later, Cushing and Kierstead [5]
proved that all planar graphs are not only 1-defective but also 4-choosable, this result can
be reformulated as: given an arbitrary 4-list assignment L to a plane graph G, G always
contains a subgraph F satisfying that ∆(F) ≤ 1 such that G minus all edges of F is L-
colorable. Grytczuk and Zhu [10] strengthened this result. From the main result of [10],
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it concludes that each plane graph G certainly contains a subgraph F, ∆(F) ≤ 1, so that
G− E(F) is 4-choosable. It is noticed the subgraph F here is independent of L. Lih et al. [11]
showed that a plane graph containing neither 4-cycles nor l-cycles is 1-defecive 3-choosable
for l ∈ {5, 6, 7}. Recently, Lu and Zhu [12] strengthened this result. The main result in [12]
concludes that if G a plane graph containing neither 4-cycles nor l-cycles, then G must
contain a subgraph F whose maximum degree is no more than 1 so that G minus all edges
of F is 3-choosable. On the other hand, Xu and Zhang [13] posed a question: if a planar
graph does not contain any adjacent triangles, is it 1-defecive 3-choosable? Up to now, it
has not yet been answered.

The statement that “G is d-defective k-colorable” is equivalent to the description that
“G possesses a subgraph F satisfying that ∆(F) ≤ d meet the condition that G − E(F)
is k-colorable”. On the other side, “G must be d-defective k-choosable” is considerably
weaker than the statement that “G has a subgraph F, ∆(F) ≤ d, in order that G− E(F) is
k-choosable”. Although every planar graph is not only 2-defective but also 3-choosable,
Kim et al. [14] proved that there must exist planar graph G meet the condition that for any
subgraph F of G satisfying ∆(F) ≤ 3, G− E(F) is definitely not 3-choosable. The statement
below was proved in [15]:

(*) Any planar graph G possesses a subgraph F having ∆(F) ≤ 6 such that G− E(F)
must be 3-choosable.

Is this really right when the maximum degree of F in (*) is reduced to 5 or 4? This
question remains open.

Statement (*) is actually a consequence of a stronger statement proved in [15]. Presume
G is provided with an orientation D. We use d+D(v), or simply d+(v), to represent the
out-degree of v in D. In particular, if d+(v) = 0, we call v a sink vertex. Similarly, d−D(v),
or simply d−(v), is the in-degree of v in D. v is a source vertex when d−(v) = 0. Let ∆+

D
to represent the maximum out-degree of G. Assume h, d are non-negative integers. A
graph G possesses a (d, h)-decomposition if there is a pair (D, F) such that F is a subgraph
contained in G such that ∆(F) ≤ h, D is an acyclic orientation of G− E(F) so that ∆+

D ≤ d.
Or equivalently, (d, h)-decomposition of G decomposes G into two subgraphs F and T such
that ∆(F) ≤ h and T is d-degenerate. If G admits a (d, h)-decomposition, then G is referred
to as (d, h)-decomposable. It was shown in [15] that every plane graph is (2, 6)-decomposable.
Note that d-degenerate graphs are (d + 1)-choosable, so (*) is a consequence of the above
result.

The (d, h)-decomposability is a problem of independent interest. It was showed in [15]
that planar graphs are (4, 1)-decomposable and (3, 2)-decomposable. These results are
sharp, in this sense, the maximum degree condition cannot be reduced.

This paper focuses on the (d, h)-decomposability of toroidal graphs. A closed surface
which is a sphere possessing a single handle is named as a torus. Supposing that a graph can
be imbedded into a torus, then we call it a toroidal graph. We prove that all toroidal graphs
having no adjacent triangles are (3, 1)-decomposable, and all toroidal graphs without i-
and j-cycles are (2, 1)-decomposable, where {i, j} ⊆ {3, 4, 6}. As consequences of these
results, all toroidal graphs without adjacent triangles are 1-defective DP-4-colorable, and
all toroidal graphs without i- and j-cycles are 1-defective DP-3-colorable. These strengthens
the results in [13] that all toroidal graphs which do not contain adjacent triangles are
1-defective 4-choosable and in [6] that all toroidal graphs without i- and j-cycles are 1-
defective 3-choosable.

Assume G is a toroidal graph having been embedded. V(G), F(G) and E(G) represent
the collections of vertices, faces and edges of G, respectively. Moreover, |V(G)|, |F(G)|
and |E(G)|, respectively, are the number of vertices, faces and edges. dG(u) represents the
degree of u ∈ V(G). Without causing confusion, we often write d(u) for dG(u). We call u a
p-vertex, a p+-vertex and a p−-vertex, respectively, when d(u) = p, d(u) ≥ p and d(u) ≤ p.
For an edge uv ∈ E(G), if d(v) = a and d(u) = b, then we say v is an a-neighbour of u and
u is a b-neighbour of v. A cycle with length l is called an l-cycle. A 3-cycle is often called
a triangle. An l-cycle is called short cycle if l ≤ 6. For a face f ∈ F(G), if x1, x2, · · · , xn
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are consecutive vertices belonging to f in cyclic order, write f = [x1x2 · · · xn]. Assume
f = [x1x2 . . . xk] is a k-face. If d(xi) = di, i = 1, 2, . . . , k, we say f is a (d1, d2, . . . , dk)-face.

2. The (3, 1)-Decomposability of Toroidal Graphs

This section is about the decomposability of toroidal graphs without adjacent triangles.
We prove Theorem 1.

Theorem 1. All toroidal graphs which do not contain any adjacent triangles are (3, 1)-decomposable.

Suppose Theorem 1 is false. Then we choose a counterexample G such that the number
of vertices is the smallest. We first derive some properties of G.

Definition 1. Let f = [v1v2v3] be a (4, 5, 5)-face. If either v2 or v3 has a 4-neighbour other than
v1, then f is a minor 3-face.

Lemma 1. G satisfies the following properties:

(1) there is no 3−-vertex in G;
(2) there is no adjacent 4-vertices in G;
(3) there is no minor 3-face in G.

Proof. (1) Suppose that w is a 3−-vertex in G. Let G∗ = G−{w}, then there must be a (3, 1)-
decomposition (D∗, F) in G∗ by the choice of G. Extend D∗ to D such that w is a source
vertex. Clearly, D is acyclic and d+D(v) ≤ 3 for each v of G. That is, G is (3, 1)-decomposable.

(2) Suppose that there exist two 4-vertices adjacent in G. Let d(y) = d(z) = 4 for
yz ∈ E(G). Deleting y and z from G, we will obtain G′. By induction hypothesis, G′ admits
a (3, 1)-decomposition (D′, F′). Let F1 = F′ ∪ {yz}. Extending D′ to D such that y and z are
two source vertices, we get that G is (3, 1)-decomposable. Since D is acyclic and d+D(v) ≤ 3
for each v of G, (D, F1) is the pair we need.

(3) Assume that there exists a minor 3-face f = [v1v2v3], in which d(v1) = 4 and u
is a 4-neighbour of v3 other than v1, as shown in Figure 1a. Let S = {v1, v2, v3, u}, and
let G′′ = G− S. Then G′′ admits a (3, 1)-decomposition (D′′, F′′) by the choice of G. Let
F2 = F′′ ∪ {v1v2, v3u}. Adding arcs (v1, v3) and (v3, v2), and orienting all edges from S
to V(G)− S, as shown in Figure 1b, we get an orientation D of G− F2. It is easily found
out that D is acyclic. Moreover, d+D(v) ≤ 3, v ∈ V(G). So (D, F2) is the pair we need, a
contradiction.

f

 
v

u
 
v

 
v

f

 
v

u
 
v

 
v

Figure 1. (a) A minor 3-face. (b) Local orientation of D, where the thick lines are edges in F2.

By the configurations established above, a discharging procedure will be applied to
obtain a contradiction.
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The initial charge, ch, is defined as: for y ∈ V(G), ch(y) = 3d(y)− 10, and for f ∈ F(G),
ch( f ) = 2d( f )− 10. Applying formula |V(G)| − |E(G)|+ |F(G)| = 0 and ∑

y∈V(G)
d(y) =

2|E(G)| = ∑
f∈F(G)

d( f ), it follows that

∑
z∈V(G)∪F(G)

ch(z) = 0.

We denote the totally charge transferred from or to z by ch(z →) and ch(→ z),
respectively. After transferring, final charge denoted by ch∗(z) will be obtained, that is,
ch∗(z) = ch(z) + ch(→ z)− ch(z→). According to suitable discharging rules, we will get
that for any vertices and faces z, ch∗(z) is nonnegative, and there exists an element z ∈
V(G) ∪ F(G) satisfying ch∗(z) > 0. Since the total charge remains unchanged throughout
the process, this leads to a contradiction.

Next we give the rules as follows:

R1 For a 4-vertex, it transfers 1
2 charge to each incident 3- and 4-face.

R2 For a 5-vertex, it transfers 7
4 charge to each incident 3-face and 1

2 charge to each incident
4-face.

R3 For a 6+-vertex, it transfers 7
4 charge to each incident 3-face and 11

12 charge to each
incident 4-face.

Now, for all z ∈ V(G) ∪ F(G), we check the final charge of z. Let v be a k-vertex. For
the absence of adjacent triangles in G, v is incident with no more than b k

2c 3-faces. Assume
k ≥ 7, then ch∗(v) ≥ 3k− 10− ( 7

4 × b
k
2c+

11
12 × (k− b k

2c)) > 0.
Assume k = 6, then ch(v) = 8, v is incident with up to three 3-faces. When v is incident

with exactly three 4-faces and three 3-faces, it concludes that ch(v→) = 7
4 × 3 + 11

12 × 3 = 8.
That is ch∗(v) = 0. Otherwise, that is, either v is incident with three 3-faces and no more
than two 4-faces, or v is incident with no more than two 3-faces, then either ch(v →) ≤
7
4 × 3 + 11

12 × 2 < 8 or ch(v→) ≤ 7
4 × 2 + 11

12 × 4 < 8. That is ch∗(v) > 0.
Assume k = 5, then ch(v) = 5 and the number of 3-face incident with v is no

more than two. When v is incident with exactly two 3-faces and three 4-faces, we have
ch∗(v) = 5− ( 7

4 × 2 + 1
2 × 3) = 0. Otherwise, either v is incident with exactly two 3-

faces and no more than two 4-faces, or v is incident with at most one 3-face, then either
ch∗(v) ≥ 5− ( 7

4 × 2 + 1
2 × 2) > 0 or ch∗(v) ≥ 5− ( 7

4 + 1
2 × 4) > 0.

Assume k = 4. Then, by R1, ch∗(v) ≥ 3× 4− 10− ( 1
2 × 4) = 0.

Let f be an l-face. If l ≥ 5, then we have ch∗( f ) ≥ 2l − 10 ≥ 0.
Assume l = 4. If there is at least one 6+-vertex on f , then we get ch∗( f ) ≥ 2× 4−

10 + 11
12 + 1

2 × 3 > 0. Otherwise, ch∗( f ) = 2× 4− 10 + 1
2 × 4 = 0.

Assume l = 3. By Lemma 1 (2), there is at most one 4-vertex on f . If f has no
4-vertex, then ch∗( f ) ≥ 2 × 3 − 10 + 7

4 × 3 > 0. If f has one 4-vertex, then ch∗( f ) ≥
2× 3− 10 + 1

2 + 7
4 × 2 = 0.

To sum up, for any z ∈ V(G) ∪ F(G), we get a nonnegative ch∗(z). If we can find an
element z ∈ V(G)∪ F(G) satisfying ch∗(z) > 0, then we are done. Suppose that ch∗(z) = 0
for any z ∈ V(G) ∪V( f ). Then G has no 7+-vertex. If G contains a 6-vertex u, then u must
be incident with exactly three 4-faces and three 3-faces. Thus, the 4-face incident with u is
the the element we need. So we may assume that 6+-vertex is forbidden in G. If G contains
a 5-vertex w, then w must be incident with two 3-faces denoted by g1, g2 and three 4-faces.
Furthermore, both g1 and g2 are (4, 5, 5)-faces. Thus, g1 is a minor 3-face, contradicting
to the choice of G. Now we find that G is 4-regular which contradicts to Lemma 1 (2).
Theorem 1 is proved.

3. The (2, 1)-Decomposability of Toroidal Graphs

This section considers the decomposability of a toroidal graph which does not contain
some short cycles.



Axioms 2023, 12, 173 5 of 8

Theorem 2. For {i, j} ⊆ {3, 4, 6}, all toroidal graphs without i- and j-cycles are (2, 1)-decomposable.

Assume Theorem 2 is not true and G is a counterexample of Theorem 2 such that
|V(G)| is the smallest. The lemma below can be got straightforwardly, since it is quite
similar to Lemma 1 (1) and (2).

Lemma 2. The forbidden structures of G are as follows:

(1) 2−-vertex;
(2) a 3-vertex adjacent to another 3-vertex.

According to structural properties above, combining with discharging procedure, we
will gain a contradiction to finish the proof of Theorem 2. The definition of the initial charge,
ch, is expressed as: for any z ∈ V(G) ∪ F(G), ch(z) = d(z) − 4. By |V(G)| − |E(G)| +
|F(G)| = 0 and ∑

v∈V(G)
d(v) = 2|E(G)| = ∑

f∈F(G)
d( f ), it concludes that ∑z∈V(G)∪F(G) ch(z)

is equal to zero. Applying suitable rules, we will get to an eventual charge such that
ch∗(z) ≥ 0 for z ∈ V(G) ∪ F(G). Furthermore, we shall find an element z ∈ V(G) ∪ F(G)
satisfying ch∗(z) > 0. Since the total charge keeps fixed throughout the process, this leads
to a contradiction.

For simplicity, we use Gl,m to represent the collection of toroidal graphs G containing
neither l-cycle nor m-cycle. For {l, m} ⊆ {3, 4, 6}, we need to define different discharging
rules for graphs G ∈ Gl,m. So we discuss in three cases.

Case 1. G ∈ G3,4.

In this case, we only need one rule.

R1.1 A 5+-face transfers 1
3 to every incident 3-vertex.

For d(v) = 3, ch∗(v) = 3− 4 + 1
3 × 3 = 0. For d(v) ≥ 4, there is no charge discharged,

we have ch∗(v) = ch(v) = d(v)− 4 ≥ 0. For d( f ) ≥ 5, by Lemma 2 (2), f is incident with
no more than b d( f )

2 c 3-vertices. So ch∗( f ) = d( f )− 4− b d( f )
2 c ×

1
3 > 0. It is easy to see that

∑x∈V(G)∪F(G) ch∗(x) is positive, which leads to a contradiction.

Case 2. G ∈ G3,6.

Under this circumstances, the minimal counterexample has more properties.

Definition 2. Assume v is a 3-vertex in G. We say the 3-vertex v is light if v is incident with one
(3, 4, 4, 4)-face and two (3, 4, 3, 4, 4)-faces.

Lemma 3. The additional forbidden structures of G are:

(1) a (3, 4, 3, 4)-face;
(2) a light 3-vertex.

Proof. (1) Assume G has a (3, 4, 3, 4)-face f = [u1u2u3u4], where d(u1) = d(u3) = 3. Let
S = V( f ). Deleting S from G, we will get G′. Obviously, G′ has a pair (D′, F′) such that G′

is (2, 1)-decomposable. Let F = F′ ∪ {u1u4, u2u3}. Adding arcs (u1, u2) and (u3, u4), and
orienting all edges from a vertex in S to a vertex in V(G)− S, we will get an orientation
D of G − F. It follows that d+D(v) ≤ 2, v ∈ V(G), D is acyclic. That is to say, G is (2, 1)-
decomposable, a contradiction.

(2) Assume G has a light 3-vertex u. Let f1 = [v1v2v3v4u], f2 = [v4v5v6v7u] and
f3 = [v7v8v1u] be three faces that incident with u, as depicted in Figure 2a. According
to the definition of light 3-vertex and Lemma 2 (2), assume that the other two 3-vertices
are either v2 and v6, or v3 and v6, or v3 and v5. Assume v2 and v6 are 3-vertices. Let
S = ∪3

i=1V( fi), and let G′ = G − S. From the choice of G, G′ includes a subgraph F′
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and there is an orientation D′ of G′ − F′ such that G′ has a (2, 1)-decomposition. Let
F = F′ ∪ {v2v3, v4v5, v6v7, v1u}. Adding arcs (v2, v1), (v4, v3), (v6, v5), (v7, v8), (v1, v8) and
(u, v7), and orienting all edges between S and V(G) − S from a vertex in S to a vertex
in V(G) − S, as shown in Figure 2b, we obtain an orientation D. Clearly, D is acyclic,
d+D(v) ≤ 2 and dF(v) ≤ 1 for all v ∈ V(G). It follows that G is (2, 1)-decomposable and
(D, F) is the pair we need. The other two cases are completely similar, we omit the details
while the locally subgraph and orientation are represented in Figure 2c.
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Figure 2. (a) A light 3-vetex. (b) and (c) Local orientation of D, where thick lines are edges in
subgraph F.

One rule on a 3-vertex is listed as follows:

R2.1 For a 3-vertex, if it is on a 4-face, then it acquires 1
2 charge from each incident 5+-face;

otherwise, it acquires 1
3 charge from each incident face.

Clearly, for d(v) = 3, ch∗(v) = −1 + 1
2 × 2 = 0 or ch∗(v) = −1 + 1

3 × 3 = 0. For a
4+-vertex, there is no charge transferred from or to others, we have ch∗(v) = ch(v). For
d(v) = 4, ch∗(v) = 0. For d(v) ≥ 5, ch∗(v) > 0. Let f be a k-face. For k = 4, clearly,
ch∗( f ) = ch( f ) = 0. For k ≥ 5, by Lemma 2 (2), f has no more than b k

2c 3-vertices. Thus,
ch∗( f ) = k− 4− b k

2c ×
1
2 ≥ 0. Note that ch∗( f ) > 0 for k ≥ 7.

Next we are going to find an element z in V(G)∪ F(G) satisfying ch∗(z) > 0. Suppose
G has a 5+-vertex or a 7+-face, then we are done. We may assume G only has 3-, 4-vertices
and 4-, 5-faces. Since 6-cycle is forbidden in G, by the choice of G, there must be a 5-face in
G. Assume g is the 5-face. If g is incident with at most one 3-vertex which is on a 4-face,
then g is the element that we need. Assume g has exactly two 3-vertices each of which is on
a 4-face. Clearly, g is a (3, 4, 3, 4, 4)-face. Denote one of these two 3-vertices by u, the 4-face
incident with u by fu, and the 5-face incident with u other than g by gu. By Lemma 3 (1), fu
is a (3, 4, 4, 4)-face. Combining with Lemma 3 (2), gu is not a (3, 4, 3, 4, 4)-face. Then gu is
the element we need.
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Consequently, we again get that 0 < ∑y∈V(G)∪F(G) ch∗(y) = ∑y∈V(G)∪F(G) ch(y) = 0,
a contradiction.

Case 3. G ∈ G4,6.

We shall define the following two rules:

R3.1 For a 3-face f , it acquires 1
3 charge from each adjacent 7+-face.

R3.2 For a 3-vertex v, if v is on a 3-face, it acquires 1
2 charge from each incident 7+-face;

otherwise, v acquires 1
3 charge from each incident face.

R3.2 guarantees ch∗(v) = 0 for d(v) = 3. For any 4+-vertex, there is no transferring by
rules, so ch∗(v) ≥ 0. We then calculate the final charge of the faces. Let f be a k-face. When
k = 3, R3.1 ensures that ch∗( f ) = 0. When k = 5, since 6-cycle is forbidden in G, there
does not exist any 3-face which is contiguous to f . By the rules, f only transfers 1

3 to each
incident 3-vertex. By Lemma 2 (2), there is no more than two 3-vertices which are incident
with f . Hence, ch∗( f ) ≥ 5− 4− 1

3 × 2 > 0. For k ≥ 7, denote the number of 3-vertices on f
by s. From Lemma 2 (2), we have s ≤ b k

2c. By the rules, f transfers at most 1
2 s to 3-vertices

and (k − s)× 1
3 to 3-faces. Therefore, ch∗( f ) ≥ k − 4− 1

2 s− (k − s)× 1
3 ≥

7
12 k − 4 > 0.

Note that ch∗( f ) > 0 for any 5+-face f .
Thus, for any vertex and face z we have ch∗(z) ≥ 0. If there is a 5+-face in G, then

∑z∈V(G)∪F(G) ch∗(z) > 0, it is done. Presume graph G only contains 3-faces. G is a triangle
according to the fact that G has no 4-cycle, a contradiction to the selection of G.
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