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1. Introduction

LetA denote the class of functions l(ξ) normalized by the following Taylor–Maclaurin
series:

l(ξ) = ξ +
∞

∑
k=2

mkξk (ξ ∈ U), (1)

which are analytic in the open unit disk

U={ξ : ξ ∈ C and |ξ| < 1},

C being, as usual, the set of complex numbers. S denotes the subclass of A that are
univalent in U. It is well known that for l ∈ S ,

∣∣m3 −m2
2

∣∣ 6 1. A classical theorem of
Fekete–Szegö (see [1]) states that for l ∈ S given by (1),

∣∣∣m3 − ζm2
2

∣∣∣ 6


3− 4ζ if ζ 6 0,
1 + 2 exp

(
−2ζ
1−ζ

)
if 0 < ζ < 1,

4ζ − 3 if ζ > 1.

This inequality is sharp in the sense that for each ζ, there exists a function in S such
that equality holds. Later, Pfluger [2] considered the complex values of ζ and provided∣∣∣m3 − ζm2

2

∣∣∣ 6 1 + 2
∣∣∣∣exp

(
−2ζ

1− ζ

)∣∣∣∣.
In connection with functions in the family S , on the account of the Koebe one-quarter

theorem (see, for example, [3]), it is clear that under every function l ∈ S the image of U
contains a disk of radius 1�4. Thus, clearly, every univalent function l in U has an inverse
l−1 satisfying the following conditions:

l−1(l(ξ)) = ξ(ξ ∈ U)
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and
l(l−1(w)) = w(|w| < r0(l); r0(l) = 1�4),

where

l−1(w) = w−m2w2 + (2m2
2 −m3)w3 − (5m3

2 − 5m2m3 + m4)w4 + · · · . (2)

It is said that a function l ∈ A is bi-univalent in U if both l and l−1 are univalent in U.
Let Σ represent the class of bi-univalent functions in U for which (1) holds.

Lewin [4] demonstrated in 1967 that the second coefficient of every function l of the
form (1) fulfills the estimate |m2| < 1.51. Brannan and Clunie [5] hypothesized in 1967
that |m2| 5

√
2 for l ∈ Σ. Netanyahu [6] later showed that max

l∈Σ
|m2| = 4

3 . Kedzierawski [7]

established the Brannan–Clunie hypothesis for bi-starlike functions in 1985.
In 1985, Tan [8] found the constraint for m2, meaning that |m2| < 1.485, which is

the best-known estimate for functions in the class Σ. Brannan and Taha [9] estimated the
coefficients |m2| and |m3| for bi-starlike and bi-convex functions of order β, respectively.

The research of bi-univalent functions was revitalized in recent years by
Srivastava et al. [10], and a significant number of follow-ups to their work have been
published in the literature since then. Particularly, a number of coefficient estimates for the
initial coefficients |m2|, |m3|, and |m4| were demonstrated for various subclasses of Σ (see,
for example, [11–22]).

Recently, Deniz [23] and Kumar et al. [24] both extended and improved the results of
Brannan and Taha [9] by generalizing their classes by means of the principle of subordina-
tion between analytic functions. The problem of estimating the coefficients |mk| (k = 2) is
still open (see also [22] in this connection).

For analytic functions l and σ in U, l is said to be subordinate to σ if there exists an
analytic function w such that

w(0) = 0, |w(ξ)| < 1 and l(ξ) = σ(w(ξ)) (ξ ∈ U).

This subordination will be denoted here by

l ≺ σ (ξ ∈ U),

or, conventionally, by
l(ξ) ≺ σ(ξ) (ξ ∈ U).

In particular, if the function σ is univalent in U, then we have the following equiva-
lence:

l(ξ) ≺ σ(ξ)⇔ l(0) = σ(0) and l(U) ⊂ σ(U) (ξ ∈ U). (3)

If l of form (1) and σ(ξ) = ξ +
∞
∑

k=2
nkξk are two functions in A, then the Hadamard

product (or convolution) of l and σ is denoted by l ∗ σ and is given by

(l ∗ σ)(ξ) = ξ +
∞

∑
k=2

mknkξk = (σ ∗ l)(ξ).

In recent years, q-analysis (q-calculus) has greatly motivated researchers due to its
numerous applications in mathematics and physics. Jackson [25,26] was the first to give
some application of q-calculus and also introduced the q-analog of the derivative and
integral operator. Later on, Aral and Gupta [27,28], defined the q-Baskakov–Durrmeyer
operator by using the q-beta function, while in the papers of Anatassiou and Gal [29]
and Aral [30], the authors discussed the q-generalization of complex operators known
as q-Picard and q-Gauss–Weierstrass singular integral operators. Using the convolution
of normalized analytic functions, Kanas and Raducanu [31] defined the q-analog of the
Ruscheweyh differential operator and studied some of its properties. The application of
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this differential operator was further studied by Aldweby and Darus [32] and Mahmood
and Sokol [33].

The q-derivative of function l ∈ A was defined in [34] for q ∈ (0, 1) by

∂ql(ξ) =
l(qξ)− l(ξ)
(q− 1)ξ

(ξ 6= 0) (4)

and
∂ql(0) = l′(0).

Thus, we have

∂ql(ξ) = 1 +
∞

∑
k=2

[k, q]mkξk−1, (5)

where

[k, q] =
1− qk

1− q
, [0, q] = 0 (6)

and

[k, q]! =

{
∏k

j=1[j, q], (k ∈ N = {1, 2, ...})
1, ( k = 0).

(7)

In addition, the q-generalized Pochhammer symbol for p ≥ 0 is represented by

[p, q]k =

{
∏k

j=1[p+j− 1, q], (k ∈ N)
1, (k = 0).

(8)

If q→ 1, then we obtain [k, q]→ k. Thus, if we choose the function σ(ξ) = ξk, while
q→ 1−, then we have

∂qσ(ξ) = ∂qξk = [k, q]ξk−1 = σ′(ξ),

where σ′ is the ordinary derivative.
Arif et al. [35] recently defined the function I−1

q,µ+1(ξ) as the following relation:

I−1
q,µ+1(ξ) ∗ Iq,µ+1(ξ) = ξ∂ql(ξ) (µ ≥ −1), (9)

where

Iq,µ+1(ξ) = ξ +
∞

∑
k=2

[µ + 1, q]k−1
[k− 1, q]!

ξk (ξ ∈ U). (10)

Because the series defined in (10) is convergent absolutely in A, Arif et al. [35] defined
the q-analogue of the Noor integral operator fµ

q :U→U by ξ∈U using the definition of the
q-derivative through convolution

fµ
q l(ξ) = I−1

q,µ+1(ξ) ∗ l(ξ) = ξ +
∞

∑
k=2

φk−1mkξk (ξ ∈ U), (11)

where

φk−1 =
[k, q]!

[µ + 1, q]k−1
. (12)

We note that
f0

ql(ξ) = ξ∂ql(ξ), f1
ql(ξ) = l(ξ) (13)

and also

lim
q→1−

fµ
q l(ξ) = ξ +

∞

∑
k=2

k!
(µ + 1)k−1

mkξk. (14)
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This demonstrates that taking q → 1− reduces the operator specified in (12) to the
well-known Noor integral operator discussed in [36,37]. See the work of Aldweby and
Darus [32] for additional information on the q-analog of differential and integral operators.

The Horadam polynomials, hj(x, a, b; p, τ), or briefly hj(x), are given by the following
recurrence relation (see [38,39]):

hj(x) = pxhj−1(x) + τhj−2(x), (j ∈ N and j > 3) (15)

with
h1(x) = a, h2(x) = bx and h3(x) = pbx2 + aτ, (16)

where a, b, p, τ ∈ Z.
Some special cases of Horadam polynomial hj(x) are as follows:

1. For p = τ = a = b = 1, the Horadam polynomials hj(x) reduce to the Fibonacci
polynomials Fj(x);

2. For p = τ = b = 1 and a = 2, the Horadam polynomials hj(x) become the Lucas
polynomials Lj(x);

3. For a = b = 1, p = 2 and τ = −1, the Horadam polynomials hj(x) reduce to the
Chebyshev polynomials Tj(x) of the first kind;

4. For p = b = 2, a = 1 and τ = −1, the Horadam polynomials hj(x) become the
Chebyshev polynomials Uj(x) of the second kind;

5. For τ = a = 1 and p = b = 2, the Horadam polynomials hj(x) reduce to the Pell
polynomials Pj(x);

6. For p = a = b = 2 and τ = 1,the Horadam polynomials hj(x) become the Pell-Lucas
polynomials Qj(x) of the first kind.

For bi-univalent functions associated with particular polynomials, such as the Fi-
bonacci polynomials, Lucas polynomials, Chebyshev polynomials, and the Horadam
polynomials, the coefficient estimates and Fekete–Szegö inequality are determined. Addi-
tionally, we remark that the aforementioned polynomials and other special polynomials
may have applications in the mathematical, physical, statistical, and engineering sciences.
Several articles have investigated these polynomials (see [40–46]).

Theorem 1. ([38]) Let H(x, ξ) be the generating function of the Horadam polynomials hj(x).
Then,

H(x, ξ) =
∞

∑
j=1

hj(x)ξ j−1 =
a + (b− ap)xξ

1− pxξ − τξ2 . (17)

We define the following subclass of Σ in this paper using the q-analog of the Noor
integral operator (11) and Horadam polynomials given by the recurrence relation (15) and
the generating function (17).

Definition 1. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, a function l ∈ Σ given by (1) is
said to be in the class N µ,q

Σ (λ, α, β, ρ; x) if the following subordinations are satisfied:

1 +
1
ρ

(1− λ)
(
fµ

q l(ξ)
)′

+ λ

{(
fµ

q l(ξ)
)′}α

[
fµ

q l(ξ)
ξ

]β−1

− 1

 ≺ H(x, ξ)− a + 1

and

1 +
1
ρ

(1− λ)
(
fµ

q σ(w)
)′

+ λ

{(
fµ

q σ(w)
)′}α

[
fµ

q σ(w)

w

]β−1

− 1

 ≺ H(x, w)− a + 1,

which is given by (3).
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2. Coefficient Estimates for the Subclass N µ,q
Σ (λ, α, β, ρ; x)

In this section, we find the estimates on the coefficients |m2| and |m3| for functions in
the above defined subfamily N µ,q

Σ (λ, α, β, ρ; x). In addition, the Fekete–Szegö problem for
this subfamily is solved.

Our first main result is asserted by Theorem 2 below.

Theorem 2. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (λ, α, β, ρ; x). Then,

|m2| ≤
|ρ||bx|

√
2|bx|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2
1 + 2(λ(3α + β− 4) + 3)φ2

]
b2x2ρ2

−2(λ(2α + β− 3) + 2)2φ2
1ρ
(

pbx2 + aτ
) ∣∣∣∣

,

|m3| ≤
|ρ|2b2x2

|λ(2α + β− 3) + 2|2φ2
1

+
|ρ||bx|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||bx|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

2|ρ||bx||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2φ2

1

(
pbx2 + aτ

b2x2ρ

)
.

Proof. Let l ∈ N µ,q
Σ (λ, α, β, ρ; x). From Definition 1, for some analytic functions ψ, ϕ such

that ψ(0) = ϕ(0) = 0 and |ψ(ξ)| < 1, |ϕ(w)| < 1 for all ξ, w ∈ U, we can write

1 +
1
ρ

(1− λ)
(
fµ

q l(ξ)
)′

+ λ

{(
fµ

q l(ξ)
)′}α

[
fµ

q l(ξ)
ξ

]β−1

− 1

 (18)

= 1 + h1(x)− a + h2(x)ψ(ξ) + h3(x)ψ2(ξ) + ...

and

1 +
1
ρ

(1− λ)
(
fµ

q σ(w)
)′

+ λ

{(
fµ

q σ(w)
)′}α

[
fµ

q σ(w)

w

]β−1

− 1

 (19)

= 1 + h1(x)− a + h2(x)ϕ(w) + h3(x)ϕ2(w) + ....

From the Equalities (18) and (19), we obtain

1 +
1
ρ

(1− λ)
(
fµ

q l(ξ)
)′

+ λ

{(
fµ

q l(ξ)
)′}α

[
fµ

q l(ξ)
ξ

]β−1

− 1

 (20)

= 1 + h2(x)r1ξ +
[

h2(x)r2 + h3(x)r2
1

]
ξ2 + ...

and

1 +
1
ρ

(1− λ)
(
fµ

q σ(w)
)′

+ λ

{(
fµ

q σ(w)
)′}α

[
fµ

q σ(w)

w

]β−1

− 1

 (21)

= 1 + h2(x)t1w +
[

h2(x)t2 + h3(x)t2
1

]
w2 + ....
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It is well known that if

|ψ(ξ)| =
∣∣∣r1ξ + r2ξ2 + r3ξ3 + ...

∣∣∣ < 1, (ξ ∈ U)

and
|ϕ(w)| =

∣∣∣t1w + t2w2 + t3w3 + ...
∣∣∣ < 1, (w ∈ U),

then ∣∣rj
∣∣ < 1 and

∣∣tj
∣∣ < 1 for j ∈ N. (22)

Thus, comparing the coefficients in (20) and (21), we have

(λ(2α + β− 3) + 2)φ1m2 = ρh2(x)r1, (23)

[
λ

(
(β− 1)(β− 2)

2
+ 2α(β− 1) + 2α(α− 1)

)]
φ2

1m2
2

+[(λ(3α + β− 4) + 3)]φ2m3

= ρh2(x)r2 + ρh3(x)r2
1, (24)

− (λ(2α + β− 3) + 2)φ1m2 = ρh2(x)t1 (25)

and [
λ

(
(β− 1)(β− 2)

2
+ 2α(β− 1) + 2α(α− 1)

)]
φ2

1m2
2

+[(λ(3α + β− 4) + 3)]φ2

(
2m2

2 −m3

)
= ρh2(x)t2 + ρh3(x)t2

1. (26)

It follows from (23) and (25) that

r1 = −t1 (27)

and
2(λ(2α + β− 3) + 2)2φ2

1m2
2 = ρ2h2

2(x)
(

r2
1 + t2

1

)
. (28)

If we add (24) and (26), we obtain{ [
λ
(

β2 − 3β + 2 + 4α(β− 1) + 4α(α− 1)
)]

φ2
1

+2[(λ(3α + β− 4) + 3)]φ2

}
m2

2

= ρh2(x)(r2 + t2) + ρh3(x)
(

r2
1 + t2

1

)
. (29)

Substituting the value of
(
r2

1 + t2
1
)

from (28) in (29), we arrive at
([

λ
(

β2 − 3β + 2 + 4α(β− 1) + 4α(α− 1)
)]

φ2
1

+2[(λ(3α + β− 4) + 3)]φ2)ρ
2h2

2(x)
−
[
2(λ(2α + β− 3) + 2)2φ2

1

]
ρh3(x)

m2
2

= ρ3h3
2(x)(r2 + t2). (30)

Moreover, using (15) and (22) in (30), we find that

|m2| ≤
|ρ||bx|

√
2|bx|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2
1 + 2(λ(3α + β− 4) + 3)φ2

]
b2x2ρ2

−2(λ(2α + β− 3) + 2)2φ2
1ρ
(

pbx2 + aτ
) ∣∣∣∣

.
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Next, if we subtract (26) from (24), we obtain

2[(λ(3α + β− 4) + 3)]
(

m3 −m2
2

)
φ2 = ρh2(x)(r2 − t2) + ρh3(x)

(
r2

1 − t2
1

)
. (31)

Then, in view of (27) and (28), Equation (31) becomes

m3 =
ρ2h2

2(x)

2(λ(2α + β− 3) + 2)2φ2
1

(
r2

1 + t2
1

)
+

ρh2(x)
(λ(3α + β− 4) + 3)φ2

(r2 − t2).

Thus, applying (16), we conclude that

|m3| ≤
|ρ|2b2x2

|λ(2α + β− 3) + 2|2φ2
1

+
|ρ||bx|

|λ(3α + β− 4) + 3|φ2
.

From (30) and (31),

m3 − ηm2
2 =

(φ2 − η)ρ3h3
2(x)(r2 + t2){

λ(4α(α + β− 2) + (β− 2)(β− 1))φ2
1 + 2[(λ(3α + β− 4) + 3)]φ2

}
ρ2h2

2(x)
−
[
2(λ(2α + β− 3) + 2)2φ2

1

]
ρh3(x)

+
ρh2(x)(r2 − t2)

2(λ(3α + β− 4) + 3)φ2

= ρh2(x)


[
γ(η, ρ, φ1, φ2; x) + 1

(λ(3α+β−4)+3)φ2

]
r2

+
[
γ(η, ρ, φ1, φ2; x)− 1

(λ(3α+β−4)+3)φ2

]
t2

,

where

γ(η, ρ, φ1, φ2; x) =
ρ2h2

2(x)(φ2 − η){
[λ(4α(α + β− 2) + (β− 2)(β− 1))]φ2

1 + 2[(λ(3α + β− 4) + 3)]φ2
}

ρ2h2
2(x)

−
[
2(λ(2α + β− 3) + 2)2φ2

1

]
ρh3(x)

.

Then, in view of (16), we arrive at

∣∣∣m3 − ηm2
2

∣∣∣ ≤ { |ρ||h2(x)|
|λ(3α+β−4)+3|φ2

, 0 ≤ |γ(η, ρ, φ1, φ2; x)| ≤ 1
2|λ(3α+β−4)+3|φ2

2|ρ||h2(x)||γ(η, ρ, φ1, φ2; x)|, |γ(η, ρ, φ1, φ2; x)| ≥ 1
2|λ(3α+β−4)+3|φ2

.

This evidently completes the proof of Theorem 2.

For specific choices of parameters in Theorem 2, we give the following consequence.

Corollary 1. Let ρ ∈ C\{0} and l ∈ A belong to the class N µ,q
Σ (1, 1, 0, ρ; x). Then

|m2| ≤
|ρ||bx|

√
|bx|√∣∣(2φ2 − φ2

1
)
b2x2ρ2 − ρ(pbx2 + aτ)φ2

1

∣∣ ,
|m3| ≤

|ρ|2b2x2

φ2
1

+
|ρ||bx|

2φ2

and

∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||bx|
2φ2

, |η − φ2| ≤
|(2φ2−φ2

1)b2x2ρ−φ2
1(pbx2+aτ)|

2ρb2x2φ2
|bx|3|η−φ2||ρ|2

|(2φ2−φ2
1)b2x2ρ−φ2

1(pbx2+aτ)| , |η − φ2| ≥
|(2φ2−φ2

1)b2x2ρ−φ2
1(pbx2+aτ)|

2ρb2x2φ2
.



Axioms 2023, 12, 172 8 of 12

Theorem 2 can be used to generate the following interesting results.
Specializing the values of α = λ = a = b = p = τ = x = ρ = 1 and β = 0 in

Theorem 2 above, we can give the following example.

Example 1. Let µ = 0, q = 1�2 ∈ (0, 1), η = 1 and l ∈ A belong to the classN 0, 1
2

Σ (1, 1, 0, 1; 1).
Then

|m2| ≤
1√
5
= 0, 4472...,

|m3| ≤
64
63

= 1, 0158...

and ∣∣∣m3 −m2
2

∣∣∣ ≤ 4
7
= 0, 5714....

These results are sharp.

In Theorem 2, we obtain the following corollary if the Horadam polynomials hj(x) are
replaced by the Fibonacci polynomials Fj(x).

Corollary 2. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
|ρ||x|

√
2|x|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2
]
x2ρ2

−2(λ(2α + β− 3) + 2)2ρ
(
x2 + 1

)
φ2

1

∣∣∣∣
,

|m3| ≤
|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
|ρ||x|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

2|x||ρ||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
x2 + 1

x2ρ

)
φ2

1.

In Theorem 2, we obtain the following corollary if the Horadam polynomials hj(x) are
replaced by the Lucas polynomials Lj(x).

Corollary 3. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
|ρ||x|

√
2|x|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2
]
x2ρ2

−2(λ(2α + β− 3) + 2)2ρ
(
x2 + 2

)
φ2

1

∣∣∣∣
,

|m3| ≤
|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
|ρ||x|

|λ(3α + β− 4) + 3|φ2
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and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

2|ρ||x||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
x2 + 2

x2ρ

)
φ2

1.

In Theorem 2, we obtain the following corollary if the Horadam polynomials hj(x) are
replaced by the Chebyshev polynomials Tj(x) of the first kind.

Corollary 4. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
|ρ||x|

√
2|x|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2
]
x2ρ2

−2(λ(2α + β− 3) + 2)2ρ
(
2x2 − 1

)
φ2

1

∣∣∣∣
,

|m3| ≤
|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
|ρ||x|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

2|ρ||x||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
2x2 − 1

x2ρ

)
φ2

1.

In Theorem 2, we obtain the following corollary if the Horadam polynomials hj(x) are
replaced by the Chebyshev polynomials Uj(x) of the second kind.

Corollary 5. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
4|ρ||x|

√
|x|√∣∣∣∣ 4

[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2
]
x2ρ2

−2(λ(2α + β− 3) + 2)2ρ
(
4x2 − 1

)
φ2

1

∣∣∣∣
,

|m3| ≤
4|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
2|ρ||x|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||2x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

4|ρ||x||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,
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where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
4x2 − 1

4x2ρ

)
φ2

1.

In Theorem 2, we obtain the following corollary if the Horadam polynomials hj(x) are
replaced by the Pell polynomials Pj(x).

Corollary 6. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
4|ρ||x|

√
|x|√∣∣∣∣ 4

[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2
]
x2ρ2

−2(λ(2α + β− 3) + 2)2ρ
(
4x2 + 1

)
φ2

1

∣∣∣∣
,

|m3| ≤
4|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
2|ρ||x|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||2x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

4|ρ||x||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
4x2 + 1

4x2ρ

)
φ2

1.

In Theorem 2, we have the following corollary if the Horadam polynomials hj(x) are
replaced by the Pell–Lucas polynomials Qj(x).

Corollary 7. For α, λ ≥ 1, ρ ∈ C\{0}, β ∈ C and Re(β) ≥ 0, let l ∈ A belong to the class
N µ,q

Σ (α, λ, β, ρ; x). Then

|m2| ≤
2|ρ||x|

√
|x|√∣∣∣∣ [λ(4α(α + β− 2) + (β− 2)(β− 1))φ2
1 + 2(λ(3α + β− 4) + 3)φ2

]
x2ρ2

−(λ(2α + β− 3) + 2)2ρ
(
2x2 + 1

)
φ2

1

∣∣∣∣
,

|m3| ≤
4|ρ|2x2

|λ(2α + β− 3) + 2|2φ2
1

+
2|ρ||x|

|λ(3α + β− 4) + 3|φ2

and ∣∣∣m3 − ηm2
2

∣∣∣ ≤


|ρ||2x|
|λ(3α+β−4)+3|φ2

, |η − φ2| ≤ |S(x)|
2|λ(3α+β−4)+3|φ2

4|ρ||x||η−φ2|
|S(x)| , |η − φ2| ≥ |S(x)|

2|λ(3α+β−4)+3|φ2
,

where

S(x) =
[
λ(4α(α + β− 2) + (β− 2)(β− 1))φ2

1 + 2(λ(3α + β− 4) + 3)φ2

]
−2(λ(2α + β− 3) + 2)2

(
4x2 + 1

4x2ρ

)
φ2

1.
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3. Conclusions

The target of the present investigation is to introduce, by using the concept of sub-
ordination, a new subfamily of bi-univalent functions in the open unit disk U associated
with Horadam polynomials as well as deriving the initial estimations of coefficients and
Fekete–Szegö inequalities for functions belonging to this subfamily. The majority of our
findings are found in Theorem 2. By further specializing the criteria, a number of additional
repercussions of these new families are indicated.

Basic (or q-)series and basic (or q-)polynomials, especially the basic q-hypergeometric
functions and basic (or q-)hypergeometric polynomials, are applicable, particularly in
several diverse areas (see, for example, [34], pp. 350–351 and [47], p. 328). Furthermore,
in Srivastava’s recent survey-cum-expository review article ([47], p. 328), the so-called
(p, q)-calculus was revealed to be a rather trivial and insignificant variation of the classical
q-calculus, with the additional parameter p being redundant (see, for details, [47], p. 328
and [48], pp. 1511–1512). Indeed, this remark by Srivastava ([47], p. 328) would also apply
to any attempt to create the very basic (p, q)-variants of the results provided in this study.
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