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Abstract: This study addresses the estimation problems of the modified Lindley distribution using
a progressive Type-II censoring plan. Using the maximum likelihood and maximum product of
spacing and Bayesian estimation methods, the unknown parameter, reliability, and hazard rate
functions are estimated. Employing the assumption of the gamma prior and a symmetric loss
function, Bayes estimators are investigated when the observed data are obtained using the likelihood
and product of spacing functions. Additionally, the approximate confidence intervals using both
classical methods and the highest posterior density credible intervals are also discussed. To assess
the different estimating strategies, a comprehensive simulation experiment that considers various
sample sizes and censoring schemes is implemented. Finally, two actual data sets are examined to
verify the utility of the modified Lindley distribution and the usefulness of the suggested estimators.
The findings demonstrate that, in order to obtain the necessary estimators, the maximum product of
the spacing method is preferred over the maximum likelihood method; whereas, when compared
to the conventional techniques, the Bayesian approach using the likelihood and product of spacing
functions provides more acceptable estimates.

Keywords: modified lindley model; reliability analysis; Bayes inference; MCMC techniques; likelihood
and product of spacing; progressive censoring
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1. Introduction

Chesneau et al. [1] introduced a novel one-parameter distribution derived from the
Lindley distribution, which is called the modified Lindley (ML) distribution. Let X be
a lifetime random variable of a test unit that follows the ML distribution, denoted by
ML(δ), then the probability density function (PDF), cumulative distribution function (CDF),
reliability function (RF), and hazard rate function (HRF) of x > 0, are given by

f (x; δ) =
δ

1 + δ
e−2δx

[
(1 + δ)eδx + 2δx− 1

]
, δ > 0, (1)

F(x; δ) = 1−
[
1 + δx(1 + δ)−1e−δx

]
e−δx, (2)

R(x; δ) =
[
1 + δx(1 + δ)−1e−δx

]
e−δx (3)

and

h(x; δ) = δ +
δ(δx− 1)

(1 + δ)eδx + δx
, (4)
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respectively. Chesneau et al. [1] showed that the PDF in (1) can be unimodal or decreasing.
Moreover, they demonstrated that the HRF is an unimodal function with an almost constant
shape for large values of x. Their results of fitting the ML, Lindley, and exponential
distributions to three real data sets revealed that the ML distribution is a powerful one-
parameter rival. Veena and Lishamol [2] studied the different classical estimation methods
of the ML distribution based on the complete sample data.

In a reliability analysis, the items of interest are typically lost or removed before failure.
As a result, the obtained sample is known as a censored sample (or an incomplete sample).
Preserving the functional experimental units for future use, shortening the duration of
the test, and saving money are some major justifications for removing the experimental
units. Various censoring plans, such as time and failure censoring, are available; however,
they do not have the flexibility to permit items to be dropped at any moment other than
the experiment’s termination point. As a result, the progressive Type-II censoring (PT-IIC)
scheme, which is a more general censoring mechanism, is suggested. In practice, some
items may be removed from the experiment for a more deep evaluation or saved to be
used as test samples in further examinations. The following is a schematic representation
of the PT-IIC sample: Assume that m units will stop working out of n distinct units that
are run through a life test. Allow (S1, S2, . . . , Sm) to be fixed in advance such that when
the first failure occurs at time X1:m:n, S1 remaining units are arbitrarily removed from the
experiment. When the experiment has its second failure time X2:m:n, S2 remaining items are
at random removed from the test, and so on. When the test experiences its mth observed
failure at time Xm:m:n, all Sm = n−m−∑m−1

i=1 Si remaining surviving elements are removed
from the test. If we assume that a continuous population with PDF f (x) and CDF F(x),
the likelihood function (LF) for a PT-IIC sample of size m can be written according to
Balakrishnan [3], as follows

L(δ) = C
m

∏
i=1

f (xi:m:n)[1− F(xi:m:n)]
Si , (5)

where C is a parameter-free constant. In-depth research on the PT-IIC scheme has been
conducted in the literature using a variety of lifetime distributions; see EL-Sagheer [4,5],
Dey et al. [6], Chacko and Mohan [7], Nik et al. [8], Alotaibi et al. [9] and Maiti and
Kayal [10]. One might read an outstanding review article by Balakrishnan [3] for additional
information on the PT-IIC plan.

In recent years, it is common among authors to use the maximum product of the
spacing (MPS) estimation method as a good alternative to the maximum likelihood method.
Cheng and Amin [11] and Ranneby [12] independently proposed the MPS method and
demonstrated that it retains the majority of the characteristics of the maximum likelihood
method. In small sample cases for heavy-tailed or skewed distributions, Anatolyev and
Kosenok [13] indicated that MPS estimators (MPSEs) are more effective than maximum
likelihood estimators (MLEs). By choosing parameter values that maximize the product of
the distances between the values of the CDF at consecutive ordering points, the MPSEs are
founded. The product of the spacing (PS) function based on the PT-IIC sample, according
to Ng et al. [14], has the following form

M(δ) = C
m+1

∏
i=1

[F(xi:m:n)− F(xi−1:m:n)]
m

∏
i=1

[1− F(xi:m:n)]
Si . (6)

Many authors used the MPS method to investigate some lifetime distributions, see for
example Mazucheli et al. [15], Rodrigues et al. [16], Almarashi [17] and Nassar et al. [18].

The novelty of this study comes from the fact that it is the first time to compare two
classical and Bayesian (using LF and PS function) approaches of the ML distribution since
its introduction. The importance of the PT-IIC scheme in improving the effectiveness of
statistical inference when compared with Type-I and Type-II censoring schemes acts as the
motivation for this study. Furthermore, two applications to actual data sets demonstrate the
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ML distribution’s capacity to fit various data types when compared with some competing
lifetime distributions with one or two parameters. For the aim of estimation, the methods
of maximum likelihood and MPS as well as the Bayesian approach are considered. In the
Bayesian estimation, the posterior distribution of the unknown parameter is derived based
on both the LF and PS function. The approximate confidence intervals (ACIs) and the
highest posterior density (HPD) credible intervals are also considered. A simulation study
and two applications to real data sets are taken into account to verify the offered approaches.

The rest of the paper is organized as follows: Section 2 displays the MLEs and MPSEs of
the unknown parameters, RF and HRF, along with the corresponding ACIs. The Bayesian
estimation using the Markov Chain Monte Carlo (MCMC) technique is considered in
Section 3. The findings of the simulation study are shown in Section 4. In Section 5, two
applications to actual data sets are examined. Lastly, Section 6 has provided conclusions.

2. Classical Estimation

In this part, the maximum likelihood and maximum product of the spacing estimation
methods are used to obtain the point and interval estimators of the model parameter, as well
as the RF and HRF. The interval estimators are produced using the asymptotic properties
of the MLEs and MPSEs. The delta approach, on the other hand, is used to compute the
approximate estimated variances of the RF and HRF estimators.

2.1. Maximum Lilekihood Estimation

Suppose that x = xi:m:n, i = . . . , m are a PT-IIC sample of size m with progressive
censoring scheme Si, i = 1, . . . , m collected from the ML population with PDF and CDF,
as provided by (1) and (2), respectively. By neglecting the constant term, the likelihood
function (LF) of the ML distribution in the presence of PT-IIC can be obtained from (1), (2)
and (5), as shown below

L(δ|x) =

(
δ

δ̄

)m
e−δ ∑m

i=1(2+Si)xi
m

∏
i=1

(
δ̄eδxi + 2δxi − 1

)(
1 +

δxie−δxi

δ̄

)Si

, (7)

where δ̄ = 1 + δ. The natural logarithm of (7) can be expressed as

log L(δ|x) = m[log(δ)− log(δ̄)]− δ
m

∑
i=1

(2 + Si)xi +
m

∑
i=1

log
(

δ̄eδxi + 2δxi − 1
)

+
m

∑
i=1

Si log
(

1 +
δxie−δxi

δ̄

)
. (8)

We obtain the following non-linear equation by differentiating the log-LF in (8) with
regard to δ

d log L(δ|x)
dδ

=
m
δδ̄
−

m

∑
i=1

(2 + Si)xi +
m

∑
i=1

2xi + eδxi [1 + (1 + δ)xi]

δ̄eδxi + 2δxi − 1
−

m

∑
i=1

Sixie−δxi (δδ̄xi − 1)
δ̄[1 + δ(1 + xie−δxi )]

= 0. (9)

Because the normal equation in (9) has a complex form, the MLE of δ, represented by δ̂, can
be obtained numerically from (9) by applying the Newton Raphson procedure. Moreover,
the MLEs of RF and HRF at a distinct time t can be obtained using the invariance property
of the MLE. By changing the parameter δ in (3) and (4) by its MLE δ̂, the MLEs of R(t) and
h(t) are given, respectively, by

R̂(t) =
[
1 + δ̂t(1 + δ̂)−1e−δ̂t

]
e−δ̂t

and

ĥ(t) = δ̂ +
δ̂(δ̂t− 1)

(1 + δ̂)eδ̂t + δ̂t
.
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In addition to obtaining a point estimate for the unknown parameter, it is also useful
to obtain a range of values that, with a certain degree of confidence, could contain the true
parameter. In statistical inference, this process is known as interval estimation. Here, we
suggest using the asymptotic normality of the MLE to build the ACI of δ. From the log-LF
given by (8), we have

d2 log L(δ|x)
dδ2 =

m
δ̄2 −

m
δ2 −

m

∑
i=1

4x2
i + eδxi ξ

(δ̄eδxi + 2δxi − 1)2 −
m

∑
i=1

Siψi{
δ̄[1 + δ(1 + xe−δxi )]

}2 ,

where ξ = eδxi
[
eδxi + 5x2

i + 6xi + δx2
i (1− 2xi + 2δxi)

]
and ψi = xiδ

2(2 − 3δ̄xi − δ2xi) +
xie−δxi (1+ 2δ)+ 2(1+ xi + δ+ 2δxi)− δx2

i . For a sufficiently large PT-IIC sample, the asymp-
totic normality of the MLE δ̂ can be described as δ̂ ∼ N(δ, I−1(δ)), where I−1(δ) is the
variance-covariance matrix obtained through the Fisher information matrix. In practical
problems, one may use the observed Fisher information to approximate the variance–
covariance matrix. In this case, we have δ̂ ∼ N(δ, I−1(δ̂)), where

I−1(δ̂) =

[
−d2 log L(δ|x)

dδ2

]−1

δ=δ̂

= V̂ar(δ̂). (10)

Accordingly, the (1− α)% ACI of the parameter δ is [δ̂− zα/2

√
V̂ar(δ̂), δ̂ + zα/2

√
V̂ar(δ̂)],

where zα/2 is (α/2)th upper percentile of the standard normal distribution. On the other
hand, the asymptotic normality of the MLE can be used to construct the ACIs of R(t) and
h(t). To obtain such intervals, we consider utilizing the delta method to approximate the
estimated variances of their estimators. Let ΘR = dR(t)

dδ |δ=δ̂ and Θh = dh(t)
dδ |δ=δ̂, where

dR(t)
dδ

=
te−δt[1 + e−δt(2δδ̄t− 1) + δ(1 + δ̄)

]
δ̄2 (11)

and

dh(t)
dδ

= 1 +
2δt− 1

δ̄eδt + δt
−

δ(δt− 1)
[
t + eδt(1 + δ̃t)

]
(δ̄eδt + δt)2 . (12)

As a result, the required approximate estimated variances of R̂(t) and ĥ(t) can be
obtained, as shown below

V̂ar(R̂(t)) ≈ [ΘRI−1(δ̂)Θ́R] and V̂ar(ĥ(t)) ≈ [ΘhI−1(δ̂)Θ́h].

After obtaining the approximate variances, one can construct the (1− α)% ACIs of RF and
HRF as

R̂(t)± zα/2

√
V̂ar(R̂(t)) and ĥ(t)± zα/2

√
V̂ar(ĥ(t)).

2.2. Maximum Product of Spacing Estimation

This is given a PT-IIC sample of size m, denoted by x = xi:m:n, i = . . . , m, with a
progressive censoring scheme Si, i = 1, . . . , m gathered from the ML population with PDF
and CDF, as presented in (1) and (2), respectively. The PS function, ignoring the constant
term, can be expressed in this case based on (1), (2) and (6), as follows
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M(δ|x) =
e−δ ∑m

i=1 Sixi

δ̄m+1

m+1

∏
i=1

[
δ̄(e−δxi−1 − e−δxi ) + δ(xi−1e−2δxi−1 − xie−2δxi )

]
×

m

∏
i=1

(
1 +

δxie−δxi

δ̄

)Si

. (13)

The natural logarithm of the PS function can be expressed as

log M(δ|x) = −(m + 1) log(δ̄)− δ
m

∑
i=1

Sixi +
m+1

∑
i=1

log(vi) +
m

∑
i=1

Si log
(

1 +
δxie−δxi

δ̄

)
, (14)

where vi = δ̄(e−δxi−1 − e−δxi ) + δ(xi−1e−2δxi−1 − xie−2δxi ). Let δ̃ denote the MPSE of the
parameter δ. Then, δ̃ can be acquired by solving the following nonlinear equation

d log M(δ|x)
dδ

= −m + 1
δ̄
−

m

∑
i=1

Sixi −
m+1

∑
i=1

ϑi − ϑi−1

vi
−

m

∑
i=1

Sixie−δxi (δδ̄xi − 1)
δ̄[1 + δ(1 + xe−δxi )]

= 0, (15)

where ϑi = (1− δ̄xi)e−δxi − xi(2δxi − 1)e−2δxi . Since the nonlinear Equation (15) cannot
be solved analytically, one can use a numerical technique such as the Newton-Raphson
procedure to obtain the MPSE δ̃. According to Cheng and Traylor [19], the MPSE is
consistent and shares the same asymptotic characteristics as the MLE. It exhibit the MLE’s
invariance characteristic as well. Therefore, the MPSEs of R(t) and h(t) can be simply
determined based on the invariance concept, respectively, as

R̃(t) =
[
1 + δ̃t(1 + δ̃)−1e−δ̃t

]
e−δ̃t

and

h̃(t) = δ̃ +
δ̃(δ̃t− 1)

(1 + δ̃)eδ̃t + δ̃t
.

Employing the asymptotic properties of the MPSE, the ACI of the parameter δ can be
obtained. Practically, it is known that δ̃ ∼ N(δ, I−1(δ̃)), where I−1(δ̃) is the approximate
variance-covariance matrix computed based on the observed Fisher information matrix,
and expressed as follows

I−1(δ̃) =

[
−d2 log M(δ|x)

dδ2

]−1

δ=δ̃

= Ṽar(δ̃),

where

d2 log M(δ|x)
dδ2 =

m + 1
δ̄2 −

m+1

∑
i=1

ηi − ηi−1

vi
+

m+1

∑
i=1

(ϑi − ϑi−1)
2

v2
i

−
m

∑
i=1

Siψi{
δ̄[1 + δ(1 + xe−δxi )]

}2 ,

where ηi = xie−δxi
[
(δxi − 1)(4xie−δxi + 1) + xi − 1

]
. Therefore, the (1− α)% ACI of the

parameter δ can be acquired as [δ̃− zα/2

√
Ṽar(δ̃), δ̃ + zα/2

√
Ṽar(δ̃)]. The ACIs of the RF

and HRF can be found by approximately estimating the variances of their estimators R̃(t)
and h̃(t) using the delta approach, just as the MLE. The needed variances in this case are
obtained as follows

Ṽar(R̃(t)) ≈ [ΘRI−1(δ̃)Θ́R] and Ṽar(h̃(t)) ≈ [ΘhI−1(δ̃)Θ́h],
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where ΘR = dR(t)
dδ |δ=δ̃ and Θh = dh(t)

dδ |δ=δ̃, with dR(t)
dδ and dh(t)

dδ , as given by (11) and (12),
respectively. Hence, the ACIs of the RF and HRF are as follows

R̃(t)± zα/2

√
Ṽar(R̃(t)) and h̃(t)± zα/2

√
Ṽar(h̃(t)).

3. Bayesian Estimation

The conventional methods can occasionally even produce inaccurate and misleading
results for experiments with small sample sizes or when censored data are present. In this
case, the Bayesian approach could use more prior knowledge, such as historical data or
knowledge in the statistical inferential process to obtain more accurate estimates. In this
section, the Bayesian estimation of the parameter δ based on both the LF and PS function
is considered. The squared error loss function is used to acquire the Bayes estimators of
δ, R(t), and h(t), and the associated HPD credible intervals are also obtained. Under the
assumption that the parameter δ has a gamma (G) prior distribution, the Bayes estimators
are derived. The posterior distribution can be computed effectively thanks to this choice.
Let δ ∼ G(a, b), where a, b > 0 are the hyper-parameters. Then, the prior distribution of δ
can be written as

π(δ) ∝ δa−1e−bδ, δ > 0. (16)

In the next subsections, we use the LF and PS function to obtain the posterior distri-
bution of the parameter δ and obtain the Bayes estimators as well as the HPD credible
intervals of δ, R(t), and h(t).

3.1. Bayesian Estimation Using LF

The posterior density of δ is obtained as follows by combining the prior distribution
in (16) with the LF given by (7)

g(δ|x) =
δm+a−1

Aδ̄
e−δ[∑m

i=1(2+Si)xi+b]
m

∏
i=1

(
δ̄eδxi + 2δxi − 1

)(
1 +

δxie−δxi

δ̄

)Si

, (17)

where

A =
∫ ∞

0

δm+a−1

δ̄
e−δ[∑m

i=1(2+Si)xi+b]
m

∏
i=1

(
δ̄eδxi + 2δxi − 1

)(
1 +

δxie−δxi

δ̄

)Si

dδ.

The Bayes estimator for any function of the parameter δ, such as Ψ(δ), can be deter-
mined by employing the squared loss function as

Ψ̂B(δ) =
1
A

∫ ∞

0

δm+a

δ̄
e−δ[∑m

i=1(2+Si)xi+b]
m

∏
i=1

(
δ̄eδxi + 2δxi − 1

)(
1 +

δxie−δxi

δ̄

)Si

dδ. (18)

It is obvious that an analytical method cannot be used to obtain the Bayes estimator
in (18). In order to calculate the necessary estimators for δ, R(t), and h(t), as well as the
accompanying HPD credible intervals, we suggest employing the MCMC procedure. We
should first clearly define the conditional posterior distribution of δ in order to obtain
these estimations. From (17), the conditional posterior distribution of δ can be expressed
as follows

g∗(δ|x) ∝
δm+a−1

δ̄
e−δ[∑m

i=1(2+Si)xi+b]
m

∏
i=1

(
δ̄eδxi + 2δxi − 1

)(
1 +

δxie−δxi

δ̄

)Si

. (19)

The conditional distribution of δ cannot be reduced to any well-known density, as can
be observed from (19). In order to produce samples from (19) with a normal proposal
distribution, the Metropolis–Hastings (MH) technique is taken into consideration in this
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scenario. The steps below are used to create samples using the MH technique and obtain
the Bayes estimates

Step 1. Specify the initial value for δ, say δ(0) = δ̂.

Step 2. Set k = 1.

Step 3. Generate δ(k) from (19) with normal proposal distribution using the MH steps.

Step 4. Taking a specific value for t, determine R(k)(t) and h(k)(t) as

R(k)(t) =
[
1 + δkt(1 + δk)−1e−δkt

]
e−δkt

and

h(j)(t) = δk +
δk(δkt− 1)

(1 + δk)eδkt + δkt
.

Step 5. Set k = k + 1.

Step 6. Replicate Steps 3 through 5, M times to obtain[
δ(1), R(1)(t), h(1)(t)

]
, . . . ,

[
δ(M), R(M)(t), h(M)(t)

]
, k = 1, . . . , M.

Step 7. Compute the Bayes estimates, after removing M∗ samples as a burn-in period,
as follows

δ̂B =
∑M

k=M∗+1 δ(k)

M−M∗
, R̂B(t) =

∑M
k=M∗+1 R(k)(t)

M−M∗
and ĥB(t) =

∑M
k=M∗+1 h(k)(t)

M−M∗
.

Step 8. To compute the HPD credible intervals, order δ(k), R(k)(t) and h(k)(t), k = M∗ +
1, · · · , M. Then, one can follow the method proposed by Chen and Shao [20] to obtain
the required interval for the parameter δ, as follows[

δ(k
∗), δ(k

∗+(1−α)(M−M∗))
]
,

where k∗ = M∗ + 1, M∗ + 2, . . . , M is chosen such that

δ(k
∗+[(1−α)(M−M∗)]) − δ(k

∗) = min
16k6α(M−M∗)

(δ(k+[(1−α)(M−M∗)]) − δ(k)).

The largest integer less than or equal to x is denoted by [x]. The same process can be
applied to obtain the HPD credible intervals of R(t) and h(t).

3.2. Bayesian Estimation Using PS Function

By combining the sample data given by the PF function as provided in (13), with the
prior knowledge about the unknown parameter δ given by (16), the posterior distribution
in this case can be presented as follows

q(δ|x) =
δa−1e−δ(∑m

i=1 Sixi+b)

Bδ̄m+1

m+1

∏
i=1

[
δ̄(e−δxi−1 − e−δxi ) + δ(xi−1e−2δxi−1 − xie−2δxi )

]
×

m

∏
i=1

(
1 +

δxie−δxi

δ̄

)Si

, (20)



Axioms 2023, 12, 171 8 of 21

where

B =
∫ ∞

0

δa−1e−δ(∑m
i=1 Sixi+b)

δ̄m+1

m+1

∏
i=1

[
δ̄(e−δxi−1 − e−δxi ) + δ(xi−1e−2δxi−1 − xie−2δxi )

]
×

m

∏
i=1

(
1 +

δxie−δxi

δ̄

)Si

dδ. (21)

It is clear that the Bayes estimator using the squared error loss function of the function
Ψ(δ) cannot be calculated from (21) in a closed form, much like in the case of the Bayes
estimator using the LF. As a result, we propose to use the MCMC technique to generate
samples from (21) and compute the needed point and HPD credible estimates. To imple-
ment the MCMC method, we first derive the full conditional distribution of the parameter
δ, as shown below

q∗(δ|x) ∝
δa−1e−δ(∑m

i=1 Sixi+b)

δ̄m+1

m+1

∏
i=1

[
δ̄(e−δxi−1 − e−δxi ) + δ(xi−1e−2δxi−1 − xie−2δxi )

]
×

m

∏
i=1

(
1 +

δxie−δxi

δ̄

)Si

. (22)

As expected, the conditional posterior distribution of δ cannot be analytically related to
a well-known distribution, making direct sampling via conventional techniques impossible.
Therefore, we employ the MH approach along with the normal proposal distribution to
produce random samples from (22). The following are the steps involved in creating
samples and computing the necessary estimates

Step 1. Determine the initial value of δ by setting δ(0) = δ̃.

Step 2. Put k = 1.

Step 3. Use MH steps to obtain δ(k) from (22) with normal proposal distribution.

Step 4. At a mission time t, obtain R(k)(t) and h(k)(t).

Step 5. Put k = k + 1.

Step 6. Repeat Steps 3–5, M times to obtain δ(k), R(k)(t) and h(k)(t), k = 1, . . . , M.

Step 7. Calculate the Bayes estimates as

δ̃B =
∑M

k=M∗+1 δ(k)

M−M∗
, R̃B(t) =

∑M
k=M∗+1 R(k)(t)

M−M∗
and h̃B(t) =

∑M
k=M∗+1 h(k)(t)

M−M∗
.

Step 8. The same method mentioned in the previous part can be used to determine the
HPD credible intervals.

4. Monte Carlo Simulations

Based on extensive Monte Carlo simulations, the performance of both point and
interval estimators of δ, R(t) and h(t) derived by the proposed estimation methodologies
in the proceeding sections is evaluated. To achieve this goal, we simulate 1000 PT-IIC
samples using ML(0.5) and ML(1.5) based on various combinations of n(total test items),
m(target sample size) and S(progressive censoring). Taking t = 0.25, the actual values of
(R(t), h(t)) at δ = 0.5 and 1.5 are (0.9474, 0.2602) and (0.7581, 1.2664), respectively. Using
n (=30, 60, 90), the choices of m are determined according to the failure percentages (FPs)
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m
n (=40, 80)% of each n. Moreover, for each set of (n, m), three progressive patterns S are
considered, namely:

Scheme-1 : S = (n−m, 0∗(m− 1));

Scheme-2 : S =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
;

Scheme-3 : S = (0∗(m− 1), n−m).

where 0∗(m − 1), for example, stands that 0 is repeated (m − 1) times. Once the PT-
IIC samples are collected, the ‘maxLik’ package (by Henningsen and Toomet [21]) in R
4.1.2 software is utilized to obtain the MLEs, MPSEs and 95% ACIs of δ, R(t) and h(t).
To calculate the Bayes point and interval estimates of δ, R(t) and h(t), two informative
priors of the gamma hyper-parameters (a, b) are adopted, namely: Prior-1: (a, b) = (2.5, 5)
and Prior-2: (a, b) = (5, 10) (when δ = 0.5) as well as Prior-1: (a, b) = (7.5, 5) and Prior-2:
(a, b) = (15, 10) (when δ = 1.5). Next, according to the MH algorithm via the ‘coda’
package (by Plummer et al. [22]), we simulate 12,000 MCMC samples from each unknown
parameter and discard the first 2000 samples as the burn-in. Here, the hyper-parameter
values are specified based on the prior mean and prior variance criteria. Then, from 10,000
MCMC samples, the Bayes estimates and 95% HPD credible interval estimates of δ, R(t)
and h(t) are obtained. Comparison between the derived point estimates of δ, R(t) and h(t)
(say ϕ) derived from the frequentist (or Bayesian) is made based on two criteria called the
root mean squared-errors (RMSEs) and mean relative absolute biases (MRABs), as

RMSE(ϕ̌d) =

√
1
K ∑K

i=1

(
ϕ̌
(i)
d − ϕd

)2
, d = 1, 2, 3,

and
MRAB(ϕ̌d) =

1
K ∑K

i=1
1
ϕd

∣∣∣ϕ̌(i)
d − ϕd

∣∣∣, d = 1, 2, 3,

respectively, where K is the number of generated sequence data, ϕ̌(i) is the calculated
estimate of ϕ at the ith simulated sample, where ϕ1 = δ, ϕ2 = R(t) and ϕ3 = h(t).
Comparison between the interval estimates of ϕ is also made using average confidence
lengths (ACLs) and coverage percentages (CPs), respectively, as

ACL(1−α)%(ϕk) =
1
K ∑K

i=1

(
U

ϕ̌
(i)
d
−L

ϕ̌
(i)
d

)
, d = 1, 2, 3,

and
CP(1−α)%(ϕk) =

1
K ∑K

i=1 1(
L

ϕ̌
(i)
d

;U
ϕ̌
(i)
d

)(ϕk), d = 1, 2, 3,

where (L(·),U (·)) represents the (lower, upper) bound of the (1− α)% interval estimate of
ϕd, and 1(·) is the indicator function.

The results of δ, R(t) and h(t) are represented with heatmaps in Figures 1–3, respec-
tively. For each plot in Figures 1–3, for Prior-1 (say P1) as an example, some notations
of the estimation methods have been used such as (i) the Bayes estimate from the LF
approach is mentioned as “BE-LF-P1”; (ii) the Bayes estimate from the PS approach is noted
as “BE-PS-P1”; (iii) the HPD interval from the LF approach is described as “HPD-LF-P1”;
(iv) the HPD interval from the PS approach is mentioned as “HPD-PS-P1”. Moreover,
the ACI from LF and PS approaches are mentioned as “ACI-LF” and “ACI-PS”, respectively.
From Figures 1–3, in terms of the lowest RMSE, MRAB and ACL values as well as the
highest CP values, the following observations can be easily obtained:

• All proposed estimates of δ, R(t) or h(t) behave well; this is the general comment.
• When n(or m) grows, all estimates of δ, R(t), and h(t) perform satisfactorily. When

∑m
i=1 Si decreases, the same outcome is observed.
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• Due to the gamma prior, the MCMC estimates of δ, R(t), and h(t) (from LF or PS)
outperform the other estimates as expected. When comparing the HPD credible
intervals to the ACIs, the same conclusion is reached.

• It is obvious that the Bayes findings based on Prior 2 perform better than others for
all unknown parameters, since the associated variance of Prior 2 is smaller than the
associated variance of Prior 1.

• All proposed estimates of δ, R(t), and h(t) behave better utilizing scheme 3 than others
when comparing the proposed censoring plans 1, 2 and 3.

• Using the frequentist perspective, it can be observed that the proposed point estimates
of δ, R(t), and h(t) using the PS technique become even better than those derived
from the LF approach in terms of the least RMSEs, MRABs, and ACLs. The ACI-PS
interval estimates of δ, R(t), and h(t) perform better than others in terms of ACLs
criteria whereas the ACI-LF interval estimates of δ, R(t), and h(t) perform better than
others in terms of CPs criteria.

• From the Bayesian perspective, it is clear that the proposed point estimates of δ, R(t),
and h(t) produced using the BE-LF approach are superior to those obtained using the
BE-PS approach. It is also noted that the HPD-LF interval estimates δ, R(t) and h(t)
perform better than others.

• As δ increases, in most cases, the RMSEs, MRABs, and ACLs of δ, R(t) and h(t)
increase while their CPs decrease.

• To sum up, in order to estimate the unknown parameters of life δ, R(t), and h(t) of
the ML model using the PT-IIC data, we recommend using the PS approach (as a
frequentist technique) and BE-LF (as a Bayesian method).



Axioms 2023, 12, 171 11 of 21

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

M
L
E

M
P

S
E

B
E

−
L
F
−
P

1

B
E

−
P

S
−
P

1

B
E

−
P

S
−
P

2

B
E

−
L
F
−
P

2

δ

n
 [

 F
P

 ]
 −

 S
c
h

e
m

e

0.025

0.050

0.075

0.100

0.125

RMSE

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

M
L
E

M
P

S
E

B
E

−
L
F
−
P

1

B
E

−
P

S
−
P

1

B
E

−
P

S
−
P

2

B
E

−
L
F
−
P

2

δ

n
 [

 F
P

 ]
 −

 S
c
h

e
m

e

0.1

0.2

0.3

0.4

RMSE

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

M
L
E

M
P

S
E

B
E

−
L
F
−
P

1

B
E

−
P

S
−
P

1

B
E

−
P

S
−
P

2

B
E

−
L
F
−
P

2

δ

n
 [

 F
P

 ]
 −

 S
c
h

e
m

e

0.04

0.08

0.12

0.16

MRAB

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

M
L
E

M
P

S
E

B
E

−
L
F
−
P

1

B
E

−
P

S
−
P

1

B
E

−
P

S
−
P

2

B
E

−
L
F
−
P

2

δ

n
 [

 F
P

 ]
 −

 S
c
h

e
m

e

0.05

0.10

0.15

0.20

MRAB

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

ACI−LF ACI−PS HPD−LF−P1 HPD−PS−P1 HPD−LF−P2 HPD−PS−P2

δ

n
 [

 F
P

 ]
 −

 S
c
h
e

m
e

0.1

0.2

0.3

0.4

ACL

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

ACI−LF ACI−PS HPD−LF−P1 HPD−PS−P1 HPD−LF−P2 HPD−PS−P2

δ

n
 [

 F
P

 ]
 −

 S
c
h
e

m
e

0.5

1.0

1.5

ACL

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

ACI−LF ACI−PS HPD−LF−P1 HPD−PS−P1 HPD−LF−P2 HPD−PS−P2

δ

n
 [

 F
P

 ]
 −

 S
c
h
e

m
e

0.94

0.96

0.98

CP

30[40%]−1

30[40%]−2

30[40%]−3

30[80%]−1

30[80%]−2

30[80%]−3

60[40%]−1

60[40%]−2

60[40%]−3

60[80%]−1

60[80%]−2

60[80%]−3

90[40%]−1

90[40%]−2

90[40%]−3

90[80%]−1

90[80%]−2

90[80%]−3

ACI−LF ACI−PS HPD−LF−P1 HPD−PS−P1 HPD−LF−P2 HPD−PS−P2

δ

n
 [

 F
P

 ]
 −

 S
c
h
e

m
e

0.93

0.94

0.95

0.96

0.97

0.98

0.99

CP

(a) At δ = 0.5 (b) At δ = 1.5

Figure 1. Heatmap plots for the simulation outputs of δ.
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Figure 2. Heatmap plots for the simulation outputs of R(t).
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Figure 3. Heatmap plots for the simulation outputs of h(t).

5. Real-Life Applications

In this section, two applications are explored to demonstrate the significance of the
suggested estimation methods and to assess the ability for adapting the study objectives to
actual situations.

5.1. Mechanical Equipment

In this application, from Murthy et al. [23] and Elshahhat et al. [24], we shall use a real
data set representing the time between failures of repairable mechanical equipment items;
see Table 1. First, we compare the suitability of the ML distribution with some other models,
namely, the Lindley (L(δ)), exponential (E(δ)), gamma (G(β, δ)) and Weibull (W(β, δ)), two-
parameter Lindley (TL(β, δ)) by Shanker and Mishra [25], exponentiated Lindley (EL(β, δ))
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by Nadarajah et al. [26] and Marshall-Olkin Lindley (MOL(β, δ)) by Ghitany et al. [27]
distributions. For computational convenience, each time point of the mechanical equipment
data set is multiplied by ten. To judge the best distribution, several measures of fit are
employed, namely: negative log-likelihood (NL), Akaike (A), consistent Akaike (CA),
Bayesian (B), Hannan-Quinn (HQ) and the Kolmogorov–Smirnov (KS) statistic with its
P-value. To establish this purpose, the MLE with its standard error (St.E) of each unknown
parameter is calculated and presented in Table 2. It shows, in terms of the smallest of
NL, A, CA, B, HQ, and KS values as well as the highest P-value, that the ML model has
the best fit compared to others. Further, in Figure 4, quantile-quantile (QQ) plots of the
ML and its competitive distributions are displayed. Furthermore, Figure 5a shows the
histograms of mechanical equipment data and the fitted lines of the PDFs, and Figure 5b
displays the fitted/empirical RFs of the ML and its competitive distributions. As expected,
Figures 4 and 5 support the same finding reported in Table 2.

Table 1. Times of repairable mechanical equipment.

1.1 3.0 4.0 4.5 5.9 6.3 7.0 7.1 7.4 7.7
9.4 10.6 11.7 12.3 12.3 12.4 14.3 14.6 14.9 17.4
18.2 18.6 19.7 22.3 23.7 24.6 26.3 34.6 43.6 47.3

Table 2. Summary of fit of ML and its competitive models from mechanical equipment data.

Model
MLE (St.E)

NL A CA B HQ KS (p-Value)
β δ

ML - 0.0792 (0.0111) 108.707 219.770 219.913 221.171 220.219 0.0630 (0.999)
L - 0.1225 (0.0159) 108.942 219.884 220.027 221.285 220.332 0.0688 (0.999)
E - 0.0648 (0.0118) 112.083 226.166 226.309 227.567 226.614 0.1844 (0.259)
G 1.9732 (0.4712) 7.8105 (2.1200) 108.711 221.414 221.859 224.217 222.311 0.0669 (0.999)
W 1.4633 (0.2029) 17.099 (2.2539) 108.988 221.976 222.420 224.778 222.872 0.0749 (0.996)
TL 0.0242 (1.4529) 0.1294 (0.0206) 108.771 221.422 221.867 224.225 222.319 0.0692 (0.999)
EL 1.1767 (0.3244) 0.1330 (0.0243) 108.885 221.542 221.986 224.344 222.438 0.0751 (0.996)

MOL 1.1345 (0.8926) 0.1286 (0.0412) 108.929 221.859 222.303 224.661 222.755 0.0697 (0.999)
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Figure 4. The QQ plots of ML and its competitive models from mechanical equipment data.
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Figure 5. (a) Histograms/fitted PDFs; (b) empirical/fitted RF plots from mechanical equipment data.

From the complete mechanical equipment data, by taking m = 15, three artificial PT-
IIC samples based on different progressive censoring schemes are generated and reported
in Table 3. From Table 3, the frequentist estimates (including MLEs and MPSEs) and the
Bayesian estimates (including BE-LF and BE-PS) with their St.Es of δ, R(t) and h(t) (at
time t = 2) are obtained and reported in Table 4. Using the noninformative prior, each
Bayes estimate is developed by running the MH algorithm 50,000 times and discarding
the first 10,000 variates as a burn-in. Additionally, the 95% ACI/HPD credible interval
estimates with their lengths are also calculated and provided in Table 4. To apply the
proposed MCMC sampler, the calculated classical estimate of δ is used as an initial guess.
It is clear, from Table 4, that the estimates of δ, R(t) and h(t) obtained by the MPSE (or
BE-PS) procedure perform better compared to the MLEs’ (or BE-LF) procedure. A similar
performance is also observed in the case of ACI-PS (or HPD-PS credible interval) estimates.
Figure 6 displays the log-likelihood function and the associated first derivative of δ, given
by (8) and (9), respectively, for sample 1 as an example. It demonstrates the existence and
uniqueness of the MLE δ̂.

Table 3. Three PT-IIC samples from mechanical equipment data.

Sample Scheme Censored Data

1 (15, 0∗14) 1.1, 3.0, 4.0, 4.5, 5.9, 7.0, 7.1, 7.7, 9.4, 12.3, 14.3, 17.4, 22.3, 24.6, 26.3
2 (0∗6, 5∗3, 0∗6) 1.1, 3.0, 4.0, 4.5, 5.9, 6.3, 7.0, 7.4, 9.4, 10.6, 12.4, 14.6, 18.2, 22.3, 24.6
3 (0∗14, 15) 1.1, 3.0, 4.0, 4.5, 5.9, 6.3, 7.0, 7.1, 7.4, 7.7, 9.4, 10.6, 11.7, 12.3, 12.3
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Figure 6. The log-likelihood function and the associated first derivative of δ from mechanical
equipment data.

Moreover, several properties of the MCMC draws acquired by LF (or PS) of δ, R(t) and
h(t) after the burn-in, namely: mean, mode, quartiles (Q1, Q2, Q3), standard deviation (St.D)
and skewness are computed and provided in Table 5. From sample 1 (as an example), both
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MCMC trace and histogram plots with the fitted Gaussian kernel line of δ, R(t) and h(t)
are displayed in Figure 7. In each trace plot, the sample mean and HPD credible interval
bounds are represented by solid (—) and dashed (- - -) lines, respectively. Additionally,
in each histogram plot, the sample mean is represented with a vertical-dotted (:) line.
Figure 7 implies that the offered MCMC sampler converges satisfactorily and that the
generated variates of δ, R(t) and h(t) are fairly-symmetric.

Table 4. Point and interval estimates of δ, R(t), and h(t) from mechanical equipment data.

Sample Par.
MLE BE-LF ACI-LF HPD-LF

Est. St.E Est. St.E Lower Upper Length Lower Upper Length

1 δ 0.1059 0.0209 0.1046 0.0091 0.0649 0.1468 0.0819 0.0872 0.1223 0.0351
R(2) 0.9346 0.0219 0.9357 0.0094 0.8916 0.9775 0.0859 0.9176 0.9540 0.0364
h(2) 0.0530 0.0174 0.0521 0.0075 0.0188 0.0871 0.0683 0.0375 0.0664 0.0290

2 δ 0.0808 0.0145 0.0797 0.0082 0.0524 0.1092 0.0568 0.0640 0.0959 0.0319
R(2) 0.9590 0.0130 0.9598 0.0073 0.9336 0.9845 0.0509 0.9456 0.9737 0.0281
h(2) 0.0335 0.0104 0.0329 0.0058 0.0131 0.0538 0.0407 0.0217 0.0442 0.0225

3 δ 0.0772 0.0135 0.0761 0.0081 0.0508 0.1036 0.0527 0.0608 0.0922 0.0314
R(2) 0.9622 0.0117 0.9629 0.0069 0.9393 0.9851 0.0458 0.9494 0.9763 0.0269
h(2) 0.0309 0.0094 0.0304 0.0056 0.0126 0.0493 0.0367 0.0196 0.0411 0.0215

MPSE BE-PS ACI-PS HPD-PS

1 δ 0.1020 0.0199 0.1007 0.0090 0.0629 0.1410 0.0781 0.0838 0.1186 0.0348
R(2) 0.9386 0.0205 0.9397 0.0092 0.8985 0.9787 0.0802 0.9219 0.9573 0.0354
h(2) 0.0498 0.0163 0.0489 0.0073 0.0178 0.0817 0.0639 0.0350 0.0632 0.0282

2 δ 0.0792 0.0141 0.0781 0.0082 0.0515 0.1069 0.0554 0.0621 0.0941 0.0320
R(2) 0.9605 0.0125 0.9612 0.0072 0.9360 0.9849 0.0489 0.9467 0.9746 0.0279
h(2) 0.0323 0.0100 0.0317 0.0058 0.0127 0.0519 0.0392 0.0211 0.0434 0.0223

3 δ 0.0768 0.0133 0.0757 0.0080 0.0507 0.1029 0.0522 0.0603 0.0911 0.0307
R(2) 0.9626 0.0115 0.9632 0.0068 0.9400 0.9852 0.0452 0.9496 0.9759 0.0263
h(2) 0.0306 0.0092 0.0301 0.0055 0.0125 0.0488 0.0362 0.0199 0.0410 0.0211

Table 5. Some properties of MCMC draws of δ, R(t) and h(t) from mechanical equipment data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skewness

BE-LF

1 δ 0.10456 0.09494 0.09847 0.10451 0.11058 0.00897 0.05709
R(2) 0.93570 0.93287 0.92955 0.93597 0.94216 0.00934 −0.19348
h(2) 0.05208 0.04413 0.04694 0.05186 0.05697 0.00744 0.19173

2 δ 0.07970 0.07904 0.07409 0.07965 0.08510 0.00814 0.06236
R(2) 0.95975 0.96057 0.95509 0.96003 0.96485 0.00722 −0.25378
h(2) 0.03289 0.03224 0.02881 0.03267 0.03662 0.00578 0.24463

3 δ 0.07610 0.07467 0.07068 0.07595 0.08148 0.00800 0.07658
R(2) 0.96290 0.96186 0.95840 0.96327 0.96769 0.00690 −0.28396
h(2) 0.03036 0.02920 0.02653 0.03008 0.03398 0.00553 0.27351

BE-PS

1 δ 0.10065 0.10150 0.09462 0.10055 0.10659 0.00890 0.06119
R(2) 0.93972 0.93907 0.93378 0.94004 0.94599 0.00908 −0.20777
h(2) 0.04887 0.04939 0.04388 0.04862 0.05360 0.00723 0.20478

2 δ 0.07806 0.07300 0.07245 0.07786 0.08358 0.00817 0.09572
R(2) 0.96119 0.95890 0.95649 0.96161 0.96622 0.00717 −0.29196
h(2) 0.03173 0.02808 0.02771 0.03141 0.03551 0.00574 0.28236

3 δ 0.07571 0.07240 0.07029 0.07563 0.08102 0.00791 0.07238
R(2) 0.96323 0.96627 0.95881 0.96354 0.96801 0.00679 −0.27788
h(2) 0.03010 0.02767 0.02627 0.02986 0.03365 0.00544 0.26747
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Figure 7. Trace (top) and histograms (bottom) plots of δ, R(t) and h(t) from mechanical equip-
ment data.

5.2. Motor Vehicle Deaths

In this application, the proposed estimators of the ML parameters are calculated based
on real-life data obtained from the National Highway Traffic Safety Administration in
the United States. This data set consists of the number of motor vehicle accident deaths
(MVAD) for 39 counties in South Carolina for 2012; see Table 6. Recently, these data were
reported and analyzed by Eghwerido et al. [28]. In Table 7, the calculated values of MLEs
(with their St.Es), NL, A, CA, B, HQ, and KS (with its P-value) of the ML distribution and
its competitive models are presented. This shows that the ML distribution provides the
best overall fit compared to the others based on the criteria of NL, A, CA, B, and HQ while
the G and MOL distributions also provide the best fit based on the KS(P-value) criterion.
Moreover, using the complete MVAD data, Figure 8 supports the same numerical findings
presented in Table 7. In addition, in Figure 9, the histograms of MVAD data with fitted
PDFs as well as the fitted and empirical RFs are plotted. It is also evident that the ML
distribution is the best model compared to its competitive models.

Table 6. Number of motor vehicle accident deaths in South Carolina.

22 26 17 4 48 9 9 31 27 20
12 6 5 14 9 16 3 33 9 20
68 13 51 13 2 4 17 16 6 52
50 48 23 12 13 10 15 8 1

Table 7. Summary of fit of ML and its competitive models from MVAD data.

Model
MLE (St.E)

NL A CA B HQ KS (p-Value)
β δ

ML - 0.0641(0.0080) 152.968 308.786 308.894 310.450 309.383 0.1016(0.8157)
L - 0.0978(0.0111) 153.745 309.489 309.598 311.153 310.086 0.1180(0.6492)
E - 0.0512(0.0082) 154.923 311.846 311.954 313.510 312.443 0.1384(0.4440)
G 1.5081(0.3114) 12.961(3.1672) 153.393 310.297 310.630 313.624 311.491 0.0974(0.8532)
W 1.2502(0.1532) 21.055(2.8507) 153.439 310.878 311.211 314.205 312.071 0.1062(0.7711)
TL 2.8681(4.7327) 0.0917(0.0165) 153.600 311.200 311.533 314.527 312.393 0.1109(0.7232)
EL 0.8519(0.1945) 0.0898(0.0155) 153.493 310.985 311.319 314.313 312.179 0.1076(0.7577)

MOL 0.4195(0.3400) 0.0695(0.0264) 153.148 309.935 310.268 313.262 311.129 0.0867(0.9310)
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Figure 8. The QQ plots of ML and its competitive models from MVAD data.
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Figure 9. (a) Histograms/fitted PDFs; (b) empirical/fitted RF plots from MVAD data.

Presently, to discuss the derived point and interval estimators of δ, R(t) and h(t), three
different PT-IIC samples with size m = 20 are generated from the complete MVAD data
and presented in Table 8. From Table 8, the MLEs, MPSEs, and Bayes estimates with their
St.Es of δ, R(t) and h(t) (for t = 2) are computed and listed in Table 9. Moreover, two-sided
95% ACI/HPD credible interval estimates (developed by LF and PS approaches) with their
lengths of δ, R(t) and h(t) are also obtained; see Table 9. It is observed, from Table 9, that
the proposed point and interval estimates derived from the PS methodology performed
better than those derived from the likelihood methodology in terms of the lowest St.Es
and interval lengths. Figure 10 shows the log-likelihood function and the associated first
derivative of δ, given by (8) and (9), respectively, for sample 1 as an example. It indicates
that the MLE δ̂ exists and is unique. Using the generated sample 1, both trace and histogram
plots of the MCMC variates of δ, R(t) and h(t) are provided in Figure 11. Various properties
of the MCMC draws based on both LF and PS function are displayed in Table 10. It is
evident that the MCMC sampler converges well and demonstrates that the simulated
Markov chain variates of all unknown parameters are fairly symmetrical.

Finally, we may conclude that the proposed point/interval estimators generated by
PS (or BE-PS) provide a reasonable demonstration of the ML model in the presence of a
data set obtained from the PT-IIC plan based on both the mechanical equipment and motor
vehicle data sets.

Table 8. Three PT-IIC samples from MVAD data.

Sample Scheme Censored Data

1 (19, 0∗19) 1, 2, 4, 5, 6, 9, 10, 12, 13, 14, 15, 17, 20, 22, 23, 26, 31, 33, 48, 50
2 (0∗8, 5∗3, 4, 0∗8) 1, 2, 3, 4, 4, 5, 6, 6, 8, 10, 12, 14, 15, 17, 20, 23, 26, 27, 31, 48
3 (0∗19, 19) 1, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 14
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Table 9. Point and interval estimates of δ, R(t) and h(t) from MVAD data.

Sample Par.
MLE BE-LF ACI-LF HPD-LF

Est. St.E Est. St.E Lower Upper Length Lower Upper Length

1 δ 0.0676 0.0116 0.0667 0.0076 0.0448 0.0904 0.0456 0.0522 0.0817 0.0294
R(2) 0.9702 0.0092 0.9707 0.0060 0.9521 0.9883 0.0362 0.9587 0.9817 0.0230
h(2) 0.0245 0.0074 0.0241 0.0048 0.0099 0.0391 0.0292 0.0152 0.0338 0.0186

2 δ 0.0602 0.0094 0.0631 0.0083 0.0417 0.0787 0.0370 0.0497 0.0771 0.0274
R(2) 0.9758 0.0069 0.9734 0.0063 0.9623 0.9894 0.0271 0.9631 0.9837 0.0206
h(2) 0.0200 0.0056 0.0219 0.0051 0.0090 0.0309 0.0219 0.0136 0.0302 0.0166

3 δ 0.0706 0.0107 0.0697 0.0073 0.0497 0.0916 0.0419 0.0558 0.0839 0.0281
R(2) 0.9677 0.0088 0.9683 0.0059 0.9506 0.9849 0.0343 0.9562 0.9790 0.0227
h(2) 0.0265 0.0070 0.0260 0.0048 0.0127 0.0403 0.0276 0.0174 0.0357 0.0183

MPSE BE-PS ACI-PS HPD-PS

1 δ 0.0653 0.0111 0.0645 0.0075 0.0434 0.0871 0.0437 0.0504 0.0793 0.0289
R(2) 0.9720 0.0086 0.9724 0.0057 0.9551 0.9889 0.0339 0.9610 0.9831 0.0221
h(2) 0.0231 0.0070 0.0227 0.0046 0.0094 0.0367 0.0273 0.0141 0.0319 0.0178

2 δ 0.0588 0.0092 0.0580 0.0068 0.0408 0.0768 0.0360 0.0449 0.0713 0.0264
R(2) 0.9769 0.0066 0.9772 0.0048 0.9639 0.9898 0.0259 0.9677 0.9863 0.0186
h(2) 0.0191 0.0054 0.0188 0.0039 0.0087 0.0296 0.0210 0.0114 0.0265 0.0151

3 δ 0.0702 0.0106 0.0694 0.0073 0.0495 0.0910 0.0415 0.0553 0.0838 0.0285
R(2) 0.9680 0.0086 0.9685 0.0059 0.9511 0.9850 0.0339 0.9568 0.9796 0.0229
h(2) 0.0262 0.0070 0.0259 0.0048 0.0126 0.0399 0.0273 0.0169 0.0353 0.0184
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Figure 10. The log-likelihood function and the associated first derivative of δ from MVAD data.
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Figure 11. Trace (top) and histogram (bottom) plots of δ, R(t) and h(t) from MVAD data.
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Table 10. Some properties of MCMC draws of δ, R(t) and h(t) from MVAD data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skewness

BE-LF

1 δ 0.06668 0.05799 0.06153 0.06653 0.07168 0.00752 0.11872
R(2) 0.97067 0.96880 0.96687 0.97102 0.97485 0.00593 −0.35553
h(2) 0.02412 0.01868 0.02076 0.02385 0.02719 0.00478 0.34243

2 δ 0.06312 0.06001 0.05826 0.06294 0.06784 0.00706 0.10234
R(2) 0.97344 0.97596 0.96999 0.97379 0.97723 0.00536 −0.33419
h(2) 0.02189 0.01986 0.01884 0.02162 0.02468 0.00432 0.32112

3 δ 0.06965 0.06600 0.06458 0.06954 0.07459 0.00725 0.08971
R(2) 0.96832 0.96864 0.96442 0.96862 0.97254 0.00590 −0.29753
h(2) 0.02602 0.02351 0.02263 0.02579 0.02915 0.00474 0.28626

BE-PS

1 δ 0.06447 0.06257 0.05934 0.06432 0.06938 0.00742 0.12590
R(2) 0.97239 0.96984 0.96875 0.97274 0.97645 0.00572 −0.36481
h(2) 0.02273 0.02139 0.01947 0.02247 0.02568 0.00462 0.35142

2 δ 0.05799 0.05607 0.05338 0.05784 0.06241 0.00671 0.13964
R(2) 0.97722 0.97877 0.97419 0.97753 0.98060 0.00480 −0.39356
h(2) 0.01883 0.01759 0.01610 0.01859 0.02130 0.00388 0.37901

3 δ 0.06945 0.06207 0.06445 0.06928 0.07436 0.00728 0.09881
R(2) 0.96848 0.97094 0.96462 0.96883 0.97264 0.00591 −0.30656
h(2) 0.02589 0.02109 0.02255 0.02561 0.02899 0.00475 0.29525

6. Concluding Remarks

In this study, using a progressive Type II censoring scheme, we took into account both
Bayesian and non-Bayesian estimations of the parameter, reliability, and hazard functions
of the modified Lindley distribution. In addition to obtaining the maximum likelihood and
maximum product of the spacing point estimates, the approximate confidence intervals
are also acquired. On the basis of the squared error loss function and the gamma prior
assumption, the Bayesian estimations of the unknown parameters are proposed. It is noted
that the Bayes estimators can be produced through numerical integration but cannot be
obtained in explicit forms. We have therefore employed the Markov Chain Monte Carlo
method to obtain the point estimates as well as the highest posterior density credible
intervals. Through a simulation analysis for various sample sizes, various effective sample
sizes, and various sampling plans, the performance of various approaches was examined.
Additionally, two actual data sets were used to illustrate the validity of the proposed
estimators. The numerical results demonstrated that the maximum product of the spacing
method as a conventional approach is preferred to estimate the unknown parameter and
reliability measures of the modified Lindley distribution. In contrast, when compared to the
conventional approaches, the Bayesian estimation method employing both the likelihood
or product of spacing functions is advised to acquire the point and interval estimates of the
modified Lindley distribution.
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