Article

A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions

Ala Amourah ${ }^{1, *(\mathbb{D}}$, Abdullah Alsoboh ${ }^{2, *(\mathbb{D})}$, Osama Ogilat ${ }^{3}{ }^{(\mathbb{D}}$, Gharib Mousa Gharib ${ }^{4}$ © , Rania Saadeh ${ }^{4}$ (D) and Maha Al Soudi ${ }^{5}$
1 Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, Jordan
2 Department of Mathematics, Al-Leith University College, Umm Al-Qura University, Mecca 24231, Saudi Arabia
3 Department of Basic Sciences, Faculty of Arts and Science, Al-Ahliyya Amman University, Amman 19328, Jordan
4 Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan
5 Department of Basic Scientific Sciences, Applied Science Private University, Amman 11931, Jordan
* Correspondence: dr.alm@inu.edu.jo (A.A.); amsoboh@uqu.edu.sa (A.A.)

check for updates

Citation: Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. https://doi.org/10.3390/ axioms12020128

Academic Editor: Miodrag Mateljevic
Received: 30 December 2022
Revised: 17 January 2023
Accepted: 22 January 2023
Published: 28 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Three subclasses of analytic and bi-univalent functions are introduced through the use of q-Gegenbauer polynomials, which are a generalization of Gegenbauer polynomials. For functions falling within these subclasses, coefficient bounds $\left|a_{2}\right|$ and $\left|a_{3}\right|$ as well as Fekete-Szegö inequalities are derived. Specializing the parameters used in our main results leads to a number of new results.

Keywords: Fekete-Szegö problem; q-Gegenbauer polynomials; bi-univalent functions; q-calculus; analytic functions

MSC: 30C45

1. Introduction

Legendre first made the discovery of orthogonal polynomials in 1784 [1]. Under specific model restrictions, orthogonal polynomials are frequently employed to solve ordinary differential equations. Furthermore, a crucial function in the approximation theory is performed by orthogonal polynomials [2].
P_{m} and P_{n} are two polynomials of order m and n, respectively, and are orthogonal if

$$
\int_{a}^{b} P_{n}(x) P_{m}(x) s(x) d x=0, \quad \text { for } \quad m \neq n
$$

where $s(x)$ is a suitably specified function in the interval (a, b); therefore, all finite order polynomials $P_{n}(x)$ have a well-defined integral.

Gegenbauer polynomials are orthogonal polynomials of a specified type. As found in [3], when traditional algebraic formulations are used, the generating function of Gegenbauer polynomials and the integral representation of typically real functions T_{R} are related to each other in a symbolic way T_{R}. This undoubtedly caused a number of helpful inequalities to emerge from the world of Gegenbauer polynomials.
q-orthogonal polynomials are now of particular relevance in both physics and mathematics due to the development of quantum groups. The q-deformed harmonic oscillator, for instance, has a group-theoretic setting for the q-Laguerre and q-Hermite polynomials. Jackson's q-exponential plays a crucial role in the mathematical framework required to characterize the properties of these q-polynomials, such as the recurrence relations, generating functions, and orthogonality relations. Jackson's q-exponential has recently been expressed by Quesne [4] as a closed-form multiplicative series of regular exponentials with known coefficients. In this case, it is crucial to look into how this discovery might affect the
theory of q-orthogonal polynomials. An effort in this regard was made in the current work. To obtain novel nonlinear connection equations for q-Gegenbauer polynomials in terms of their respective classical equivalents, we used the aforementioned result in particular.

This study analyzed various features of the class under consideration after associating some bi-univalent functions with q-Gegenbauer polynomials. The following part lays the foundation for mathematical notations and definitions.

2. Preliminaries

Let \mathcal{A} denote the class of all analytical functions f that are defined on the open unit disk $\mathbb{U}=\{\xi \in \mathbb{C}:|\xi|<1\}$ and normalized by the formula $f(0)=f^{\prime}(0)-1=0$. As a result, each $f \in \mathcal{A}$ has the following Taylor-Maclaurin series expansion:

$$
\begin{equation*}
f(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} \xi^{n}, \quad(\xi \in \mathbb{U}) \tag{1}
\end{equation*}
$$

In addition, let \mathcal{S} denote the class of all functions $f \in \mathcal{A}$ that are univalent in \mathbb{U}.
Let the functions $g(\xi)$ and $f(\xi)$ be analytic in \mathbb{U}. We say that the function $f(\xi)$ is subordinate to $g(\xi)$, written as $f(\xi) \prec g(\xi)$, if there exists a Schwarz function ω that is analytic in \mathbb{U} with

$$
|\omega(\xi)|<1 \text { and } \omega(0)=0 \quad(\xi \in \mathbb{U})
$$

such that

$$
g(\omega(\xi))=f(\xi)
$$

Beside that, if the function g is univalent in \mathbb{U}, then the following equivalence holds:

$$
f(\xi) \prec g(\xi) \text { if } g(0)=f(0)
$$

and

$$
f(\mathbb{U}) \subset g(\mathbb{U})
$$

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
\xi=f^{-1}(f(\xi)) \quad(\xi \in \mathbb{U})
$$

and

$$
f^{-1}(f(w))=w \quad\left(r_{0}(f) \geq \frac{1}{4} ;|w|<r_{0}(f)\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}-w^{3}\left(a_{3}-2 a_{2}^{2}\right)+w^{4}\left(5 a_{2} a_{3}-a_{4}-5 a_{2}^{3}\right)+\cdots . \tag{2}
\end{equation*}
$$

If both $f^{-1}(\xi)$ and $f(\xi)$ are univalent in \mathbb{U}, then a function is said to be bi-univalent in \mathbb{U}.

Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Examples of functions in the class Σ are $\frac{\xi}{1-\xi}, \log \sqrt{\frac{1+\xi}{1-\tilde{\xi}}}$.

Fekete and Szegö achieved a sharp bound of the functional $\eta a_{2}^{2}-a_{3}$, with real η $(0 \leq \eta \leq 1)$ for a univalent function f in 1933 [5]. Since that time, it has been known as the classical Fekete and Szegö problem of establishing the sharp bounds for this functional of any compact family of functions $f \in \mathcal{A}$ with any complex η.

In 1983, Askey and Ismail [6] found a class of polynomials that can be interpreted as q-analogues of the Gegenbauer polynomials. These are essentially the polynomials $\mathfrak{B}_{q}^{(\lambda)}(\xi, z)$

$$
\begin{equation*}
\mathfrak{G}_{q}^{(\lambda)}(x, \tilde{\xi})=\sum_{n=0}^{\infty} \mathcal{C}_{n}^{(\lambda)}(x ; q) \xi^{n} \tag{3}
\end{equation*}
$$

where $x \in[-1,1]$ and $\xi \in \mathbb{U}$.

In 2006, Chakrabarti et al. [7] found a class of polynomials that can be interpreted as q-analogues of the Gegenbauer polynomials by the following recurrence relations:

$$
\begin{align*}
& \mathcal{C}_{0}^{(\lambda)}(x ; q)=1, \mathcal{C}_{1}^{(\lambda)}(x ; q)=[\lambda]_{q} C_{1}^{1}(x)=2[\lambda]_{q} x, \tag{4}\\
& \mathcal{C}_{2}^{(\lambda)}(x ; q)=[\lambda]_{q^{2}} C_{2}^{1}(x)-\frac{1}{2}\left([\lambda]_{q^{2}}-[\lambda]_{q}^{2}\right) C_{1}^{2}(x)=2\left([\lambda]_{q^{2}}+[\lambda]_{q}^{2}\right) x^{2}-[\lambda]_{q^{2}} \tag{5}
\end{align*}
$$

where $0<q<1$ and $\lambda \in \mathbb{N}=\{1,2,3, \cdots\}$.
In 2021, Amourah et al. [8,9] considered the classical Gegenbauer polynomials $\mathfrak{G}^{(\lambda)}(x, \xi)$, where $\xi \in \mathbb{U}$ and $x \in[-1,1]$. For fixed x, the function $\mathfrak{G}^{(\lambda)}$ is analytic in \mathbb{U}, so it can be expanded in a Taylor series as

$$
\mathfrak{G}^{(\lambda)}(x, \xi)=\sum_{n=0}^{\infty} C_{n}^{\alpha}(x) \xi^{n}
$$

where $C_{n}^{\alpha}(x)$ is the classical Gegenbauer polynomial of degree n.
Recently, several authors have begun examining bi-univalent functions connected to orthogonal polynomials (such as [10-28]).

As far as we are aware, there is no published work on bi-univalent functions for q-Gegenbauer polynomials. The major objective of this work is to start an investigation of the characteristics of bi-univalent functions related to q-Gegenbauer polynomials. To perform this, we consider the following definitions in the next section.

3. Coefficient Bounds of the Class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$

Here, we introduce some new bi-univalent function subclasses that are subordinate to the $q-$ Gegenbauer polynomial.

Definition 1. For $x \in\left(\frac{1}{2}, 1\right]$ and $0<q<1$, if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$ given by (1):

$$
\begin{equation*}
\partial_{q} f(\xi) \prec \mathfrak{G}_{q}^{(\lambda)}(x, \xi) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{q} g(w) \prec \mathfrak{G}_{q}^{(\lambda)}(x, w), \tag{7}
\end{equation*}
$$

where $\lambda \in \mathbb{N}=\{1,2,3, \cdots\}, \alpha$ is a nonzero real constant, the function $f^{-1}(w)=g(w)$ is defined by (2), and $\mathfrak{G}_{q}^{(\lambda)}$ is the generating function of q-analogues of the Gegenbauer polynomials given by (3).

We start by providing the coefficient estimates for the class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$ specified in Definition 1.

Theorem 1. Let $f \in \Sigma$ given by (1) be in the class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$. Then,

$$
\left|a_{2}\right| \leq \frac{2 x\left|[\lambda]_{q}\right| \sqrt{2[\lambda]_{q} x}}{[2]_{q} \sqrt{\left[\left(\frac{4[3]_{q}}{[2]_{q}^{2}}-2\right)[\lambda]_{q}^{2}-2[\lambda]_{q^{2}}\right] x^{2}+[\lambda]_{q}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{[2]_{q}^{2}}+\frac{2\left|[\lambda]_{q}\right| x}{[3]_{q}} .
$$

Proof. Let $f \in \mathfrak{B}_{\Sigma}(x, \alpha ; q)$. From Definition 1, for some analytic functions w and v such that $w(0)=0=v(0)$ and $|w(\xi)|<1,|v(w)|<1$ for all $w, \xi \in \mathbb{U}$; then, we can write

$$
\begin{equation*}
\partial_{q} f(\xi)=\mathfrak{G}_{q}^{(\lambda)}(x, w(\xi)) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{q} g(w)=\mathfrak{G}_{q}^{(\lambda)}(x, v(w)), \tag{9}
\end{equation*}
$$

From the Equations (8) and (9), we obtain that

$$
\begin{equation*}
\partial_{q} f(\xi)=1+C_{1}^{(\lambda)}(x ; q) c_{1} \xi+\left[C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2}\right] \xi^{2}+\cdots \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\partial_{q} g(w)=1+C_{1}^{(\lambda)}(x ; q) d_{1} w+\left[C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2}\right]\right) w^{2}+\cdots \tag{11}
\end{equation*}
$$

It is generally understood that if

$$
|w(\xi)|=\left|c_{1} \xi+c_{2} \xi^{2}+c_{3} \xi^{3}+\cdots\right|<1, \quad(\xi \in \mathbb{U})
$$

and

$$
|v(w)|=\left|d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots\right|<1, \quad(w \in \mathbb{U})
$$

then

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \text { and }\left|d_{j}\right| \leq 1 \text { for all } j \in \mathbb{N} . \tag{12}
\end{equation*}
$$

As a result, we have the following after comparing the relevant coefficients in (10) and (11):

$$
\begin{gather*}
{[2]_{q} a_{2}=C_{1}^{(\lambda)}(x ; q) c_{1},} \tag{13}\\
{[3]_{q} a_{3}=C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2},} \tag{14}\\
-[2]_{q} a_{2}=C_{1}^{(\lambda)}(x ; q) d_{1}, \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
[3]_{q}\left(2 a_{2}^{2}-a_{3}\right)=C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2} \tag{16}
\end{equation*}
$$

From the Equations (13) and (15), we have

$$
\begin{equation*}
c_{1}=-d_{1} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
2[2]_{q}^{2} a_{2}^{2}=\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{18}
\end{equation*}
$$

By adding (14) to (16), yields

$$
\begin{equation*}
2[3]_{q} a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{19}
\end{equation*}
$$

We determine that, by replacing the value of $\left(c_{1}^{2}+d_{1}^{2}\right)$ from (18) on the right side of (19),

$$
\begin{equation*}
\left(2[3]_{q}-\frac{2 C_{2}^{(\lambda)}(x ; q)[2]_{q}^{2}}{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}\right) a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right) \tag{20}
\end{equation*}
$$

Through computations using (11), (5), and (20), we find that

$$
\left|a_{2}\right| \leq \frac{2\left|[\lambda]_{q}\right| x \sqrt{2[\lambda]_{q} x}}{[2]_{q} \sqrt{\left[\left(\frac{4[3]_{q}}{[2]_{q}^{2}}-2\right)[\lambda]_{q}^{2}-2[\lambda]_{q^{2}}\right] x^{2}+[\lambda]_{q}}}
$$

In addition, if we subtract (16) from (14), we obtain

$$
\begin{equation*}
2[3]_{q}\left(a_{3}-a_{2}^{2}\right)=C_{1}^{(\lambda)}(x ; q)\left(c_{2}-d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}-d_{1}^{2}\right) \tag{21}
\end{equation*}
$$

Then, in view of (18) and (21), we obtain

$$
a_{3}=\frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}{2[2]_{q}^{2}}\left(c_{1}^{2}+d_{1}^{2}\right)+\frac{C_{1}^{(\lambda)}(x ; q)}{2[3]_{q}}\left(c_{2}-d_{2}\right) .
$$

By applying (4), we conclude that

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{[2]_{q}^{2}}+\frac{2\left|[\lambda]_{q}\right| x}{[3]_{q}} .
$$

The proof of the theorem is now complete.
Using the values of a_{2}^{2} and a_{3}, we prove the following Fekete-Szegö inequality for functions in the class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$.

Theorem 2. Let $f \in \Sigma$ given by (1) be in the class $\mathfrak{B}_{\Sigma}(x, \alpha ; q)$. Then,

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{2 x\left|[\lambda]_{q}\right|}{[3]_{q}}, & |\sigma-1| \leq\left|\frac{\left.\left(\left(2[3]_{q}-[2]_{q}^{2}\right)[\lambda]_{q}^{2}-[2]_{q}^{2}[\lambda]\right]_{q^{2}}\right) x^{2}+2[2]_{q}^{2}[\lambda]_{q^{2}}}{2[3]_{q}[\lambda]_{q} x^{2}}\right|, \\ 2\left|2[\lambda]_{q} x\right||h(\eta)|, & |\sigma-1| \geq\left|\frac{\left(\left(2[3]_{q}-[2]_{q}^{2}\right)[\lambda]_{q}^{2}-[2]_{q}^{2}[\lambda]_{q^{2}}\right) x^{2}+2[2]_{q}^{2}[\lambda]_{q^{2}}}{\left.2[3]_{q} \mid \lambda\right]_{q}^{2} x^{2}}\right|\end{cases}
$$

Proof. From (20) and (21),

$$
\begin{aligned}
a_{3}-\sigma a_{2}^{2} & =(1-\sigma) \frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{3}\left(c_{2}+d_{2}\right)}{\left[2[3]_{q}\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-2[2]_{q}^{2} C_{2}^{(\lambda)}(x ; q)\right]}+\frac{C_{1}^{(\lambda)}(x ; q)}{2[3]_{q}}\left(c_{2}-d_{2}\right) \\
& =C_{1}^{\alpha}(x)\left[\left[h(\eta)+\frac{1}{2[3]_{q}}\right] c_{2}+\left[h(\eta)-\frac{1}{2[3]_{q}}\right] d_{2}\right],
\end{aligned}
$$

where

$$
\mathcal{K}(\sigma)=\frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}(1-\sigma)}{2[3]_{q}\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-2[2]_{q}^{2} C_{2}^{(\lambda)}(x ; q)}
$$

In view of (4) and (5), we conclude that

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{\left|C_{1}^{(\lambda)}(x ; q)\right|}{[3]_{q}}, & |\mathcal{K}(\sigma)| \leq \frac{1}{2[3]_{q}}, \\ 2\left|C_{1}^{(\lambda)}(x ; q)\right||\mathcal{K}(\sigma)|, & |\mathcal{K}(\sigma)| \geq \frac{1}{2[3]_{q}} .\end{cases}
$$

The proof of the theorem is now complete.
Corollary 1. Let $f \in \Sigma$ given by (1) belong to the class $\mathfrak{B}_{\Sigma}(x, \alpha ; 1)$. Then,

$$
\left|a_{2}\right| \leq \frac{|\alpha| x \sqrt{2|\alpha| x}}{\sqrt{\left|\left[(\alpha-2) x^{2}+1\right] \alpha\right|}}
$$

$$
\left|a_{3}\right| \leq \lambda^{2} x^{2}+\frac{2|\lambda| x}{3},
$$

and $\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{cl}\frac{2|\alpha| x}{3}, & |\eta-1| \leq\left|\frac{(\alpha-2) x^{2}+1}{3 \alpha x^{2}}\right| \\ \frac{2|\alpha x|^{3}|1-\eta|}{\left|\left[(\alpha-2) x^{2}+1\right] \alpha\right|}, & |\eta-1| \geq\left|\frac{(\alpha-2) x^{2}+1}{3 \alpha x^{2}}\right| .\end{array}\right.$
Corollary 2. Let $f \in \Sigma$ given by (1) belong to the class $\mathfrak{B}_{\Sigma}(x, 1 ; 1)$. Then,

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{x \sqrt{2 x}}{\sqrt{\left|1-x^{2}\right|}} \\
\left|a_{3}\right| \leq x^{2}+\frac{2 x}{3}
\end{gathered}
$$

and

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{cl}
\frac{2 x}{3}, & |\eta-1| \leq\left|\frac{1-x^{2}}{3 x^{2}}\right| \\
\frac{2 x^{3}|1-\eta|}{\left|1-x^{2}\right|}, & |\eta-1| \geq\left|\frac{1-x^{2}}{3 x^{2}}\right|
\end{array}\right.
$$

4. Coefficient Bounds of the Class $\mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$

Definition 2. For $x \in\left(\frac{1}{2}, 1\right]$ and $0<q<1$, if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class $\mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$ given by (1) :

$$
\begin{equation*}
\frac{\xi \partial_{q} f(\xi)}{f(\xi)} \prec \mathfrak{G}_{q}^{(\lambda)}(x, \xi) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w \partial_{q} g(w)}{g(w)} \prec \mathfrak{G}_{q}^{(\lambda)}(x, w), \tag{23}
\end{equation*}
$$

where $\lambda \in \mathbb{N}=\{1,2,3, \cdots\}, \alpha$ is a nonzero real constant, the function $g(w)=f^{-1}(w)$ is defined by (2), and $\mathfrak{G}_{q}^{(\lambda)}$ is the generating function of the q-analogues of Gegenbauer polynomials given by (3).

Theorem 3. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$. Then, we have

$$
\left|a_{2}\right| \leq \frac{2\left|[\lambda]_{q}\right| x \sqrt{2[\lambda]_{q} x}}{q \sqrt{2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}+[\lambda]_{q^{2}}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{q^{2}}+\frac{2[\lambda]_{q} x}{q(1+q)}
$$

Proof. Let $f \in \mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$. From Definition 2, for some analytic functions w and v such that $w(0)=0=v(0)$ and $|w(\xi)|<1,|v(w)|<1$ for all $\xi, w \in \mathbb{U}$,

$$
\begin{equation*}
\frac{\xi \partial_{q} f(\xi)}{f(\xi)}=\mathfrak{G}_{q}^{(\lambda)}(x, w(\xi)), \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\xi \partial_{q} g(w)}{g(w)}=\mathfrak{G}_{q}^{(\lambda)}(x, v(w)) \tag{25}
\end{equation*}
$$

From the equalities (24) and (25), we obtain that

$$
\begin{equation*}
\frac{\xi \partial_{q} f(\xi)}{f(\xi)}=1+C_{1}^{(\lambda)}(x ; q) \xi+\left[C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2}\right] \xi^{2}+\cdots \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\xi \partial_{q} g(w)}{g(w)}=1+C_{1}^{(\lambda)}(x ; q) d_{1} w+\left[C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2}\right]\right) w^{2}+\cdots \tag{27}
\end{equation*}
$$

Thus, upon comparing the corresponding coefficients in (26) and (27), we have

$$
\begin{align*}
q a_{2} & =C_{1}^{(\lambda)}(x ; q) c_{1} \tag{28}\\
q(1+q) a_{3}-q a_{2}^{2} & =C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2} \tag{29}\\
-q a_{2} & =C_{1}^{(\lambda)}(x ; q) d_{1} \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
q(1+2 q) a_{2}^{2}-q(1+q) a_{3}=C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2} \tag{31}
\end{equation*}
$$

From the Equations (28) and (30), it follows that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
2 q^{2} a_{2}^{2}=\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{33}
\end{equation*}
$$

By adding (29) to (31), yields

$$
\begin{equation*}
2 q^{2} a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{34}
\end{equation*}
$$

We determine that, by replacing the value of $\left(c_{1}^{2}+d_{1}^{2}\right)$ from (33) on the right side of (34),

$$
\begin{equation*}
2 q^{2}\left(1-\frac{C_{2}^{(\lambda)}(x ; q)}{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}\right) a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right) \tag{35}
\end{equation*}
$$

Moreover, through computations using (5) and (35), we find that

$$
\left|a_{2}\right| \leq \frac{2\left|[\lambda]_{q}\right| x \sqrt{2[\lambda]_{q} x}}{q \sqrt{2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}+[\lambda]_{q^{2}}}}
$$

Now, if we subtract (31) from (29), we obtain

$$
\begin{equation*}
2 q(1+q)\left(a_{3}-a_{2}^{2}\right)=C_{1}^{(\lambda)}(x ; q)\left(c_{2}-d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}-d_{1}^{2}\right) \tag{36}
\end{equation*}
$$

By viewing of (33) and (36), we conclude that

$$
a_{3}=\frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}{2 q^{2}}\left(c_{1}^{2}+d_{1}^{2}\right) \cdot+\frac{C_{1}^{(\lambda)}(x ; q)}{2 q(1+q)}\left(c_{2}-d_{2}\right) .
$$

By applying (4) and (5), we have

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{q^{2}}+\frac{2[\lambda]_{q} x}{q(1+q)}
$$

This completes the proof of the Theorem 3.
Theorem 4. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$. Then,

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{\left|[\lambda]_{q}\right| x}{q(1+q)}, & |1-\sigma| \leq \frac{q^{2}\left[\left(2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}\right)+[\lambda]_{q^{2}}\right]}{8(1+q)\left|[\lambda]_{q} x\right|^{3}}, \\ \frac{8\left|[\lambda]_{q} x\right|^{3}|1-\sigma|}{q^{2}\left[\left(2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}\right)+[\lambda]_{q^{2}}\right]}, & |1-\sigma| \geq \frac{q^{2}\left[\left(2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}\right)+[\lambda]_{q^{2}}\right]}{8(1+q)\left|[\lambda]_{q} x\right|^{3}} .\end{cases}
$$

Proof. From (35) and (36),

$$
\begin{aligned}
a_{3}-\sigma a_{2}^{2} & =\frac{(1-\sigma)\left(C_{1}^{(\lambda)}(x ; q)\right)^{3}}{2 q^{2}\left(\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-C_{2}^{(\lambda)}(x ; q)\right)}\left(c_{2}+d_{2}\right)+\frac{C_{1}^{(\lambda)}(x ; q)}{2 q(1+q)}\left(c_{2}-d_{2}\right) \\
& =\frac{C_{1}^{(\lambda)}(x ; q)}{2 q}\left[\left[\mathfrak{K}(\sigma)+\frac{1}{1+q}\right] c_{2}+\left[\mathfrak{K}(\sigma)-\frac{1}{1+q}\right] d_{2}\right],
\end{aligned}
$$

where

$$
\begin{gathered}
\mathfrak{K}(\sigma)=\frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}(1-\sigma)}{q\left[\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-C_{2}^{(\lambda)}(x ; q)\right]}, \\
|1-\sigma| \geq \frac{q^{2}\left[\left(2\left([\lambda]_{q}^{2}-[\lambda]_{q^{2}}\right) x^{2}\right)+[\lambda]_{q^{2}}\right]}{8(1+q)\left|[\lambda]_{q} x\right|^{3}},
\end{gathered}
$$

then, in view of (4) and (5), we conclude that

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{\left|C_{1}^{(\lambda)}(x ; q)\right|}{2 q(1+q)}, & |\mathfrak{K}(\sigma)| \leq \frac{1}{1+q} \\ \frac{1}{q}\left|C_{1}^{(\lambda)}(x ; q)\right||\mathfrak{K}(\sigma)|, & |\mathfrak{K}(\sigma)| \geq \frac{1}{1+q}\end{cases}
$$

This completes the proof of the Theorem 4.
Corollary 3. Let $f \in \Sigma$ given by (1) belong to the class $\mathcal{S}_{\Sigma}^{*}(x, \alpha ; 1)$. Then, we have

$$
\left|a_{2}\right| \leq \frac{2|\lambda| x \sqrt{2 x}}{\sqrt{2(\lambda-1) x^{2}-1}}, \quad\left|a_{3}\right| \leq \lambda(4 \lambda x+1)
$$

and

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{|\lambda| x}{2}, & |1-\sigma| \leq \frac{\left(2(\lambda-1) x^{2}\right)+1}{16|\lambda|^{2} x^{3}} \\ \frac{8 \lambda^{2} x^{3}|1-\sigma|}{\left(2(\lambda-1) x^{2}\right)+1}, & |1-\sigma| \geq \frac{\left(2(\lambda-1) x^{2}\right)+1}{16|\lambda|^{2} x^{3}} .\end{cases}
$$

5. Coefficient Bounds of the Class $\mathfrak{C}_{\Sigma}(x, \alpha ; q)$

Definition 3. For $x \in\left(\frac{1}{2}, 1\right]$ and $0<q<1$, if the following subordinations are satisfied, a function f belonging to Σ is said to be in the class $\mathfrak{C}_{\Sigma}(x, \alpha ; q)$ given by (1):

$$
\begin{equation*}
1+\frac{\xi \partial_{q}^{2} f(\xi)}{\partial_{q} f(\xi)} \prec \mathfrak{G}_{q}^{(\lambda)}(x, \xi) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{\xi \partial_{q}^{2} g(w)}{\partial_{q} g(w)} \prec \mathfrak{G}_{q}^{(\lambda)}(x, w), \tag{38}
\end{equation*}
$$

where $\lambda \in \mathbb{N}=\{1,2,3, \cdots\}, \alpha$ is a nonzero real constant, the function $g(w)=f^{-1}(w)$ is defined by (2), and $\mathfrak{G}_{q}^{(\lambda)}$ is the generating function of the q-analogues of Gegenbauer polynomials given by (3).

Theorem 5. Let $f \in \Sigma$ given by (1) belong to the class $\mathfrak{C}_{\Sigma}(x, \alpha ; q)$. Then,

$$
\left|a_{2}\right| \leq \frac{2[\lambda]_{q} x \sqrt{2\left|[\lambda]_{q}\right| x}}{\sqrt{[2]_{q}\left(\left(\left(2[3]_{q}-3[2]_{q}\right)[\lambda]_{q}^{2}-2[2]_{q}[\lambda]_{q^{2}}\right) x^{2}+[2]_{q}[\lambda]_{q^{2}}\right)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{[2]_{q}^{2}}+\frac{2[\lambda]_{q} x}{[2]_{q}[3]_{q}}
$$

Proof. Let $f \in \mathfrak{C}_{\Sigma}(x, \alpha, \mu ; q)$. From Definition 3, for some analytic functions w, v such that $w(0)=v(0)=0$ and $|w(\xi)|<1,|v(w)|<1$ for all $\xi, w \in \mathbb{U}$,

$$
\begin{equation*}
1+\frac{\xi \partial_{q}^{2} f(\xi)}{\partial_{q} f(\xi)}=\mathfrak{G}_{q}^{(\lambda)}(x, w(\xi)) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{\xi^{2} \partial_{q}^{2} g(w)}{\partial_{q} g(w)}=\mathfrak{G}_{q}^{(\lambda)}(x, v(w)) \tag{40}
\end{equation*}
$$

By expanding the Equations (39) and (40), we obtain that

$$
\begin{equation*}
1+\frac{\xi \partial_{q}^{2} f(\xi)}{\partial_{q} f(\xi)}=1+C_{1}^{(\lambda)}(x ; q) c_{1} \xi+\left[C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2}\right] \xi^{2}+\cdots \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.1+\frac{\xi \partial_{q}^{2} g(w)}{\partial_{q} g(w)}=1+C_{1}^{(\lambda)}(x ; q) d_{1} w+\left[C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2}\right]\right) w^{2}+\cdots \tag{42}
\end{equation*}
$$

Upon comparing the corresponding coefficients in (41) and (42), we have

$$
\begin{align*}
{[2]_{q} a_{2} } & =C_{1}^{(\lambda)}(x ; q) c_{1}, \tag{43}\\
{[2]_{q}[3]_{q} a_{3}-[2]_{q}^{2} a_{2}^{2} } & =C_{1}^{(\lambda)}(x ; q) c_{2}+C_{2}^{(\lambda)}(x ; q) c_{1}^{2}, \tag{44}\\
-[2]_{q} a_{2} & =C_{1}^{(\lambda)}(x ; q) d_{1}, \tag{45}
\end{align*}
$$

and

$$
\begin{equation*}
[2]_{q}\left(2[3]_{q}-[2]_{q}\right) a_{2}^{2}-[2]_{q}[3]_{q} a_{3}=C_{1}^{(\lambda)}(x ; q) d_{2}+C_{2}^{(\lambda)}(x ; q) d_{1}^{2} . \tag{46}
\end{equation*}
$$

We get from (43) and (45) that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left([2]_{q}\right)^{2} a_{2}^{2}=\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}\left(c_{1}^{2}+d_{1}^{2}\right) . \tag{48}
\end{equation*}
$$

By adding (44) to (46), we obtain

$$
\begin{equation*}
2[2]_{q}\left([3]_{q}-[2]_{q}\right) a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}+d_{1}^{2}\right) . \tag{49}
\end{equation*}
$$

We determine that, by replacing the value of $\left(c_{1}^{2}+d_{1}^{2}\right)$ from (48) on the right side of (49),

$$
\begin{equation*}
2[2]_{q}\left(\left([3]_{q}-[2]_{q}\right)-[2]_{q} \frac{C_{2}^{(\lambda)}(x ; q)}{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}\right) a_{2}^{2}=C_{1}^{(\lambda)}(x ; q)\left(c_{2}+d_{2}\right) \tag{50}
\end{equation*}
$$

Moreover, by doing computations along (12) and (50), we find that

$$
\left|a_{2}\right| \leq \frac{2[\lambda]_{q} x \sqrt{2\left|[\lambda]_{q}\right| x}}{\sqrt{[2]_{q}\left(\left(\left(2[3]_{q}-3[2]_{q}\right)[\lambda]_{q}^{2}-[2]_{q}[\lambda]_{q^{2}}\right) x^{2}+[2]_{q}[\lambda]_{q^{2}}\right)}}
$$

By subtracting (44) from (46), we obtain

$$
\begin{equation*}
2[2]_{q}[3]_{q}\left(a_{3}-a_{2}^{2}\right)=C_{1}^{(\lambda)}(x ; q)\left(c_{2}-d_{2}\right)+C_{2}^{(\lambda)}(x ; q)\left(c_{1}^{2}-d_{1}^{2}\right) \tag{51}
\end{equation*}
$$

In view of (48) and (51), we obtain

$$
a_{3}=\frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}{2\left([2]_{q}\right)^{2}}\left(c_{1}^{2}+d_{1}^{2}\right)+\frac{C_{1}^{(\lambda)}(x ; q)}{2[2]_{q}[3]_{q}}\left(c_{2}-d_{2}\right) .
$$

By applying (5), we conclude that

$$
\left|a_{3}\right| \leq \frac{4[\lambda]_{q}^{2} x^{2}}{[2]_{q}^{2}}+\frac{2[\lambda]_{q} x}{[2]_{q}[3]_{q}} .
$$

This completes the proof of the Theorem 5.
Theorem 6. Let $f \in \Sigma$ given by (1) belong to the class $\mathfrak{C}_{\Sigma}(x, \alpha ; q)$. Then,

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq
$$

$$
\begin{cases}\frac{2|\lambda| x}{[2]_{q}[3]_{q}}, & |1-\sigma| \leq \digamma, \\ \frac{16(1-\sigma)\left|[\lambda]_{q}\right|^{3} x^{3}}{[2]_{q}\left(\left(2\left(\left(2[3]_{q} 2-3[2]_{q}\right)[\lambda]_{q}^{2}-2[2]_{q}[\lambda]_{q^{2}}\right)\right) x^{2}+[2]_{q}[\lambda]_{q^{2}}\right)}, & |1-\sigma| \geq \digamma,\end{cases}
$$

where

$$
\digamma=\frac{\left(2\left(\left(2[3]_{q} 2-3[2]_{q}\right)[\lambda]_{q}^{2}-2[2]_{q}[\lambda]_{q^{2}}\right)\right) x^{2}+[2]_{q}[\lambda]_{q^{2}}}{16[2]_{q}[3]_{q}[\lambda]_{q}^{2} x^{2}} .
$$

Proof. From (50) and (51),

$$
\begin{aligned}
a_{3}-\sigma a_{2}^{2} & =(1-\sigma) \frac{\left[C_{1}^{(\lambda)}(x ; q)\right]^{3}}{2[2]_{q}\left(q^{2}\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-[2]_{q} C_{2}^{(\lambda)}(x ; q)\right)}\left(c_{2}+d_{2}\right) \\
& +\frac{C_{1}^{(\lambda)}(x ; q)}{2[2]_{q}[3]_{q}}\left(c_{2}-d_{2}\right) \\
& =C_{1}^{(\lambda)}(x ; q)\left[\left[\mathcal{K}(\sigma)+\frac{1}{2[2]_{q}[3]_{q}}\right] c_{2}+\left[\mathcal{K}(\sigma)-\frac{1}{2[2]_{q}[3]_{q}}\right] d_{2}\right],
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{K}(\sigma)=\frac{(1-\sigma)\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}}{2[2]_{q}\left(q^{2}\left[C_{1}^{(\lambda)}(x ; q)\right]^{2}-[2]_{q} C_{2}^{(\lambda)}(x ; q)\right)} \\
|1-\sigma| \leq \frac{\left(4 q^{2}[\lambda]_{q}^{2} x^{2}-[2]_{q} C_{2}^{(\lambda)}(x ; q)\right)}{4[3]_{q}[\lambda]_{q}^{2} x}
\end{gathered}
$$

Then, in view of (5), we conclude that

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{\left|C_{1}^{(\lambda)}(x ; q)\right|}{[2]_{q}[3]_{q}}, & |\mathcal{K}(\sigma)| \leq \frac{1}{2[2]_{q}[3]_{q}}, \\ \frac{1}{[2]_{q}}\left|C_{1}^{(\lambda)}(x ; q)\right||\mathcal{K}(\sigma)|, & |\mathcal{K}(\sigma)| \geq \frac{1}{2[2]_{q}[3]_{q}}\end{cases}
$$

This completes the proof of the last theorem.
Corollary 4. Let $f \in \Sigma$ given by (1) belong to the class $\mathfrak{C}_{\Sigma}(x, \alpha ; 1)$. Then,

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{\lambda x \sqrt{2 x}}{\sqrt{1-2 x^{2}}} \\
& \left|a_{3}\right| \leq \lambda^{2} x^{2}+\frac{\lambda x}{3} .
\end{aligned}
$$

and

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{2\left|[\lambda]_{q}\right| x}{[2]_{q}[3]_{q}}, & |\sigma-1| \leq\left|\frac{1-2 \lambda x^{2}}{24 \lambda x^{2}}\right|, \\ \frac{1}{[2]_{q}}\left|C_{1}^{(\lambda)}(x ; q)\right||\mathcal{K}(\sigma)|, & |\sigma-1| \geq\left|\frac{1-2 \lambda x^{2}}{24 \lambda x^{2}}\right| .\end{cases}
$$

6. Conclusions

In the current study, we introduced and examined the coefficient issues related to each of the three new subclasses of the class of bi-univalent functions in the open unit disk \mathbb{U} : $\mathfrak{B}_{\Sigma}(x, \alpha ; q), \mathcal{S}_{\Sigma}^{*}(x, \alpha ; q)$, and $\mathfrak{C}_{\Sigma}(x, \alpha ; q)$. These bi-univalent function classes are described, accordingly, in Definitions 1 to 3. We calculated the estimates of the Fekete-Szegö functional problems and the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in each of these three bi-univalent function classes. Several more fresh outcomes are revealed to follow following specializing the parameters involved in our main results. Obtaining estimates on the bound of $\left|a_{n}\right|$ for $n \geq 4 ; n \in \mathbb{N}$ for the classes that have been introduced here is still a problem.

Author Contributions: Conceptualization, A.A. (Ala Amourah) and A.A. (Abdullah Alsoboh); methodology, A.A. (Ala Amourah); validation, O.O., A.A. (Ala Amourah), A.A. (Abdullah Alsoboh), G.M.G. and R.S.; formal analysis, A.A. (Ala Amourah); investigation, A.A. (Ala Amourah), A.A.
(Abdullah Alsoboh) and M.A.S.; writing-original draft preparation, A.A. (Ala Amourah) and A.A. (Abdullah Alsoboh); writing-review and editing, A.A. (Ala Amourah) and O.O.; supervision, A.A. (Abdullah Alsoboh). All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4320576DSR01).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: No data were used to support this study.
Conflicts of Interest: The authors declare that there are no conflict of interest.

References

1. Legendre, A. Recherches sur quelques objets d'analyse indéterminée et particulièrement sur le théorème de Fermat. 1785; Volume 10, pp. 411-434. Available online: http:/ /visualiseur.bnf.fr/Visualiseur?O=NUMM-3221 (accessed on 29 December 2022).
2. Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953.
3. Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273-282. [CrossRef]
4. Quesne, C. Disentangling q-Exponentials: A General Approach. Int. J. Theor. Phys. 2004, 43, 545-559. [CrossRef]
5. Fekete, M.; Szegö, G. Eine Bemerkung Ãber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85-89. [CrossRef]
6. Askey, R.; Ismail, M.E.H. A generalization of ultraspherical polynomials. In Studies in Pure Mathematics; Birkhäuser: Basel, Switzerland, 1983; pp. 55-78.
7. Chakrabarti, R.; Jagannathan, R.; Mohammed, S.N. New connection formulae for the q-orthogonal polynomials via a series expansion of the q-exponential. J. Phys. Math. Gen. 2006, 39, 12371. [CrossRef]
8. Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673.
9. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625-632.
10. Amourah, A.; Al-Hawary, T.; Frasin, B.A. Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\alpha+i \beta$. Afr. Mat. 2021, 32, 1-8. [CrossRef]
11. Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [CrossRef]
12. Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Boletín Soc. Mat. Mex. 2020, 26, 329-339. [CrossRef]
13. Yousef, F.; Alroud, S.; Illafe, M. New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems. Anal. Math. Phys. 2021, 11, 58. [CrossRef]
14. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. 9p.
15. Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math. 2013, 43, 59-65.
16. Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203-209. [CrossRef]
17. Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 8, 32-39.
18. Bulut, S.; Magesh, N.; Balaji, V.K. Initial bounds for analytic and bi-univalent functions by means of chebyshev polynomials. Analysis 2017, 11, 83-89.
19. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569-1573. [CrossRef]
20. Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Mat. 2020, 32, 631-643. [CrossRef]
21. Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [CrossRef]
22. Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137-147. [CrossRef]
23. Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908.
24. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188-1192. [CrossRef]
25. Altinkaya, S.; Yalcin, S. Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials. Asia Pac. J. Math. 2017, 4, 90-99.
26. Tan, D.L. Coefficicent estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559-568.
27. Sunthrayuth, P.; Iqbal, N.; Naeem, M.; Jawarneh, Y.; Samura, S.K. The Sharp Upper Bounds of the Hankel Determinant on Logarithmic Coefficients for Certain Analytic Functions Connected with Eight-Shaped Domains. J. Funct. Spaces 2022, 2022, 2229960. [CrossRef]
28. Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

