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Abstract: We define the notions of weakly µ-countably compactness and nearly µ-countably compact-
ness denoted byWµ-CC and N µ-CC as generalizations of µ-compact spaces in the sense of Csaśzaŕ
generalized topological spaces. To obtain a more general setting, we defineWµ-CC and N µ-CC via
hereditary classes. Using µθ-open sets, µ-regular open sets, and µ-regular spaces, many results and
characterizations have been presented. Moreover, we use the properties of functions to investigate
the effects of some types of continuities onWµ-CC and N µ-CC. Finally, we define softWµ-CC and
N µ-CC as generalizations of soft µ-compactness in soft generalized topological spaces.

Keywords: µ-countably compact; µH-countably compact; weakly µ-countably compact; nearly
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1. Introduction

In 2002, Csaśzaŕ introduced generalized topology [1]. Csaśzaŕ’s topology removes the
intersection property of a finite number of open sets. Many authors have made different
generalizations of compactness such as [2–5]. On the other hand, many generalizations
have been done by using the notion of generalized topology as [6–10]. In particular, we
introduce the notion of weakly (nearly) µ-countably compactness. Additionally, by using
hereditary classes defined in 2007 [8], weakly (nearly) µH-countably compact spaces have
been investigated in more general settings. The current paper has an application in soft
set theory as can be seen in the last section. Similar applications can be made in fuzzy and
set theories, which are in uncertainty in mathematics. In particular, many developments
can be made as interactions between uncertainty and other disciplines of mathematics as
fractional calculus or in function spaces. So, the reader can return to [11–15].

A subset µ of the power set of X is generalized topology on X, whenever φ ∈ µ and⋃
α∈∆

Aα ∈ µ for all Aα ∈ µ [8]. In this work, the notation µ stands for strong generalized

topology, which means X ∈ µ. A subset A is µ-open whenever A ∈ µ and A is µ-closed
if X\A ∈ µ. The interior of A in µ is Intµ(A) =

⋃
Sα⊆A Sα for all Sα ∈ µ, and the closure

is given by Clµ(A) =
⋂

A⊆Fα
Fα for all X\Fα ∈ µ. Whenever A = Intµ(Clµ(A)) (resp.

A = Clµ(Intµ(A)), then A is called µ-regular open (resp. µ-regular closed) [8]. See that
whenever A = Intµ(A), then A is µ-open [6]. We write the pair (X, µ) simply as Xµ.
Now, let A 6= ∅ be a subset of Xµ, then µA is a generalized subspace topology of A in X
whenever, for all B ∈ µA, there is a subset U ∈ µ such that B = U ∩ A [16]. LetH ⊆ P(X)
and ∅ ∈ H, then H is a hereditary class on X whenever C ∈ H and A ⊆ C, then A ∈ H
for all A, C ⊆ X. The pair (Xµ,H) is a generalized space with respect toH [8]. Moreover,
whenever A ∪ B ∈ H for all A, B ∈ H, thenH is called an ideal on X.

Next, we give basic concepts of known generalizations of compactness and countable
compactness in generalized topology. Nearly µ-countably compactness and µH-countably
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compactness have been discussed in Section 2. In µ-regular spaces, Theorem 4 shows
that there is no difference between nearly µH-countably compact space and µH-countably
compact space. In Section 3, weakly µ-countably compactness has been characterized by
using µ-closed sets in Theorem 10. There have been some further results about subsets of
weakly µ-countably compact spaces. Some examples are given to verify the new spaces.
The main contribution in Section 4 is to characterize the continuity in the generalized
topology of the discussed spaces. Theorems 23 and 24 show that continuity preserves such
given spaces. Using different kinds of continuity, we obtain stronger results in several
theorems in Section 4. As a consequence, we add Section 5 before the conclusions. The short
section is about an applicable definition in soft theory that generalizes soft µ-compactness.

Definition 1 ([7]). Let X be a set. The space Xµ is said to be µ-compact whenever X =
⋃

λ∈Λ
Uλ,

where Uλ ∈ µ for all λ ∈ Λ, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that
X =

⋃
λ∈Λ0

Uλ.

Definition 2 ([17]). Let X be a set. The space Xµ is said to be nearly µ-compact (denoted by N µ-
compact) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ, then there is a finite sub-collection

{Uλ : λ ∈ Λ0 ⊆ Λ} such that X =
⋃

λ∈Λ0

IntµClµ(Uλ).

Definition 3 ([10]). Let X be a set. The space Xµ is said to be weakly µ-compact (denoted byWµ-
compact) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ, then there is finite sub-collection

{Uλ : λ ∈ Λ0 ⊆ Λ} such that X =
⋃

λ∈Λ0

Clµ(Uλ).

Definition 4 ([18]). Let (Xµ,H) be a space with respect to H. The pair (Xµ,H) is said to be
weakly µH-compact (denoted byWµH-compact) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all

λ ∈ Λ, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X\ ⋃
λ∈Λ0

Clµ(Uλ) ∈ H.

Definition 5 ([17]). Let (Xµ,H) be a space with respect to H. The pair (Xµ,H) is said to be
nearly µH-compact (denoted by N µH-compact) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all

λ ∈ Λ, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X\ ⋃
λ∈Λ0

IntµClµ(Uλ)

∈ H.

Definition 6 ([19]). Let X be a set. The space Xµ is said to be µ-countably compact (denoted by
µ-CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set, then

there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X =
⋃

λ∈Λ0

Uλ.

Definition 7 ([19]). Let Xµ be a space. A subset A of X is said to be µ-CC set whenever A ⊂⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set, then there is a finite

sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that A ⊂ ⋃
λ∈Λ0

(Uλ).

Definition 8 ([19]). Let (Xµ,H) be a space with respect to H. The pair (Xµ,H) is said to be
µH-countably compact (denoted by µH-CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ

and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that
X\ ⋃

λ∈Λ0

Uλ ∈ H.
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Definition 9 ([10]). Let X be a set. The space Xµ is said to be µ-regular whenever, for each µ-open
subset U of X and for each x ∈ U, there exist a µ-open subset V of X and a µ-closed subset F of X
such that x ∈ V ⊂ F ⊂ U.

Definition 10 ([10]). If C ⊆ Xµ and x ∈ X, then x is called θµ-cluster point of C if Clµ(V)∩C 6=
∅ for all V ∈ µ and x ∈ V. The set (Clµ)θ(C) = {x ∈ X : x is a θµ-cluster point of C } if
(Clµ)θ(C) = C, then C is called µθ-closed. The set C is µθ-open if X\C is µθ-closed.

Lemma 1 ([10]). If A, C ⊆ Xµ and A ⊆ C, then ClµC (A) = Clµ(A) ∩ C.

Lemma 2 ([10]). Let f : Xµ → Yβ be a function. The following statements are equivalent:

1. f is (µ, β)-continuous;
2. f (Clµ(U)) ⊂ Clβ( f (U)), for all U ⊆ X;
3. Clµ f−1(V) ⊂ f−1(Clβ(V)), for all V ⊆ Y.

Definition 11. Let f : Xµ → Yβ be a function. If for each t ∈ X and f (t) ∈ V ∈ β, there exists
U ∈ µ containing t such that:

1. f (Clµ(U)) ⊆ V, then f is said to be strongly ∅(µ, β)-continuous [20].
2. f (IntµClµ(U)) ⊆ V, then f is said to be super (µ, β)-continuous [20].
3. f (IntµClµ(U)) ⊆ IntβClβ(V), then f is said to be (δ, δ

′
)-continuous [21].

4. f (U) ⊆ IntβClβ(V)), then f is said to be almost (µ, β)-continuous [22].

2. Nearly µ-Countably Compactness and Nearly µH-Countably Compactness

In this section, we introduce the notion of nearly µ-countably compact and the notion
of nearly µH-countably compact. Some interesting examples are presented to investigate
these spaces.

Definition 12. Let X be a set. The space Xµ is said to be nearly µ-countably compact (denoted by
N µ-CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set, then

there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X =
⋃

λ∈Λ0

IntµClµ(Uλ).

Corollary 1. Every µ-CC space is N µ-CC space.

Proof. Let Xµ be a µ-CC space. Which means that X =
⋃

λ∈Λ
Uλ, where Uλ ∈ µ for all λ ∈ Λ

and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
where X =

⋃
λ∈Λ0

Uλ, but Uλ ⊆ IntµClµ(Uλ) for each λ ∈ Λ0,

so
⋃

λ∈Λ0

(Uλ) ⊆
⋃

λ∈Λ0

IntµClµ(Uλ). Thus, X =
⋃

λ∈Λ0

IntµClµ(Uλ).

The converse of Corollary 1 is not true as presented in Example 1.

Example 1. Let (R, µ) be a space, where µ = {A ⊆ R : A = ∅ or R\A is a countable}. Let
R =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set, then we can find a finite

sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}, so Clµ(Uλ) = R and IntµClµ(Uλ) = R for each λ ∈ Λ0.
Thus R =

⋃
λ∈Λ0

IntµClµ(Uλ) is a N µ-CC space. It is clear that (R, µ) is not µ-CC space.

Definition 13. Let (Xµ,H) be a space with respect to H. The pair (Xµ,H) is said to be nearly
µH-countably compact (denoted by N µH- CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all

λ ∈ Λ and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
such that X\ ⋃

λ∈Λ0

IntµClµ(Uλ) ∈ H.
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Theorem 1. If X is a N µ-CC space, then X is a N µH-CC space.

Proof. Let X be a N µ-CC space. Which means that X =
⋃

λ∈Λ
Uλ, where Uλ ∈ µ for all

λ ∈ Λ and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
where X =

⋃
λ∈Λ0

IntµClµ(Uλ), but X\ ⋃
λ∈Λ0

IntµClµ(Uλ)= ∅ ∈ H. Hence, Xµ be N µH-CC

space.

In Example 1, we show that the converse of Theorem 1 is not always true.

Example 2. Let X = Z, and B = {{2n− 1, 2n, 2n+ 1} : n ∈ Z} be µ-subbase where µ generated
by B such that (X, µ(B)) andH = P(Z). Then, (X, µ(B)) is not N µ-CC space. However, it is
N µH-CC space. Since X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set,

then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} where X\ ⋃
λ∈Λ0

IntµClµ(Uλ) ∈ H.

Theorem 2. If X is a µH-CC space, then X is a N µH-CC space.

Proof. Let X be a µH-CC space. This means for X =
⋃

λ∈Λ
Uλ, where Uλ ∈ µ for all λ ∈ Λ

and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}where
X\ ⋃

λ∈Λ0

Uλ ∈ H, but X\ ⋃
λ∈Λ0

IntµClµ(Uλ) ⊆ X\ ⋃
λ∈Λ0

(Uλ). Thus, X\ ⋃
λ∈Λ0

IntµClµ(Uλ) ∈

H. Hence, Xµ is a N µH-CC space.

The converse of Theorem 2 is not true, as presented in Example 3.

Example 3. Let X = (0, 1), µ = {φ, Gn : n ∈ Z+}, where Gn = ( 1
n , 1) and H = H f . Then,

Xµ is N µH-CC because for any proper µ-open set IntµClµ(Gni ) = X where i ∈ Z+, then

X\
n⋃
i

IntµClµ(Gni ) ∈ H. However, that is not µH-CC because there is no finite sub-collection

such that X\
n⋃
k

Gni ∈ H.

Theorem 3. If a space Xµ is N µH-CC, then for every countable cover of X by µθ-open sets, there
exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X\ ⋃

λ∈Λ0

Uλ ∈ H.

Proof. Suppose (Xµ,H) is N µH-CC and {Uλ : λ ∈ Λ} is the µθ-open cover of X. Then,
for all x ∈ X, there exists λx ∈ Λ where x ∈ Uλx . Since Uλx is µθ-open, then there exists
Mx ∈ µ where x ∈ Mx ⊂ Clµ(Mx) ⊂ Uλx . However, Mx ⊆ IntµClµ(Mx) ⊆ Clµ(Mx).
Then, X =

⋃
Xn∈X

Mxn where n ∈ N. Since X is N µH-CC, there exist x1, x2, ..., xn ∈ X

where X\
n⋃

k=1
Intµ(Clµ(Mxk )) ∈ H. However, X\

n⋃
k=1

(Uλxk
) ⊂ X\

n⋃
k=1

Intµ(Clµ(Mxk )) ∈ H.

Hence, X\
n⋃

k=1
(Uλxk

) ∈ H.

Theorem 4. Let Xµ be a µ-regular space. The following statements are equivalent:

1. (Xµ,H) is N µH-CC.
2. (Xµ,H) is µH-CC.

Proof. (1) ⇒ (2) : · Suppose X is µ-regular and N µH-CC and {Uλ : λ ∈ Λ} is the
µθ-open cover of X. Then, for all x ∈ X, there exists λx ∈ Λ where x ∈ Uλx . Since Uλx is
µθ-open, then there exists Mx ∈ µ such that x ∈ Mx ⊂ Clµ(Mx) ⊂ Uλx . However, Mx ⊆
Intµ(Clµ(Mx)) ⊆ Clµ(Mx). Then, the sub-collection {Mxn : x ∈ X} is the µ-open cover of
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X. Since X is N µH-CC, so there exist x1, x2, ..., xn ∈ X where X\
n⋃

k=1
Intµ(Clµ(Mxk )) ∈ H.

However, X\
n⋃

k=1
(Uλxk

) ⊂ X\
n⋃

k=1
Intµ(Clµ(Mxk )) ∈ H. Thus, X\

n⋃
k=1

(Uλxk
) ∈ H. This

mean (Xµ,H) is µH-CC.
(2)⇒ (1) : · It follows from Theorem 2.

3. Weakly µ-Countably Compactness and Weakly µH-Countably Compactness

In this section, we introduce the notion of weakly µ-countably compactness and
the notion of weakly µH-countably compactness. We also present a diagram to describe
the relationships among different types of generalizations of µ-compactness and µH-
compactness.

Definition 14. Let X be a set. The space Xµ is said to be weakly µ-countably compact (denoted
byWµ- CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set,

then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X =
⋃

λ∈Λ0

Clµ(Uλ).

Theorem 5. A space Xµ isWµ-CC if and only if whenever X =
⋃

λ∈Λ
Uλ, where Uλ is a µ-regular

open subset for all λ ∈ Λ, then there exists a finite subset Λ0 ⊂ Λ such that X =
⋃

λ∈Λ0

Clµ(Uλ).

Proof. Necessity. It is straightforward and therefore omitted.
Sufficiency. Suppose X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable

index set. It is clear that IntµClµ(Uλ) is µ-open, thus Z = {IntµClµ(Uλ) : λ ∈ Λ} is a
countable µ-regular open cover of X. So we can find a finite sub-collection {Uλ : λ ∈ Λ0 ⊆
Λ} of X where X =

⋃
λ∈Λ0

Clµ(IntµClµ(Uλ)). It is clear that Clµ(IntµClµ(Uλ)) is µ-closed,

thus X =
⋃

λ∈Λ0

Clµ(Uλ). Hence, Xµ isWµ-CC.

Theorem 6. Let Xµ be a space. The following statements are equivalent:

1. X isWµ-CC;
2. For any countable collection F = {Uλ : λ ∈ Λ} of countable µ-closed subset of X such

that
⋂

λ∈Λ0

Uλ = ∅, there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that⋂
λ∈Λ0

Intµ(Uλ) = ∅;

3. For any countable collection F = {Uλ : λ ∈ Λ} of countable µ-regular closed subsets of X
such that

⋂
λ∈Λ0

Uλ = ∅, there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that⋂
λ∈Λ0

Intµ(Uλ) = ∅.

Proof. (1) ⇒ (2) : · Suppose X is Wµ-CC and F = {Uλ : λ ∈ λ} is a countable sub-
collection of a µ-closed subset of X such that

⋂{Uλ : λ ∈ Λ} = ∅. Then, X = X\⋂F =⋃
X\F . Since X isWµ-CC, there exists a finite sub-collection {X\Uλ : λ ∈ Λ0 ⊆ Λ} cover

of X. Thus, X =
⋃

λ∈Λ0

Clµ(X\Uλ). Hence,

X\ ⋃
λ∈Λ0

Clµ(X\Uλ) = X\Clµ(
⋃

λ∈Λ0

(X\Uλ)) = Intµ(X\( ⋃
λ∈Λ0

(X\Uλ))

=
⋂

λ∈Λ0

Intµ(Uλ). Thus,
⋂

λ∈Λ0

Intµ(Uλ) = ∅

(2) ⇒ (1) : · Suppose {Uλ : λ ∈ Λ} is a countable of µ-open cover of X. Thus,
{X\Uλ : λ ∈ Λ} is a countable of µ-closed subset of X.
Since X =

⋃
λ∈Λ

(Uλ), so X\ ⋃
λ∈Λ

(Uλ) =
⋂

λ∈Λ
(X\Uλ) = ∅. So, by the assumption that there

exists a finite sub-collection {X\Uλ : λ ∈ Λ0} of F such that
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Intµ((
⋂

λ∈Λ0

(X\Uλ)) = ∅.

Hence, X = X\Intµ((
⋂

λ∈Λ0

(X\Uλ)) = Clµ(X\ ⋂
λ∈Λ0

(X\Uλ) = (
⋃

λ∈Λ0

Clµ(Uλ)). Therefore,

X isWµ-CC.
(3)⇒ (1) : · Suppose {Uλ : λ ∈ Λ} is a countable µ-open cover of X and so {Intµ(Clµ(Uλ)) :
λ ∈ Λ} is a countable µ-regular open cover of X.
Thus, {X\Intµ(Clµ(Uλ)) : λ ∈ Λ} is a µ-regular closed subset of X such that
X\ ⋃

λ∈Λ
Intµ(Clµ(Uλ)) =

⋂
λ∈Λ

Clµ(Intµ(X\Uλ) = ∅, so by the assumption that there exists

a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} ofF such that Intµ((
⋂

λ∈Λ0

Clµ(Intµ(X\Uλ)) = ∅.

Hence, X = X\Intµ(
⋂

λ∈Λ0

(Clµ(Intµ(X\Uλ))) = Clµ(X\ ⋂
λ∈Λ0

(X\Uλ) = (
⋃

λ∈Λ0

Clµ(Uλ)). It

is clear that X isWµ-CC.
(2)⇔ (3) : · It is obvious since µ-regular closed is µ-closed.
(1)⇒ (3) : · It is similar to (1)⇒ (2) : since µ-regular closed is µ-closed.

Theorem 7. If a space Xµ isWµ-CC, then every countable cover of X by µθ-open sets has a finite
sub-cover.

Proof. Suppose Xµ isWµ-CC and F = {Uλ : λ ∈ Λ} be µθ-open countable cover of X.
Then, for all x ∈ X, there exists λx ∈ Λ such that x ∈ Uλx . Since Uλx is a µθ-open, then
there exists Mx ∈ µ where x ∈ Mx ⊂ Clµ(Mx) ⊂ Uλx . However, X isWµ-CC, so there

exist x1, x2, ..., xn ∈ X where X =
n⋃

k=1
Clµ(Mxk ) =

n⋃
k=1

(Uλxk
).

Theorem 8. Let Xµ be a µ-regular space. Then, Xµ isWµ-CC if and only if Xµ is µ-CC.

Proof. It is straightforward and therefore omitted.

Definition 15. Let Xµ be a space. A subset A of X is said to be weakly µ-countably compact set
(denoted byWµ-CC set) whenever A ⊂ ⋃

λ∈Λ
Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable

index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that A ⊂ ⋃
λ∈Λ0

Clµ(Uλ).

Theorem 9. A subset A of Xµ isWµ-CC set if and only if, whenever A =
⋃

λ∈Λ
Uλ, where Uλ is

µ-regular open subset for all λ ∈ Λ, then there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
such that A =

⋃
λ∈Λ

Clµ(Uλ).

Proof. It is straightforward and therefore omitted.

Theorem 10. Let A be a subset of Xµ. The following statements are equivalent:

1. A isWµ-CC;
2. For any countable collection F = {Uλ : λ ∈ Λ} of a µ-closed subset of X such that

[
⋂{Uλ : λ ∈ Λ}] ∩ A = ∅, there exists a finite sub-collection Λ0 ∈ Λ of F such that
[
⋂

λ∈Λ0

Intµ(Uλ)] ∩ A = ∅;

3. For any countable collection F = {Uλ : λ ∈ Λ} of µ-regular closed subsets of X such that
[
⋂{Uλ : λ ∈ Λ}] ∩ A = ∅, there exists a finite sub-collection Λ0 ∈ Λ of F such that
[
⋂

λ∈Λ0

Intµ(Uλ)]
⋂

A = ∅.

Proof. (1) ⇒ (2) : · Suppose A is Wµ-CC set and F = {Uλ : λ ∈ Λ} is a µ-closed
countable collection of X such that

⋂{Uλ : λ ∈ Λ} ∩ A = ∅. Then, A ⊆ X\ ∩ F =
⋃

X\F .
Since X isWµ-CC, there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} cover of A such
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that {X\Uλ : λ ∈ Λ0 ∈ Λ}. Thus, A ⊆ ⋃
λ∈Λ0

Clµ(X\Uλ). Hence, X\ ⋃
λ∈Λ0

Clµ(X\Uλ) =

X\Clµ(
⋃

λ∈Λ0

(X\Uλ)) = Intµ(X\( ⋃
λ∈Λ0

(X\Uλ))

=
⋂

λ∈Λ0

Intµ(Uλ). Thus, [
⋂

λ∈Λ0

Intµ(Uλ)] ∩ A = ∅

(2)⇒ (1) : · Suppose {Uλ : λ ∈ Λ} is a countable µ-open cover of A. Thus, {X\Uλ : λ ∈
Λ} is a µ-closed subset of X. By the assumption that X\ ⋃

λ∈Λ
(Uλ)∩ A =

⋂
λ∈Λ

(X\Uλ)∩ A =

∅, so there exists a finite sub-collection Λ0 ∈ Λ of F such that
Intµ((

⋂
λ∈Λ0

(X\Uλ)) = ∅.

Hence, A ⊆ X\Intµ((
⋂

λ∈Λ0

(X\Uλ)) = Clµ(X\ ⋂
λ∈Λ0

(X\Uλ) = (
⋃

λ∈Λ0

Clµ(Uλ)). Therefore,

X isWµ-CC.
(3)⇒ (1) : · Suppose A =

⋃
λ∈Λ

Uλ where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index

set, so A =
⋃

λ∈Λ
Intµ(Clµ(Uλ)). Thus, {X\Intµ(Clµ(Uλ)) : λ ∈ Λ} is a µ-regular closed

subset of X. By the assumption that X\ ⋃
λ∈Λ

Intµ(Clµ(Uλ)) ∩ A =
⋂

λ∈Λ
Clµ(Intµ(X\Uλ) ∩

A = ∅, so there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} of F such that
Intµ((

⋂
λ∈Λ0

Clµ(Intµ(X\Uλ)) =
⋂

λ∈Λ0

Intµ(Clµ(Intµ(X\Uλ))) = ∅.

Hence,
A ⊆ X\ ⋂

λ∈Λ0

Intµ(Clµ(Intµ(X\Uλ))) = Clµ(X\ ⋂
λ∈Λ0

(X\Uλ) = (
⋃

λ∈Λ0

Clµ(Uλ)). It is clear

that A isWµ-CC set.
(2)⇔ (3) : · It is obvious since µ-regular closed is µ-closed.
(1)⇒ (3) : · It is similar to (1)⇒ (2) : since µ-regular closed is µ-closed.

Theorem 11. Let A be aWµ-CC subset of a space Xµ. Then, every cover of A by µθ-open subsets
of X has a finite subcover.

Proof. It is straightforward and therefore omitted.

Theorem 12. Let A, B ⊆ Xµ and X\A be countable. If A is µθ-closed and B isWµ-CC, then
A ∩ B isWµ-CC set.

Proof. Let A ∩ B ⊆ ⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ is a countable index set,

and F = {Uλ : λ ∈ Λ}. Then, B ⊆ (
⋃

λ∈Λ
Uλ)

⋃
(X\A). Additionally, for all x /∈ A,

there exists Ux ∈ µ where x ∈ Ux ⊂ Clµ(Ux) ⊂ X\A. Since Ux is a µθ-open and X\A
is countable, then F ∪ {Ux : x ∈ X\A} is a countable µ-open cover of B. However, B is
Wµ-CC, so there exist λ1, λ2, ..., λn ∈ Λ and there exist x1, x2, ..., xm ∈ X\A such that B ⊆
(

n⋃
k=1

Clµ(Uλk ))
⋃
(

m⋃
k=1

Clµ(Uxk )). However, Clµ(Uxk ) ⊂ X\A, thus A ∩ B ⊆
n⋃

k=1
Clµ(Uλk ).

Hence, A ∩ B is aWµ-CC set.

Theorem 13. Let A ⊆ B ⊆ Xµ . If A isWµB-CC, then A isWµ-CC set.

Proof. Suppose that A isWµB-CC set, and U = {Uλ : λ ∈ Λ} is a countable µ-open cover
of A. Then, UB = {Uλ : λ ∈ Λ} is a µB-open cover of A. However, A isWµB-CC, so there
exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} of UB such that A =

⋃
λ∈Λ0

ClµB(Uλ ∩ B).

It is clear that ClµB(Uλ ∩ B) = (Clµ(Uλ ∩ B)) ∩ B ⊂ Clµ(Uλ) where λ ∈ Λ0. Hence, A is
Wµ-CC set.
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Definition 16. Let (Xµ,H) be a space with respect to H. The pair (Xµ,H) is said to be weakly
µH-countably compact (denoted by WµH- CC) whenever X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all

λ ∈ Λ and Λ is a countable index set, then there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
such that X\ ⋃

λ∈Λ0

Clµ(Uλ) ∈ H.

Example 4. Let X = (0, 1), µ = {φ, Gn : n ∈ Z+}, where Gn = ( 1
n , 1) and H = H f . Then,

Xµ is N µH-CC because for any proper µ-open set IntµClµ(Gni ) = X where i ∈ Z+, then

X\
n⋃
i

IntµClµ(Gni ) ∈ H. However, that is not µH-CC because there is no finite sub-collection

such that X\
n⋃
k

Gni ∈ H.

Example 5. Let X = Z, K = {{2n− 1, 2n, 2n + 1} : n ∈ Z}, and µ generated by µ-subbase S
andH = P(Z). Then, (Xµ(K),H) isWµH-CC, but notWµ-CC.

Theorem 14. A space (Xµ,H) with respect to H isWµH-CC if and only if for any countable
µ-regular open cover {Uλ : λ ∈ Λ} of X, there exits a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
such that X\ ⋃

λ∈Λ0

Clµ(Uλ) ∈ H.

Proof. Necessity. It is straightforward and therefore omitted.
Sufficiency. Let X =

⋃
λ∈Λ

Uλ, where Uλ ∈ µ for all λ ∈ Λ and Λ is a countable index set. It

is clear that Intµ(Clµ(Uλ)) is µ-open, thus Z = {Intµ(Clµ(Uλ)) : λ ∈ Λ} bis a countable
µ-regular open cover of X. Then, there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ}
such that X\ ⋃

λ∈Λ0

Clµ(Intµ(Clµ(Uλ))) ∈ H.

However, X\ ⋃
λ∈Λ0

Clµ(Uλ) ⊆ X\ ⋃
λ∈Λ0

Clµ(IntµClµ(Uλ)). Thus, X\ ⋃
λ∈Λ0

Clµ(Uλ) ∈ H.

Hence, Xµ isWµ-CC.

Theorem 15. If a space (Xµ,H) isWµH-CC, then for every countable cover of X by µθ-open sets
there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that X\ ⋃

λ∈Λ0

(Uλ) ∈ H.

Proof. Suppose (Xµ,H) isWµH-CC and {Uλ : λ ∈ Λ} be a µθ-open cover of X. Then,
for all x ∈ X, there exists λx ∈ Λ such that x ∈ Uλx . Thus, there exists Mx ∈ µ such
that x ∈ Mx ⊂ Clµ(Mx) ⊂ Uλx . Then, X =

⋃
x∈X

Mxn where n ∈ N. Since X isWµH-CC,

so there exist x1, x2, ..., xn ∈ X where X\
n⋃

k=1
Clµ(Mxk ) ∈ H. However, X\

n⋃
k=1

(Uλxk
) ⊆

X\
n⋃

k=1
Clµ(Mxk ) ∈ H. Hence, X\

n⋃
k=1

(Uλxk
) ∈ H.

Theorem 16. Let Xµ be a µ-regular space. The following statements are equivalent:

1. (Xµ,H) isWµH-CC;
2. (Xµ,H) is µH-CC.

Proof. (1) ⇒ (2) : · Suppose X is a µ-regular, and WµH-CC and {Uλ : λ ∈ Λ} are
µθ-open covers of X. Then, for all x ∈ X, there exists λx ∈ Λ such that x ∈ Uλx . Thus, there
exists Mx ∈ µ where x ∈ Mx ⊂ Clµ(Mx) ⊂ Uλx . Then, the sub-collection {Mxn : x ∈ X}
is a countable µ-open cover of X. Since X is WµH-CC, so there exist x1, x2, ..., xn ∈ X

where X\
n⋃

k=1
Clµ(Mxk ) ∈ H. However, X\

n⋃
k=1

(Uλxk
) ⊆ X\

n⋃
k=1

Clµ(Mxk ) ∈ H. Thus,

X\
n⋃

k=1
(Uλxk

) ∈ H. This means (Xµ,H) is µH-CC.
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(2)⇒ (1) : · It is clear that X\
n⋃

k=1
Clµ(Mxk ) ⊆ X\

n⋃
k=1

(Mxk ) ∈ H.

Thus, X\
n⋃

k=1
(Clµ(Mxk ) ∈ H.

Theorem 17. Let A be aWµH-CC, then for every countable cover of A by µθ-open sets there exits
a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that A\ ⋃

λ∈Λ0

Clµ(Uλ) ∈ H.

Theorem 18. Let A, B ⊆ Xµ be subsets of a space Xµ and X\A is countable. If A is µθ-closed and
B isWµH-CC, then A ∩ B isWµH-CC.

Proof. Let F = {Uλ : λ ∈ Λ} be a countable µ-open cover of A ∩ B. Then, F ∪ X\A is a
countable µ-open cover B. Since X\A is a µθ-open for all x /∈ A, there exists a µ-open set
Ux where x ∈ Ux ⊂ Clµ(Ux) ⊂ X\A. Thus, F ∪ {Ux : x ∈ X\A} is a countable µ-open
cover of B. However, B isWµ-CC, so there exist λ1, λ2, ..., λn ∈ Λ and x1, x2, ..., xm ∈ X\A

where B\(
n⋃

k=1
Clµ(Uλk ))

⋃
(

m⋃
k=1

Clµ(Uxk )) ∈ H.

Thus, A ∩ B\(
n⋃

k=1
Clµ(Uλk ))

⋃
(

m⋃
k=1

Clµ(Uxk )) ⊂ B\(
n⋃

k=1
Clµ(Uλk ))

⋃
(

m⋃
k=1

Clµ(Uxk )). Hence,

A ∩ B\(
n⋃

k=1
Clµ(Uλk ))

⋃
(

m⋃
k=1

Clµ(Uxk )) ∈ H. This mean A ∩ B isWµH-CC.

Theorem 19. Let (Xµ,H) be a space with respect toH whereH is an ideal on X, then the union
of twoWµH-CC sets is aWµH-CC set.

Proof. Suppose A and B areWµH-CC sets of X. Let F = {Uλ : λ ∈ Λ} be any countable
µ-open cover of A∪ B of X, then there exist finite subsets Λ0, Λ1 ⊆ Λ where A\ ⋃

Λ0∈Λ
(Uλ) ∈

H and B\ ⋃
Λ1∈Λ

(Uλ) ∈ H.

Thus, A∪ B\ ⋃
λ∈Λ0∪Λ1

(Uλ) ⊂ (A\ ⋃
Λ0∈Λ

(Uλ))
⋃
(B\ ⋃

Λ1∈Λ
(Uλ)). However, Λ0 ∪Λ1 is a finite

subset of Λ andH is an ideal on X. Then, A∪ B\ ⋃
λ∈Λ0∪Λ1

(Uλ) ∈ H. Hence, A∪ B isWµH-

CC.

Example 6 illustrates thatH being an ideal is a necessary condition.

Example 6. Let X = N, µ = P(N), and hereditary class H = {A ⊂ N : A is subset of the set
of all odd numbers or A is a subset of the set of all even numbers }. Let A be the set of all odd
numbers and B be the set of all even numbers, then A and B areWµH-CC sets. While A ∪ B is
not WµH-CC. Let

⋃
n∈N
{2n− 1, 2n}} = A ∪ B where {2n− 1, 2n} ∈ µ for all n ∈ N. Thus,

(A ∪ B)\
m⋃

k=1
Clµ({2nk − 1, 2nk}) /∈ H, for some nk, where k = 1, 2, ..., m.

Theorem 20. Let Xµ be a N µ-CC space, then Xµ is aWµ-CC space.

Proof. Suppose Xµ is a N µ-CC space. Then, for each countable µ-open cover {Uλ :
λ ∈ Λ} of X, there exists a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} of X such that
X =

⋃
λ∈Λ0

IntµClµ(Uλ). However, IntµClµ(Uλ) ⊆ Clµ(Uλ).

Thus, X =
⋃

λ∈Λ0

IntµClµ(Uλ) ⊆
⋃

λ∈Λ0

Clµ(Uλ). Hence, X =
⋃

λ∈Λ0

Clµ(Uλ).

Lemma 3. Let Xµ be a space such that X = [0, 1] ⊆ R, and X1, X2, X3 be disjoint dense µ-
subspaces of X such that X = X1 ∪ X2 ∪ X3. Consider the µ∗ = {∅, X, X1, X2, X1 ∪ X2} and
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Ψ = µ ∧ µ∗ generated by the finite intersection of elements of µ and µ∗, then if C is a µ-regular
closed subset of XΨ and A is a µ-open subset of Xµ such that C ⊆ A, then IntΨ(C) ⊆ IntµClΨ(A)

Proof. It is straightforward and therefore omitted.

The converse of Theorem 20 is not true, as illustrated in Example 7.

Example 7. Let Xµ and XΨ as they are in the above Lemma 3.20. It is proved that XΨ is
not almost compact in [23], so it is not nearly µ-CC. We prove that XΨ is weakly µ-CC. Let
{Uλ : λ ∈ Λ} be a countable µ-regular open cover of XΨ, so there is Cλ µ-regular closed in
XΨ where IntΨ(Cλ) ⊆ Cλ ⊆ Uλ and X =

⋃
λ∈Λ

IntΨ(Cλ)). Then, by Lemma 3.20, we obtain

IntΨ(Cλ) ⊆ Intµ(ClΨ(Uλ)), then Xµ =
⋃

λ∈Λ
IntµClΨ(Uλ) where IntµClΨ(Uλ) ∈ µ for all

λ ∈ Λ and Λ is countable, since Xµ is µ-CC, then there exists a finite subset Λ0 ⊆ Λ where
X =

⋃
λ∈Λ0

Intµ(ClΨ(Uλ))). Hence, X =
⋃

λ∈Λ0

ClΨ(Uλ)) this shows that XΨ is weakly µ-CC.

Theorem 21. If (Xµ,H) is a N µH-CC space, then Xµ is aWµH-CC space.

Proof. Suppose Xµ is a N µH-CC space. Which means that X =
⋃

λ∈Λ
Uλ, where Uλ ∈ µ

for all λ ∈ Λ and Λ is a countable index set, then there exists a finite Λ0 ⊆ Λ where
X\ ⋃

λ∈Λ0

IntµClµ(Uλ) ∈ H.

However, X\ ⋃
λ∈Λ0

Clµ(Uλ) ⊆ X\ ⋃
λ∈Λ0

IntµClµ(Uλ). Hence, X\ ⋃
λ∈Λ0

Clµ(Uλ) ∈ H.

Figure 1 shows the relationship between all types of generalization of µ-compact
spaces studied in this paper.

µH− CC

µ− CC N µ− CC N µH− CC

µ− compact µH− compact WµH− CC

N µ− compact N µH− compact Wµ− CC

Wµ− compact WµH− compact

Figure 1. The relationship between all types of generalization of µ-compact spaces.

4. Function Properties on N µ-Countably Compact and Wµ-Countably Compact

Theorem 22. Let f : Xµ → Yβ be a (µ, β)-continuous function.

1. If A is aWµ-CC subset of X, then f (A) isWβ-CC.
2. If A is a N µ-CC subset of X, then f (A) is N β-CC.

Proof. (1) : · Suppose f (A) =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable

index set. Since f is (µ, β)-continuous, then A =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all

λ ∈ Λ and Λ is a countable index set and A is aWµ-CC set. Thus, there exist λ1, λ2, ..., λn ∈
Λ where A ⊂

n⋃
k=1

Clµ( f−1(Vλk )). Thus, f (A) ⊂
n⋃

k=1
f (Clµ( f−1(Vλk ))). Since f is (µ, β)-

continuous and Clµ( f−1(B)) ⊂ f−1(Clβ(B)) for all B ⊆ Y, then f (Clµ( f−1(Vλk ))) ⊂
Clβ f ( f−1(Vλk )) ⊂ Clβ(Vλk ). Hence, f (A) isWβ-CC.
(2) : · Suppose f (A) =

⋃
λ∈Λ

Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable index
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set. Since f is (µ, β)-continuous, then A =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all λ ∈ Λ

and Λ is a countable index set and A is N µ-CC set. Thus, there exist λ1, λ2, ..., λn ∈ Λ

where A ⊂
n⋃

k=1
Intµ(Clµ( f−1(Vλk ))). Thus, f (A) ⊂

n⋃
k=1

f (Intµ(Clµ( f−1(Vλk )))). Since f is

(µ, β)-continuous and Intµ(Clµ( f−1(B))) ⊂ f−1(Intβ(Clβ(B))) for every subset B of Y,
then f (Intµ(Clµ( f−1(Vλk )))) ⊂ Intβ(Clβ f ( f−1(Vλk ))) ⊂ Intβ(Clβ(Vλk )). Hence, f (A) is
N β-CC.

Theorem 23. Let f : Xµ → Yβ be a (µ, β)-continuous surjective function.

1. If X is aWµ-CC, then f (X) isWβ-CC.
2. If X is a N µ-CC, then f (X) is N β-CC.

Proof. (1) : · Suppose f (X) =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable

index set. Since f is (µ, β)-continuous, then X =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all

λ ∈ Λ and Λ is a countable index set and X isWµ-CC. Thus, there exist λ1, λ2, ..., λn ∈ Λ

where X =
n⋃

k=1
Clµ( f−1(Vλk )). Thus, f (X) =

n⋃
k=1

f (Clµ( f−1(Vλk ))). Since f is (µ, β)-

continuous and Clµ( f−1(B)) ⊂ f−1(Clβ(B)) for all B ⊆ Y, then f (Clµ( f−1(Vλk ))) ⊂
Clβ f ( f−1(Vλk )) ⊂ Clβ(Vλk ). Thus, f (X) isWβ-CC. Hence, Y = f (X) isWβ-CC since f
is surjective.
(2) : · Suppose f (X) =

⋃
λ∈Λ

Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is countable index

set. Since f is (µ, β)-continuous, then X =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all λ ∈ Λ

and Λ is a countable index set and X isWµ-CC. Thus, there exist λ1, λ2, ..., λn ∈ Λ where

X =
n⋃

k=1
Clµ( f−1(Vλk )). Thus, f (X) =

n⋃
k=1

f (Clµ( f−1(Vλk ))). Since f is (µ, β)-continuous,

then A =
⋃

λ∈Λ
f−1(Vλ) where f−1(Vλ) ∈ µ for all λ ∈ Λ and Λ is a countable index set and

X is N µ-CC. Thus, there exist λ1, λ2, ..., λn ∈ Λ where X =
n⋃

k=1
Intµ(Clµ( f−1(Vλk ))). Thus,

f (X) =
n⋃

k=1
f (Intµ(Clµ( f−1(Vλk )))). Since f is (µ, β)-continuous and Intµ(Clµ( f−1(B))) ⊂

f−1(Intβ(Clβ(B))) for all B ⊆ Y, then f (Intµ(Clµ( f−1(Vλk )))) ⊂ Intβ(Clβ f ( f−1(Vλk ))) ⊂
Intβ(Clβ(Vλk )). Thus, f (X) isN β-CC. Hence, Y = f (X) isN β-CC since f is surjective.

Theorem 24. Let f : (Xµ,H)→ Yβ be a (µ, β)-continuous surjective.

1. If (Xµ,H) isWµH-CC, then Yβ isWβ f (H)-CC.
2. If (Xµ,H) is N µH-CC, then Yβ is N β f (H)-CC.

Proof. (1) : · Suppose f (X) =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is countable

index set. Since f is (µ, β)-continuous, X =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all

λ ∈ Λ and Λ is a countable index and X is WµH-CC. Thus, there exist λ1, λ2, ..., λn ∈
Λ where X\

n⋃
k=1

Clµ( f−1(Vλk )) ∈ H. Since f is (µ, β)-continuous and Clµ( f−1(B)) ⊂

f−1(Clβ(B)) for all B ⊆ Y, then X\
n⋃

k=1
( f−1(Clβ(Vλk )) ⊂ X\

n⋃
k=1

Clµ( f−1(Vk)) ∈ H. Since

f (Clµ( f−1(Vλk ))) ⊂ Clβ f ( f−1(Vλk )) ⊂ Clβ(Vλk ). Thus, f (X)\
n⋃

k=1
(Clβ(Vλk ) ∈ f (H). Since

f is surjective, then f (X) = Y. This means Y isWβ f (H)-CC.
(2) : · Suppose f (X) =

⋃
λ∈Λ

Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is countable index
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set. Since f is (µ, β)-continuous, X =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all λ ∈ Λ

and Λ is a countable index and X is N µH-CC. Thus, there exist λ1, λ2, ..., λn ∈ Λ where

X\
n⋃

k=1
IntµClµ( f−1(Vλk )) ∈ H. Since f is (µ, β)-continuous and Intµ(Clµ( f−1(B))) ⊂

f−1(Intβ(Clβ(B))) for all B ⊆ Y, then

X\
n⋃

k=1
( f−1(Intβ(Clβ(Vλk ))) ⊂ X\

n⋃
k=1

Intµ(Clµ( f−1(Vk))) ∈ H.

Since f (Intµ(Clµ( f−1(Vλk )))) ⊂ Intβ(Clβ f ( f−1(Vλk ))) ⊂ Intβ(Clβ(Vλk )).

Thus, f (X)\
n⋃

k=1
Intβ(Clβ(Vλk ) ∈ f (H). Since f is surjective, then f (X) = Y. This means Y

is N β f (H)-CC.

Theorem 25. Let f : Xµ → (Yβ,H) be a (µ, β)-open bijective function.

1. If (Yβ,H) isWβH-CC, then Xµ isWµ f−1(H)-CC.
2. If (Yβ,H) is N βH-CC, then Xµ is N µ f−1(H)-CC.

Proof. Since f : Xµ → (Yβ,H) is a (µ, β)-open bijective, then
f−1 : (Yβ,H) → Xµ is a (β, µ)-continuous surjective. By Theorem 24, so (Yβ,H) is a
WβH-CC(resp.N βH-CC), then Xµ isWµ f−1(H)-CC (resp.N µ f−1(H)-CC).

Theorem 26. Let f : (Xµ,H)→ Yβ be a (µ, β)-continuous.

1. If A isWµH-CC, then f (A) isWβ f (H)-CC.
2. If A is N µH-CC, then f (A) is N β f (H)-CC.

Proof. (1) : · Suppose f (A) =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable

index set. Since f is (µ, β)-continuous, then A =
⋃

λ∈Λ
f−1(Vλ), where f−1(Vλ) ∈ µ for all

λ ∈ Λ and Λ is a countable index and A isWµH-CC set. Thus, there exist λ1, λ2, ..., λn ∈ Λ

where A\
n⋃

k=1
Clµ( f−1(Vλk )) ∈ H. It is clear that Clµ( f−1(Vλk )) ⊂ ( f−1Clβ(Vλk )).

Thus, A\
n⋃

k=1
( f−1Clβ(Vλk )) ⊂ A\

n⋃
k=1

Clµ( f−1(Vλk )) ∈ H. Thus,

A\
n⋃

k=1
f−1Clβ(Vλk ) = A\

n⋃
k=1

Clβ( f−1(Vλk )) =

A ∩ f−1(Y\
n⋃

k=1
Clβ( f−1(Vλk ))).

Hence, f (A ∩ f−1(Y\
n⋃

k=1
Clβ( f−1(Vλk )))) = f (A) ∩ (Y\

n⋃
k=1

Clβ( f−1(Vλk )))

= f (A)\
n⋃

k=1
Clβ(Vλk )) ∈ f (H). This means f (A) isWβ f (H)-CC.

(2) : · It is clear that f is (µ, β)-continuous and Intµ(Clµ( f−1(B))) ⊂ f−1(Intβ(Clβ(B)))
for all B ⊆ Y, then

A\
n⋃

k=1
( f−1(Intβ(Clβ(Vλk ))) ⊂ A\

n⋃
k=1

Intµ(Clµ( f−1(Vk))) ∈ H.

Since f (Intµ(Clµ( f−1(Vλk )))) ⊂ Intβ(Clβ f ( f−1(Vλk ))) ⊂ Intβ(Clβ(Vλk )).

Thus f (A)\
n⋃

k=1
Intβ(Clβ(Vλk ) ∈ f (H).This means f (A) is N β f (H)-CC.

Theorem 27. Let Xµ be a Wµ-CC; if f : Xµ → Yβ is strongly ∅(µ, β)-continuous surjective,
then Yβ is β-CC.

Proof. Suppose Y =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable index

set. Then, for all t ∈ X, there exists Vλt for some λt ∈ Λ where f (t) ∈ Vλt . Since f is a
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strongly ∅(µ, β)-continuous, then Uλt ∈ µ containing t such that f (Clµ(Uλt)) ⊆ Vλt . Since
Λ is countable index set, we obtain X =

⋃
λt∈Λ

Uλt , where Uλt ∈ µ for all λ ∈ Λ and Λ is

countable index set. Since Xµ isWµ-CC, we obtain X =
m⋃

n=1
Clµ(Uλtn

).

Thus, Y = f (X) = f (
m⋃

n=1
Clµ(Uλtn

)) =
m⋃

n=1
f (Clµ(Uλtn

)) ⊆
m⋃

n=1
(Vλtn

). Hence, Yβ is a

β-CC.

Theorem 28. Let Xµ be a N µ-CC; if f : Xµ → Yβ is super (µ, β)-continuous surjective, then Yβ

is β-CC.

Proof. Suppose Y =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable index set.

Then, for all t ∈ X, there exists Vλt for some λt ∈ Λ such that f (t) ∈ Vλt . Since f is a
super (µ, β)-continuous, then Uλt ∈ µ containing t where f (IntµClµ(Uλt)) ⊆ Vλt . Since
Λ is a countable index set, we obtain X =

⋃
λt∈Λ

Uλt where Uλt ∈ µ for all λ ∈ Λ and Λ is

countable index set. Since Xµ is N µ-CC, we obtain X =
m⋃

n=1
IntµClµ(Uλtn

).

Thus, Y = f (X) = f (
m⋃

n=1
(IntµClµ(Uλtn

))) ⊆
m⋃

n=1
f (IntµClµ(Uλtn

)) ⊆
m⋃

n=1
(Vλtn

). Hence Yβ

is a β-CC.

Theorem 29. Let Xµ be a N µ-CC; if f : Xµ → Yβ is (δ, δ
′
)-continuous surjective, then Yβ is

N β-CC.

Proof. Suppose Y =
⋃

λ∈Λ
IntβClβ(Vλ), where Vλ ∈ β for all λ ∈ Λ and Λ is a countable

index set. Then, for all t ∈ X, there exists IntβClβ(Vλt) for some λt ∈ Λ where f (t) ∈
IntβClβ(Vλt). Since f is a (δ, δ

′
)-continuous, then there exists Uλt ∈ µ containing t where

f (IntµClµ(Uλt)) ⊆ IntβClβ(Vλt). Since Λ is a countable index set, we obtain X =
⋃

λt∈Λ
Uλt ,

where Uλt ∈ µ for all λ ∈ Λ and Λ is a countable index set. Since Xµ is N µ-CC, we obtain

X =
m⋃

n=1
IntµClµ(Uλtn

). Thus,

Y = f (X) = f (
m⋃

n=1
IntµClµ(Uλtn

) ⊆
m⋃

n=1
f (IntµClµ(Uλtn

) ⊆
m⋃

n=1
IntβClβ(Vλtn

). Hence, Yβ

is a N β-CC.

Theorem 30. Let Xµ be a N µ-CC,

1. If f : Xµ → Yβ is strongly ∅(µ, β)- continuous surjective, then Yβ is β-CC.
2. If f : Xµ → Yβ is super (µ, β)- continuous surjective, then Yβ is β-CC.
3. If f : Xµ → Yβ is (δ, δ

′
)- continuous surjective, then Yβ is β-CC.

Proof. It is straightforward and similar to Theorem 27, and therefore omitted.

Theorem 31. Let f : (Xµ,H)→ Yβ be almost (µ, β)- continuous surjective.

1. If (Xµ,H) is aWµH-CC, then Yβ is alsoWβ f (H)-CC.
2. If (Xµ,H) is a N µH-CC, then Yβ is also N β f (H)-CC.

Proof. (1) : · Suppose Y =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is countable

index set. Since f is a almost (µ, β)- continuous, then f−1(IntβClβ(Vλ)) ∈ µ. Thus
X =

⋃
λ∈Λ

f−1(IntβClβ(Vλ)) for all λ ∈ Λ is a countable index set, then there exists a finite
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sub-collection { f−1(IntβClβ(Vλk )) : k ∈ N} where X\Clµ(
n⋃

k=1
f−1(IntβClβ(Vλk ))) ∈ H,

X\Clµ(
n⋃

k=1
f−1(Clβ(

n⋃
k=1

(Vλk )))) ⊆ X\Clµ( f−1(
n⋃

k=1
(Clβ(Vλk ))))

⊆ X\Clµ(
n⋃

k=1
f−1(IntβClβ(Vλk ))) ∈ H, it is clear that

X\Clµ( f−1(
n⋃

k=1
(Clβ(Vλk )))) = X\( f−1(

n⋃
k=1

(Clβ(Vλk )))) ∈ H, then

f (X)\(
n⋃

k=1
(Clβ(Vλk ))) ∈ f (H). Hence, Y is aWβ f (H)-CC.

(2) : · Suppose Y =
⋃

λ∈Λ
Vλ, where Vλ ∈ β for all λ ∈ Λ and Λ is a countable index set.

Since f is an almost (µ, β)-continuous, then f−1(IntβClβ(Vλ)) ∈ µ.
Thus, X =

⋃
λ∈Λ

f−1(IntβClβ(Vλ)) for all λ ∈ Λ is a countable index set, then there exist

λ1, λ2, ..., λn ∈ Λ where X\IntµClµ(
n⋃

k=1
f−1(IntβClβ(Vλk ))) ∈ H.

Since IntµClµ( f−1(Vλk )) ⊂ ( f−1(IntβClβ(Vλk )), then

X\
n⋃

k=1
f−1(IntβClβ(

n⋃
k=1

(Vλk ))) ⊆ X\IntµClµ( f−1(
n⋃

k=1
(intβClβ(Vλk )))) ∈ H.

Thus X\
n⋃

k=1
f−1(IntβClβ(

n⋃
k=1

(Vλk ))) ∈ H, it is clear that

f (X\( f−1(
n⋃

k=1
(IntβClβ(Vλk ))))) = f (X)\( f ( f−1(

n⋃
k=1

(IntβClβ(Vλk )))))

= f (X)\(
n⋃

k=1
(intβClβ(Vλk )) ∈ f (H). Hence, Y is a N β f (H)-CC.

5. Applications in Soft Set Theory

Recall that soft set theory is an important mathematical tool in uncertainty. The con-
cepts defined in the current paper can be applied to furnish more work to obtain generaliza-
tions of covering properties of soft generalized topological spaces. In particular, we define
soft µ-CC and soft N µ-CC as generalizations of soft µ-compactness. Moreover, we provide
an examined example to verify the new definitions as an applicable generalizations.

Definition 17 ([24]). A soft set SA on the universe X is defined by the set of ordered pairs
SA = {(t, fA(t)) : t ∈ G, fA(t) ∈ 2X}, where { fA : G → 2X} and G is the set of all possible
parameters such that fA(t) = ∅ if t /∈ A. SA is said to be an approximate function of the soft set.
The value of fA(t) may be arbitrary. S(X) stands for the set of all soft sets.

Definition 18. Let SA ∈ S(X).

1. If fA(t) = X for each t ∈ G, then SA is said to be an A-universal soft set, denoted by SÂ.
If A = G, then SÂ is said to be a universal soft set, denoted by SĜ [25].

2. The soft complement of SA, denoted by X\SA, is defined by the approximate function
fX\A(t) = X\ fA(t), where X\ fA(t) is the complement of the set fA(t) for all t ∈ G [26].

Definition 19. Let SA, SB ∈ S(X).

1. SB is a soft subset of SA, denoted by SB ⊆ SA, if fA(t) ⊆ fB(t) for all t ∈ G [27].
2. The soft union of SA and SB , denoted by SA ∪ SB , is defined by the approximate function

fA∪B(t) = fA(t) ∪ fB(t) [25].
3. The soft intersection of SA and SB , denoted by SA ∩ SB , is defined by the approximate

function fA∩B(t) = fA(t) ∩ fB(t) [26].
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Definition 20 ([28]). Let SA ∈ S(X). A soft generalized topology (briefly. sGT) on SA, denoted
by SAµ is a family of soft subsets of SA such that S∅ ∈ µ and if a family {SA〉 : SA i ⊆ SA, i ∈
J ⊆ N} ⊆ µ then

⋃
i∈J(SA i) ∈ µ.

Definition 21 ([28]). Let (SA, µ) be a sGTS. Every element of µ is called a soft µ-open set. The S∅
is a soft µ-open set. If SB be a soft subset of SA, then SB is called soft µ-closed if its soft complement
X\SB is a soft µ-open.

Definition 22 ([28]). Let (SA, µ) be a sGTS and SB ⊆ SA, then
(a) the soft union of all soft µ-open subsets of SB is said to be soft µ-interior of SB and denoted

by IntSAµSB .
(b) the soft intersection of all soft µ-closed subsets of SB is said to be soft µ-closure of SB and

denoted by ClSAµSB .

Definition 23 ([29]). A sGTS (SA, µ) is called soft µ-compact (denoted. soft µ-C) whenever
SA =

⋃
λ∈Λ

Uλ, where Uλ is soft µ-open for all λ ∈ Λ and Λ, then there is a finite sub-collection

{Uλ : λ ∈ Λ0 ⊆ Λ} such that SA =
⋃

λ∈Λ0
Uλ.

Definition 24. Let (SA, µ) be a sGTS and SB ⊆ SA, then

1. the soft µ-regular open set if SB = IntSAµClSAµ(SB).
2. the soft µ-regular closed set if SB = ClSAµ IntSAµ(SB).

Definition 25. A sGTS (SA, µ) is called soft µ-countably compact (denoted soft µ-CC) whenever
SA =

⋃
λ∈Λ

Uλ, where Uλ is soft µ-open for all λ ∈ Λ and Λ countable index set, then there is a

finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that SA =
⋃

λ∈Λ0
Uλ.

Definition 26. A sGTS (SA, µ) is called soft nearly µ-countably compact (denoted soft N µ-CC)
whenever SA =

⋃
λ∈Λ

Uλ, where Uλ is soft µ-open for all λ ∈ Λ and Λ is a countable index set, then

there is a finite sub-collection {Uλ : λ ∈ Λ0 ⊆ Λ} such that SA =
⋃

λ∈Λ0
IntSAµClSAµ(Uλ).

Corollary 2. Every soft µ-CC space is a soft N µ-CC space.

Proof. It is straightforward and therefore omitted.

The converse of Corollary 2 is not true, as presented in Example 8.

Example 8. Let X = N, G = A = {ti : i ∈ N} and SĜ = {(ti, X) : ti ∈ G}, let F =
{(t, {1, x}) : x ∈ X, x 6= 1} for each t ∈ G. Consider a sGT µ(F ) generated on sGTS SĜ
by the soft basis F . Then, only SĜ and S∅ are soft µ-regular open sets so a sGTS

(
SĜ, µ(F )

)
is

soft N µ(F )-CC, but it is not soft µ(F )-CC, since a family
{
SĜi

: i ∈ N
}

, where
SĜ1

= {(t1, {1, 2}), (t2, {1, 2, 3}), (t3, {1, 2, 3, 4}), . . . . . .},
SĜ2

= {(t1, {1, 3}), (t2, {1, 2, 4}), (t3, {1, 2, 3, 5}), . . . . . .},
SĜ3

= {(t1, {1, 4}), (t2, {1, 2, 5}), (t3, {1, 2, 3, 6}), . . . . . .}

...
is soft µ(F )-open cover of sGTS

(
SĜ, µ(F )

)
with no finite soft µ(F )-open sub-cover.

6. Conclusions

We have explored and examined the definition of weakly (nearly) µ-countably com-
pact spaces in the sense of generalized topology given in [1]. Further, we studied the effect
of hereditary classes on these spaces. The space presented in Example 1 is N µ-CC, but not
µ-CC. Some other results regarding subsets of such spaces have been presented. Observing
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that µ- countably compactness is a generalization of µ-compactness, Figure 1 is a summary
to show the relations between these spaces studied in the paper and other spaces generaliz-
ing µ-compactness. Finally, we studied the effect of generalized continuity on these spaces.
In particular, it is proved that the images and preimages of the new notions of spaces
defined in this paper are preserved under (µ, β)-continuous functions. Stronger results
are given if we use strongly ∅(µ, β)-continuous functions and super (µ, β)-continuous
functions. More varying results are given by using (δ, δ

′
)-continuous functions and almost

(µ, β)-continuous functions.
As future research, some modifications can be made if we replace the generalized

topology µ by a weaker framework as a weaker structure WS [30]. Moreover, we can
study the effect of soft µ-regular sets on soft nearly µ-countably compact spaces defined in
Section 5. To see some applications of generalizations of spaces in generalized topology,
you can see [29,31,32].
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