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Abstract: In this paper, we present a series of fixed point results for Mann’s iteration scheme in
the framework of Gb-metric spaces. First, we introduce the concept of convex Gb-metric space by
means of a convex structure and Mann’s iteration algorithm is extended to this space. Furthermore,
using Mann’s iteration scheme, we prove some fixed point results for several mappings satisfying
various suitable conditions on complete convex Gb-metric spaces. Some examples supporting our
main results are also presented. We also discuss the well-posedness of the fixed point problems and
the P property for given mappings. Moreover, as an application, we apply our main result to prove
the existence of the solutions to integral equations.
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1. Introduction and Preliminaries

It is well know the fixed point theory in metric spaces plays an important role in
nonlinear analysis. In 1922, Banach [1] proved a well-known fixed point theorem called the
Banach fixed point theorem, which various applications in different branches of science.
Since then, many researchers have extended these results by considering classes of nonlinear
mappings and in other important spaces. In particular, generalizations of metric spaces
were reported by Gahler [2] and Dhage [3] to aim to solve the more complex nonlinear
analysis problems. Later, in 1993, Czerwik [4] proposed the concepts of b-metric spaces
and generalized the classical Banach fixed point principle to these spaces.

Definition 1 ([4]). Let X be a nonempty set and assume that a mapping d : X × X → [0,+∞)
satisfies for all x, y, u ∈ X,

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, y)].

Then d is called a b-metric on X and the pair (X, d) is called a b-metric space with coefficient
s ≥ 1.

Obviously, the class of b-metric is considerably larger than the class of metric spaces
since a metric is a b-metric with s = 1. Note that a b-metric function is not necessarily
continuous in each of its arguments [5].

In 2006, the concept of G-metric spaces was introduced by Mustafa and Sims [6]. Then,
Aghajani et al. [7] introduced the notion of Gb-metric spaces which can be viewed as a
generalization of G-metric spaces and b-metric spaces.
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Definition 2 ([7]). Let X be a nonempty set. Suppose that a mapping G : X× X× X → [0, ∞)
satisfies the following conditions:

(1) G(x, y, z) = 0 if x = y = z;
(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y;
(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z;
(4) G(x, y, z) = G(x, z, y) = G(z, x, y) = . . ., (symmetry in all three variables);
(5) there exists a real number s ≥ 1 such that G(x, y, z) ≤ s[G(x, u, u) + G(u, y, z)] for all

x, y, z, u ∈ X.

Then G is called a Gb-metric on X and the pair (X, G) is called a Gb-metric space.

Example 1 ([7]). Let X = R and (X, d) be a b-metric space with s ≥ 1. Let

G1(x, y, z) = d(x, y) + d(x, z) + d(y, z).

Then (X, G1) is not a Gb-metric space. However, let

G2(x, y, z) = max{d(x, y), d(x, z), d(y, z)}.

Then (X, G2) is a Gb-metric space with s.

Remark 1. It is worth mentioning that Gb-metric spaces and b-metric spaces are topologically
equivalent [7]. This allows us to readily transport many concepts and results from b-metric spaces
into Gb-metric spaces.

Proposition 1 ([7]). Let (X, G) be a Gb-metric space. Then for any x, y, z, u ∈ X, we have:

(1) if G(x, y, z) = 0, then x = y = z ;
(2) G(x, y, z) ≤ s(G(x, x, y) + G(x, x, z));
(3) G(x, y, y) ≤ 2sG(y, x, x);
(4) G(x, y, z) ≤ s(G(x, u, z) + G(u, y, z)).

Definition 3 ([7]). Let (X, G) be a Gb-metric space. A sequence {xn} in X is said to be convergent
in X if there exists x∗ ∈ X such that lim

n,m→∞
G(xn, xm, x∗) = 0. (X, G) is said to be a complete

Gb-metric space if every Cauchy sequence in X is convergent.

Proposition 2 ([7]). Let (X, G) be a Gb-metric space. Then, the following are equivalent:

(1) the sequence {xn} is a Cauchy sequence;
(2) for any ε > 0, there exists n0 ∈ N such that G(xn, xm, xm) < ε, for all m, n ≥ n0.

Definition 4 ([7]). A Gb-metric G is said to be symmetric if G(xn, xm, xm) = G(xm, xn, xn) for
all xn, xm ∈ X.

Definition 5 ([8]). Let (X1, G1) and (X2, G2) be two Gb-metric spaces. Let f : (X1, G1) →
(X2, G2) be a mapping; then f is said to be G-continuous at a point x∗ ∈ X; for any y, z ∈ X and
ε > 0, there exists δ > 0, such that G1(x∗, y, z) < δ implies G2( f x∗, f y, f z) < ε.

Proposition 3 ([8]). Let (X1, G1) and (X2, G2) be two Gb-metric spaces. Then a mapping
f : (X1, G1)→ (X2, G2) is G-continuous at a point x∗ ∈ X if and only if f (xn) is G-convergent
f (x∗) whenever {xn} is G-convergent to x∗.

On the other hand, the concepts of a convex structure and a convex metric space were
introduced by Takahashi [9].

Definition 6 ([9]). Let (X, d) be a metric space and I = [0, 1]. A continuous function
w : X × X × [0, 1] → X is said to be a convex structure on X if for each x, y, u ∈ E and
α ∈ I,

d(u, w(x, y; α)) ≤ αd(u, x) + (1− α)d(u, y)
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holds. A metric space (X, d) with a convex structure w is called a convex metric space.

Norouzian et al. [10] introduced convex structure in G-metric spaces.

Definition 7 ([10]). Let (X, G) be a G-metric space. A mapping w : X × X × X × [0, 1] ×
[0, 1]× [0, 1] → X is said to be a convex structure on X if for each (x, y, z; λ1, λ2, λ3) ∈ X ×
X × X × [0, 1] × [0, 1] × [0, 1] with λ1 + λ2 + λ3 = 1 then w(x, y, z; λ1, λ2, λ3) ∈ X, where
w(x, y, z; λ1, λ2, λ3) = λ1x + λ2y + λ3z. If w is a convex structure on X, then the triplet
(X, G, w) is called a convex G-metric space.

Howeve, iterative methods have received vast investigation for finding fixed points of
nonexpansive mappings—see [11–18]. Particularly, in the research on some approximations
of the fixed points problem using the iteration scheme, one of the most famous fixed point
methods is the Mann iteration [19] as follows:

xn+1=αnxn + (1− αn)Txn, αn ∈ [0, 1].

For example, Reich [20] proved that if {αn} is chosen such that
∞
∑

n=1
αn(1− αn) = ∞,

then the Mann sequence {xn} converges weakly to a fixed point of T in a uniformly convex
Banach space with a Fréchet differentiable norm.

In this article, we first give the notion of convex Gb-metric spaces by means of con-
vex structure in the sense of Takahashi. Then, we generalize the Mann iterative algo-
rithm to Gb-metric spaces and present the existence and uniqueness theorem for con-
traction mapping. Moreover, we show concrete examples supporting our main results.
The results greatly generalize the previous results from [16]. Furthermore, we consider the
well-posedness of the fixed problems and the P property for a given mapping. Finally, we
apply our main result to approximating the solutions of integral equations.

In the following, we always denote by N0 the set of nonnegative integers.

2. Main Results

We begin with the following definition which generalizes the notion of Gb-metric
spaces and convex structure in the sense of Takahashi.

Definition 8. Let (X, G) be a Gb-metric space with coefficient s ≥ 1 and I = [0, 1]. A mapping
w : X× X× [0, 1]→ X is said to be a convex structure on X if for each x, y, u, v ∈ X and α ∈ I,

G(u, v, w(x, y; α)) ≤ αG(u, v, x) + (1− α)G(u, v, y) (1)

holds. Then the triplet (X, G, w) is called a convex Gb-metric space with coefficient s ≥ 1.

Remark 2. A convex Gb-metric space reduces a convex G-metric space for s = 1.

Definition 9. Let (X, G) be a Gb-metric space and T : X → X be a mapping. We say the sequence
{xn} is a Mann sequence if

xn+1 = w(xn, Txn; αn), n ∈ N0,

where x0 ∈ X and αn ∈ [0, 1].

We present now some specific examples of convex Gb-metric spaces.

Example 2. Let X = R and the metric G : X× X× X → [0, ∞) be defined by

G(x, y, z) =
[

1
3
(|x− y|+ |y− z|+ |x− z|)

]2
, f or all x, y, z ∈ X,

as well as the mapping w : X× X× [0, 1]→ X defined by the formula

w(x, y; α) = αx + (1− α)y.



Axioms 2023, 12, 108 4 of 16

Then (X, G, w) is a convex Gb-metric space with s = 2. Indeed, it is clear that that (X, G) is
a Gb-metric space with s = 2 (see [21], Example 4). For any x, y, u, v ∈ X, we get

G(x, y, w(u, v; α)) =
1
9
× (|x− y|+ |y− αu− (1− α)v|+ |x− αu− (1− α)v|)2

≤1
9
× [α|x− y|+ (1− α)|x− y|+ α|y− u|+ (1− α)|y− v|

+α|x− u|+ (1− α)|x− v|]

=
1
9
× [α(|x− y|+ |y− u|+ |x− u|) + (1− α)(|x− y|+ |y− v|+ |x− v|)]2

≤1
9
×
[
α2(|x− y|+ |y− u|+ |x− u|)2+(1− α)2(|x− y|+ |y− v|+ |x− v|)2

+ 2α(1− α) (|x− y|+ |y− u|+ |x− u|)2
]

≤1
9
×
[
α(|x− y|+ |y− u|+ |x− u|)2 + (1− α)(|x− y|+ |y− v|+ |x− v|)2

]
=αG(x, y, u) + (1− α)G(x, y, v).

Hence, (X, G, w) is a convex Gb-metric space with s = 2.

Example 3. Let X = R, and for x, y ∈ X, let us define the metric d : X × X → [0,+∞) by the
formula

d(x, y) =
n

∑
i=1

(xi − yi)
2,

for all x = (x1, x2, · · · , xn) ∈ X and y = (y1, y2, · · · , yn) ∈ X, and define the mapping
w : X× X× [0, 1]→ X by the formula

w(x, y; α) =
x + y

2
.

We can know that (X, d) is a convex b-metric space with s = 2 (see [16], Example 4).
The metric G : X× X× X → [0, ∞) is defined by

G(x, y, z) = max{d(x, y), d(x, z), d(y, z)}.
For any x, y, u, v ∈ X, we have

G(x, y, w(u, v; α)) = max{d(x, y), d(x, w(u, v; α)), d(y, w(u, v; α))}
≤ max{d(x, y), αd(x, u) + (1− α)d(x, v), αd(y, u) + (1− α)d(y, v)}
≤ α max{d(x, y), d(x, u), d(y, u)}+ (1− α)max{d(x, y), d(x, v), d(y, v)}
= αG(x, y, u) + (1− α)G(x, y, v).

Hence, (X, G, w) is a convex Gb-metric space with s = 2p−1.

The next example shows that the mapping w defined in the above examples sometimes
may not be a convex structure on some Gb-metric spaces.

Example 4. Let L(X, m, ϑ) be a measure space and suppose that K denotes either R or C.
We define the Lp

K(ϑ) space as follows:

Lp
K(ϑ) =

{
x : X → K| x is measureable and

∫
X
|x|p < ∞

}
, 0 < p < 1.

We define G : Lp
K(ϑ)× Lp

K(ϑ)× Lp
K(ϑ)→ [0, ∞) by the formula

G(x, y, z) =
(∫

X
|x− y|pdν +

∫
X
|y− z|pdν +

∫
X
|x− z|pdν

)1/p
,
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where x, y, z ∈ Lp
K(ϑ). It is not hard to see that (X, G) is a Gb-metric space with s = 2

1/p.
Let w(x, y; α) = αx + (1− α)y for all x, y ∈ Lp

K(ϑ). Then, for all α ∈ (0, 1), we get

G(x, y, w(u, v; α)) =

(∫
X
|x− y|pdϑ +

∫
X
|y− w(u, v; α)|pdϑ +

∫
X
|x− w(u, v; α)|pdϑ

)1/p

≥
(∫

X
|x− y|pdϑ

) 1
p
+

(∫
X
(α|y− u|+ (1− α)|y− v|)pdϑ

) 1
p

+

(∫
X
(α|x− u|+ (1− α)|x− v|)pdϑ

) 1
p

>

(∫
X
|x− y|pdϑ

) 1
p
+

(∫
X

αp|y− u|pdϑ

) 1
p
+

(∫
X
(1− α)p|y− v|pdϑ

) 1
p

+

(∫
X

αp|x− u|pdϑ

) 1
p
+

(∫
X
(1− α)p|x− v|pdϑ

) 1
p

=αG(x, y, u) + (1− α)G(x, y, v),

which implies that w is not a convex structure on X.

The following properties are consequences of Definition 8.

Proposition 4. Let (X, G, w) be a convex Gb-metric space. If α ∈ (0, 1), then Gb-metric G is
symmetric.

Proof. If x = y, then obviously G(x, x, y) = G(x, y, y) holds. Suppose that x 6= y. Due to
α < 1, it is not difficult to see that x 6= w(x, y; α) and y 6= w(x, y; α). Indeed, if x = w(x, y; α),
we have

G(x, y, y) = G(w(x, y; α), y, y) ≤ αG(x, y, y),

a contradiction. Therefore, x 6= w(x, y; α). Using similar arguments, we get y 6= w(x, y; α).
Now consider

G(x, y, y) ≤ G(x, y, w(x, y; α)) ≤ αG(x, y, x) + (1− α)G(x, y, y).

This implies that G(x, y, y) ≤ G(x, x, y). In addition

G(x, x, y) ≤ G(x, w(x, y; α), y) ≤ αG(x, x, y) + (1− α)G(x, y, y).

This implies that G(x, x, y) ≤ G(x, y, y). By induction, we have G(x, x, y) =
G(x, y, y).

Now we generalize Banach’s contraction principle for convex Gb-metric space as
follows:

Theorem 1. Let (X, G, w) be a complete convex Gb-metric space with constant s ≥ 1 and T :
X → X be a mapping such that

G(Tx, Ty, Tz) ≤ λG(x, y, z)

for all x, y, z ∈ X and λ ∈ [0, 1). Suppose that the sequence {xn} is generated by the Mann
iterative process and x0 ∈ X. If the sequence {αn} ∈ (0, 1) converges to α < 1−s2λ

s2−s2λ
and λ < 1

s2 ,
then T has a unique fixed point x∗ in X. Moreover T is G-continuous at x∗.

Proof. For any n ∈ N0, we have

G(xn, xn, xn+1) = G(xn, xn, w(xn, Txn; αn)) ≤ (1− αn)G(xn, xn, Txn).
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Thanks to Definition 8 and Proposition 4, we obtain

G(xn, xn, Txn) = G(xn, Txn, Txn)

≤ s[G(xn, Txn−1, Txn−1) + G(Txn−1, Txn, Txn)]

≤ s[G(w(xn−1, Txn−1; αn−1), Txn−1, Txn−1) + λG(xn−1, xn, xn)]

≤ s[αn−1G(xn−1, Txn−1, Txn−1) + λ(1− αn−1)G(xn−1, xn−1, Txn−1)]

= s[αn−1 + λ(1− αn−1)]G(xn−1, xn−1, Txn−1).

Set kn = s[αn + λ(1− αn)]. By the hypothesis, we get lim
n→∞

kn = sα + sλ(1− α) < 1
s .

Thus we have

G(xn, xn, Txn) ≤ kn−1G(xn−1, xn−1, Txn−1) ≤ . . . ≤
n−1

∏
i=0

kiG(x0, x0, Tx0).

Furthermore, we get that

G(xn, xn, xn+1) ≤ (1− αn)G(xn, xn, Txn) ≤
n−1

∏
i=0

kiG(x0, x0, Tx0).

For any p ∈ N, we have

G(xn, xn, xn+p) =G(xn, xn+p, xn+p)

≤sG(xn, xn+1, xn+1) + sG(xn+1, xn+p, xn+p)

≤sG(xn, xn+1, xn+1) + s2G(xn+1, xn+2, xn+2) + . . . + spG(xn+p−1, xn+p, xn+p)

≤s
n

∏
i=0

kiG(x0, x0, Tx0)G(x0, x0, Tx0) + s2
n+1

∏
i=0

kiG(x0, x0, Tx0) + . . .

+ sp
n+p−1

∏
i=0

kiG(x0, x0, Tx0)

=

[
s

n

∏
i=0

ki + s2
n+1

∏
i=0

ki + . . . + sp
n+p−1

∏
i=0

ki

]
G(x0, x0, Tx0).

Let Zn+i = si+1
n+i
∏
i=0

ki, i = 0, 1, 2, . . . , p− 1. Then we deduce that

G(xn, xn, xn+p) ≤
(
Zn + Zn+1 + . . . + Zn+p−1

)
G(x0, x0, Tx0).

Notice that

lim
i→∞

sup
Zn+i+1

Zn+i
= lim

i→∞
sup

si+2
n+i+1

∏
i=0

ki

si+1
n+i
∏
i=0

ki

= lim
i→∞

sup skn+i+1 < 1.

By D’Alembert’s test, we can deduce that
∞
∑

i=0
Zi is convergent which yields

lim
n→∞

∞
∑

i=n
Zn = 0. Hence, we get lim

n→∞
G(xn, xn, xn+p) = 0, which implies that {xn} is a

Cauchy sequence in X. Since (X, G, w) is a complete convex Gb-metric space, there exists
x∗ ∈ X such that lim

n→∞
G(xn, xn, x∗) = 0. Note that

G(x∗, Tx∗, Tx∗) ≤ s[G(x∗, xn, xn) + G(xn, Tx∗, Tx∗)]

≤ sG(x∗, xn, xn) + s2[G(xn, Txn, Txn) + G(Txn, Tx∗, Tx∗)]

≤ sG(x∗, xn, xn) + s2G(xn, Txn, Txn) + s2λG(xn, x∗, x∗);

letting n→ ∞, we deduce G(x∗, Tx∗, Tx∗) = 0 which implies Tx∗ = x∗. Thus x∗ is a fixed
point of T. Suppose that x∗, y∗ ∈ X are two distinct fixed points of T. Then

0 < G(x∗, x∗, y∗) = G(Tx∗, Tx∗, Ty∗) ≤ λG(x∗, x∗, y∗),
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which is a contradiction. Therefore, we must have G(x∗, x∗, y∗) = 0. To see that T is
G-continuous at a fixed point x∗, let {yn} be a sequence such that lim

n→∞
yn = x∗. Then

G(x∗, Tyn, Tyn) = G(Tx∗, Tyn, Tyn) ≤ λG(x∗, yn, yn).

Taking the limit as n → ∞, we obtain that lim
n→∞

G(x∗, Tyn, Tyn) = 0 which implies

lim
n→∞

Tyn = x∗ = Tx∗. Combining this with Proposition 4, we have that T is G-continuous

at x∗.

Let us give an example illustrating the above theorem.

Example 5. Let X = R+ ∪ {0} and Tx = x
3 for all x ∈ x. For any x, y, z ∈ X, we define

G : X× X× X → [0, ∞) with the formula

G(x, y, z) =
[

1
3
(|x− y|+ |y− z|+ |x− z|)

]2
,

while the mapping is defined by

w(x, y; α) = αx + (1− α)y.

Then (X, G, w) is a convex Gb-metric space with s = 2. Set xn+1 = w(xn, Txn; αn) and
αn = 1

8 . For any u, v, x, y ∈ X, it is not difficult to see that T satisfies

G(Tx, Ty, Tz) ≤ 1
9

G(x, y, z) ≤ λG(x, y, z),

for λ ∈ [0, 1
4 ). We choose x0 ∈ X\{0}; according to xn+1 = w(xn, Txn; αn), we have xn =

1
8 xn−1 +

7
8 Txn−1. Combining with Tx = x

3 , we obtain xn = 1
8 xn−1 +

7
24 xn−1 = 5

12 xn−1, that
is, xn = 5

12 xn−1. Then we have xn = ( 5
12 )

nx0 and Txn = 1
3 × ( 5

12 )
nx0. Let n → ∞; we get

xn → 0 ∈ X and Txn → 0 ∈ X. Hence, 0 is a fixed point of T in X. Suppose x∗, y∗ ∈ X are two
distinct fixed points of T. Thus we have

G(x∗, x∗, y∗) = G(Tx∗, Tx∗, Ty∗) ≤ 1
8

G(x∗, x∗, y∗),

which shows that G(x∗, x∗, y∗) = 0, that is, x∗ = y∗. Thus 0 is a unique fixed point of T.

We denote the set of all fixed points of T by F(T), that is, F(T) = {x ∈ X : Tx = x}.

Theorem 2. Let (X, G, w) be a complete convex Gb-metric space with constant s ≥ 1 and T :
X → X be a mapping such that for all x, y, z ∈ X and β > 0.

G(Tx, Ty, Tz) ≤λ1
G(x, x, y)G(y, y, x)

M(x, y)
+ λ2

G(x, x, Ty)G(y, y, Tx)
M(x, y)

+ λ3
G(y, y, z)G(z, z, y)

M(y, z)
+ λ4

G(y, y, Tz)G(z, z, Ty)
M(y, z)

+ λ5
G(x, x, z)G(z, z, x)

M(x, z)
+ λ6

G(x, x, Tz)G(z, z, Tx)
M(x, z)

,

where

M(x, y) = max{β, G(x, x, Tx), G(y, y, Ty)}
M(x, z) = max{β, G(x, x, Tx), G(z, z, Tz)}
M(y, z) = max{β, G(y, y, Ty), G(z, z, Tz)},

and λ1 + λ3 + λ5 ≤ 1
3s ,λ2 + λ4 + λ6 ≤ 1

3s . Suppose that the sequence {xn} is generated by the
Mann iterative process and x0 ∈ X. If the sequence {αn} ∈ [0, 1

2s2 ], then T has a fixed point, that
is, F(T) 6= ∅.
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Proof. For any n ∈ N0, we have

G(xn, xn, xn+1) = G(xn, xn, w(xn, Txn; αn)) ≤ (1− αn)G(xn, xn, Txn).

If xn = xn+1, then G(xn, Txn, Txn) = G(xn+1, Txn, Txn) ≤ αnG(xn, Txn, Txn), which
implies that xn = Txn and xn is a fixed point of T. So, assume that xn 6= xn+1 and xn 6= Txn.
From Definition 8 and Proposition 4, it follows that

G(xn, xn, Txn) = G(xn, Txn, Txn)

≤ s[G(xn, Txn−1, Txn−1) + G(Txn−1, Txn, Txn)]

≤ s[αn−1G(xn−1, Txn−1, Txn−1) + G(Txn−1, Txn, Txn)].

On the one hand, we can consider {G(Txn−1, Txn, Txn)} in the following cases.
Case 1 For any n ∈ N0, we have

G(Txn−1, Txn, Txn) ≤λ1
G(xn−1, xn−1, xn)G(xn, xn, xn−1)

M(xn−1, xn)
+ λ2

G(xn−1, xn−1, Txn)G(xn, xn, Txn−1)

M(xn−1, xn)

+ λ3
G(xn−1, xn−1, xn)G(xn, xn, xn−1)

M(xn−1, xn)
+ λ4

G(xn−1, xn−1, Txn)G(xn, xn, Txn−1)

M(xn−1, xn)

+ λ5
G(xn, xn, xn)G(xn, xn, xn)

M(xn, xn)
+ λ6

G(xn, xn, Txn)G(xn, xn, Txn)

M(xn, xn)

≤ (λ1 + λ3)
((1− αn−1)G(xn−1, xn−1, Txn−1))

2

M(xn−1, xn)

+ (λ2 + λ4)
αn−1G(xn−1, xn−1, Txn)G(xn−1, xn−1, Txn−1)

M(xn, xn−1)
+ λ6G(xn, xn, Txn)

≤(1− αn−1)
2(λ1 + λ3)G(xn−1, xn−1, Txn−1)

+ αn−1(λ2 + λ4)s[G(Txn, xn, xn) + G(xn, xn−1, xn−1)] + λ6G(xn, xn, Txn)

≤[(1− αn−1)
2(λ1 + λ3) + αn−1(1− αn−1)s(λ2 + λ4)]G(xn−1, xn−1, Txn−1)

+ [αns(λ2 + λ4) + λ6]G(xn, xn, Txn).

Case 2 For any n ∈ N0, we have

G(Txn−1, Txn, Txn) =G(Txn, Txn−1, Txn)

≤λ1
G(xn, xn, xn−1)G(xn−1, xn−1, xn)

M(xn, xn−1)
+ λ2

G(xn, xn, Txn−1)G(xn−1, xn−1, Txn)

M(xn, xn−1)

+ λ3
G(xn, xn, xn)G(xn, xn, xn)

M(xn, xn)
+ λ4

G(xn, xn, Txn)G(xn−1, xn, Txn)

M(xn, xn)

+ λ5
G(xn−1, xn−1, xn)G(xn, xn, xn−1)

M(xn−1, xn)
+ λ6

G(xn−1, xn−1, Txn)G(xn, xn, Txn−1)

M(xn−1, xn)

≤(λ1 + λ5)
((1− αn−1)G(xn−1, xn−1, Txn−1))

2

M(xn−1, xn)

+ (λ2 + λ6)
αn−1G(xn−1, xn−1, Txn)G(xn−1, xn−1, Txn−1)

M(xn, xn−1)
+ λ4G(xn, xn, Txn)

≤(1− αn−1)
2(λ1 + λ5)G(xn−1, xn−1, Txn−1) + αn−1(λ2 + λ6)s[G(Txn, xn, xn)

+ G(xn, xn−1, xn−1)] + λ4G(xn, xn, Txn)

≤[(1− αn−1)
2(λ1 + λ5) + αn−1(1− αn−1)s(λ2 + λ6)]G(xn−1, xn−1, Txn−1)

+ [αn−1s(λ2 + λ6) + λ4]G(xn, xn, Txn).

Case 3 For any n ∈ N0, we have
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G(Txn−1, Txn, Txn) =G(Txn, Txn, Txn−1)

≤λ1
G(xn, xn, xn)G(xn, xn, xn)

M(xn, xn)
+ λ2

G(xn, xn, Txn)G(xn, xn, Txn)

M(xn, xn)

+ λ3
G(xn, xn, xn−1)G(xn−1, xn−1, xn)

M(xn, xn−1)
+ λ4

G(xn, xn, Txn−1)G(xn−1, xn−1, Txn)

M(xn, xn−1)

+ λ5
G(xn, xn, xn−1)G(xn−1, xn−1, xn)

M(xn, xn−1)
+ λ6

G(xn, xn, Txn−1)G(xn−1, xn−1, Txn)

M(xn, xn−1)

≤λ2G(xn−1, xn−1, Txn−1) + (λ3 + λ5)
((1− αn−1)G(xn−1, xn−1, Txn−1))

2

M(xn−1, xn)

+ (λ4 + λ6)
αn−1G(xn−1, xn−1, Txn)G(xn−1, xn−1, Txn−1)

M(xn, xn−1)

≤λ2G(xn, xn, Txn) + (1− αn−1)
2(λ3 + λ5)G(xn−1, xn−1, Txn−1)

+ αn−1(λ4 + λ6)s[G(Txn, xn, xn) + G(xn, xn−1, xn−1)]

≤[(1− αn−1)
2(λ3 + λ5) + αn−1(1− αn−1)s(λ4 + λ6)]G(xn−1, xn−1, Txn−1)

+ [αn−1(λ4 + λ6) + λ2]G(xn, xn, Txn).

Since G(Txn−1, Txn, Txn) = G(Txn, Txn−1, Txn−1), on the other hand, similar to the
procedure of the above cases, we can deduce that
Case 4 For any n ∈ N0, we have

G(Txn, Txn−1, Txn−1) ≤[(1− αn−1)
2(λ1 + λ3) + αn−1(1− αn−1)s(λ2 + λ4) + λ6]G(xn−1, xn−1, Txn−1)

+ αn−1s(λ4 + λ6)G(xn, xn, Txn).

Case 5 For any n ∈ N0, we have

G(Txn−1, Txn, Txn−1) ≤[(1− αn−1)
2(λ1 + λ5) + αn−1(1− αn−1)s(λ2 + λ6) + λ4]G(xn−1, xn−1, Txn−1)

+ αn−1s(λ2 + λ6)G(xn, xn, Txn).

Case 6 For any n ∈ N0, we have

G(Txn−1, Txn−1, Txn) ≤[(1− αn−1)
2(λ3 + λ5) + αn−1(1− αn−1)s(λ4 + λ6) + λ2]G(xn−1, xn−1, Txn−1)

+ αn−1s(λ4 + λ6)G(xn, xn, Txn).

In view of all the above cases, we deduce that

6G(Txn−1, Txn, Txn) ≤[4(1− αn−1)
2(λ1 + λ3 + λ5) + (4αn−1(1− αn−1)s + 1)(λ2 + λ4 + λ6)]

× G(xn−1, xn−1, Txn−1) + (4αn−1s + 1)(λ2 + λ4 + λ6)G(xn, xn, Txn).

Then we have

G(xn, xn, Txn) ≤s[αn−1 +
4(1− αn−1)

2(λ1 + λ3 + λ5) + (4αn−1(1− αn−1)s + 1)(λ2 + λ4 + λ6)

6
]

× G(xn−1, xn−1, Txn−1) +
(4αn−1s + 1)(λ2 + λ4 + λ6)

6
G(xn, xn, Txn)

≤1
s
[
1
2
+

5 + 2
s × (1− 1

2s2 )

18
]G(xn−1, xn−1, Txn−1) +

1
6

G(xn, xn, Txn)

≤1
s
(

1
2
+

5 + 28
27

18
)G(xn−1, xn−1, Txn−1) +

1
6

G(xn, xn, Txn),
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that is,

G(xn, xn, Txn) ≤
1
s
( 1

2 + 5×27+28
27×18 )
5
6

G(xn−1, xn−1, Txn−1).

Let η = 1
s
( 1

2+
5×27+28

27×18 )
5
6

; we also note that η < 1
s . It follows from the above

inequality that
G(xn, xn, Txn) ≤ ηG(xn−1, xn−1, Txn−1).

Moreover,
G(xn, xn, xn+1) ≤ ηG(xn, xn, Txn).

Thus, for any p ∈ N, we get

G(xn, xn, xn+p) =G(xn, xn+p, xn+p)

≤sG(xn, xn+1, xn+1) + sG(xn+1, xn+p, xn+p)

≤sG(xn, xn+1, xn+1) + s2G(xn+1, xn+2, xn+2) + . . . + spG(xn+p−1, xn+p, xn+p)

≤sηnG(x0, x0, Tx0) + s2ηn+1G(x0, x0, Tx0) + . . . + spηn+p−1G(x0, x0, Tx0)

≤ηn(s + s2η + s3η2 + . . .)G(x0, x0, Tx0)

≤ 1
1− sη

sηnG(x0, x0, Tx0),

and, letting n → ∞, we deduce that lim
n→∞

G(xn, xn, xn+p) = 0, which shows that {xn} is a

Cauchy sequence in X. Since (X, G, w) is a complete convex Gb-metric space, there exists
x∗ ∈ X such that lim

n→∞
G(xn, xn, x∗) = 0. Note that

G(Tx∗, x∗, x∗) ≤s[G(Tx∗, Txn, Txn) + sG(Txn, xn, xn) + sG(xn, x∗, x∗)]

≤s[(λ1 + λ3)
G(x∗, x∗, xn)G(xn, xn, x∗)

M(x∗, xn)
+ (λ2 + λ4)

G(x∗, x∗, Txn)G(xn, xn, Tx∗)
M(x∗, xn)

+ λ5
G(xn, xn, Txn)G(xn, xn, Txn)

M(xn, xn)
] + s2G(Txn, xn, xn) + s2G(xn, x∗, x∗)

≤s[(λ1 + λ3)G(x∗, x∗, xn)G(xn, xn, x∗)

+ (λ2 + λ4)s[G(x∗, xn, xn) + G(xn, Txn, Txn)]G(xn, xn, Tx∗)

+ λ5G(xn, xn, Txn)] + s2G(Txn, xn, xn) + s2G(xn, x∗, x∗).

Letting n→ ∞, we deduce G(x∗, x∗, Tx∗) = 0, which implies x∗ = Tx∗. Thus x∗ is a fixed
point of T.

Remark 3. The condition in Theorem 2 does not guarantee the uniqueness of the fixed point.
The following example illustrates this fact.

Example 6. Let X = {1, 2, 3} and G : X × X × X → [0, ∞) be a mapping for any x, y, z ∈ X
such that G(x, y, z) = G(y, x, z) = G(z, y, x) = . . . and G(1, 1, 1) = G(2, 2, 2) = G(3, 3, 3) =
0, G(1, 1, 2) = G(2, 2, 1) = 3, G(1, 1, 3) = G(3, 3, 1) = 4, G(2, 2, 3) = G(3, 3, 2) =
5, G(1, 2, 3) = 6. Then (X, d) is a complete Gb-metric space with s = 1. Let T be a mapping
defined by Tx = x for any x ∈ X. Set

F(x, y, z) =λ1
G(x, x, y)G(y, y, x)

M(x, y)
+ λ2

G(x, x, Ty)G(y, y, Tx)
M(x, y)

+ λ3
G(y, y, z)G(z, z, y)

M(y, z)
+ λ4

G(y, y, Tz)G(z, z, Ty)
M(y, z)

+ λ5
G(x, x, z)G(z, z, x)

M(x, z)
+ λ6

G(x, x, Tz)G(z, z, Tx)
M(x, z)

=(λ1 + λ2)G(x, x, y) + (λ3 + λ4)G(y, y, z) + (λ5 + λ6)G(x, x, z)
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For any x, y, z ∈ X, we have

F(x, y, z) =(λ1 + λ2)(G(x, x, y))2 + (λ3 + λ4)(G(y, y, z))2 + (λ5 + λ6)(G(x, x, z))2

F(z, x, y) =(λ3 + λ4)(G(x, x, y))2 + (λ5 + λ6)(G(y, y, z))2 + (λ1 + λ2)(G(x, x, z))2

F(y, z, x) =(λ5 + λ6)(G(x, x, y))2 + (λ1 + λ2)(G(y, y, z))2 + (λ3 + λ4)(G(x, x, z))2.

Therefore,

3F(x, y, z) = (
6

∑
i=1

λi)(G(x, x, y))2 + (
6

∑
i=1

λi)(G(y, y, z))2 + (
6

∑
i=1

λi)(G(x, x, z))2.

Now, we consider the following cases:
Case 1 If x = 1, y = 2, z = 3, then

3F(1, 2, 3) =(
6

∑
i=1

λi)(G(1, 1, 2))2 + (
6

∑
i=1

λi)(G(2, 2, 3))2 + (
6

∑
i=1

λi)(G(1, 1, 3))2

=(
6

∑
i=1

λi)(9 + 25 + 16) =
100

3
,

which implies

F(1, 2, 3) =
100

9
> G(T1, T2, T3) = G(1, 2, 3) = 6;

Case 2 If x = y = 1, z = 2, then

3F(1, 1, 2) =(
6

∑
i=1

λi)(G(1, 1, 1))2 + (
6

∑
i=1

λi)(G(1, 1, 2))2 + (
6

∑
i=1

λi)(G(1, 1, 2))2

=(
6

∑
i=1

λi)× (8 + 8) =
32
3

,

which implies

F(1, 1, 2) =
32
9

> G(T1, T1, T2) = G(1, 1, 2) = 3;

Case 3 If x = y = 1, z = 3, then

3F(1, 1, 3) =(
6

∑
i=1

λi)(G(1, 1, 1))2 + (
6

∑
i=1

λi)(G(1, 1, 3))2 + (
6

∑
i=1

λi)(G(1, 1, 3))2

=(
6

∑
i=1

λi)× (9 + 9) =
36
3

,

which implies

F(1, 1, 2) =
36
9
≥ G(T1, T1, T2) = G(1, 1, 2) = 4;

Case 4 If x = y = 2, z = 3, then

3F(2, 2, 3) =(
6

∑
i=1

λi)(G(2, 2, 2))2 + (
6

∑
i=1

λi)(G(2, 2, 3))2 + (
6

∑
i=1

λi)(G(2, 2, 3))2

=(
6

∑
i=1

λi)× (25 + 25) =
100

3
,

which implies

F(2, 2, 3) =
100

9
> G(T2, T2, T3) = G(2, 2, 3) = 5.

Therefore, we obtain that G(Tx, Ty, Tz) ≤ F(x, y, z) for any x, y, z ∈ X. Hence, all conditions
of Theorem 2 are satisfied and F(T) = {1, 2, 3}.
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The well-posedness of a fixed point problem has evoked much interest to many authors
(see [22–26]).

Definition 10 ([22,23]). Let (X, d) be a metric space and T : X → X be a mapping. The fixed
point problem of T is said to be well-posed if

(1) T has a unique fixed point x∗ ∈ X;
(2) For any sequence {xn} in X with lim

n→∞
d(xn, Txn) = 0, then lim

n→∞
d(xn, x∗) = 0.

We introduce the concept of well-posedness in Gb-metric space.

Definition 11. Let (X, G) be a Gb-metric space and T : X → X be a mapping. The fixed point
problem of T is said to be well-posed if

(1) T has a unique fixed point x∗ ∈ X;
(2) For any sequence {xn} in X, if lim

n→∞
G(xn, xn, Txn) = 0, then lim

n→∞
G(xn, xn, x∗) = 0, or, if

lim
n→∞

G(xn, Txn, Txn) = 0, then lim
n→∞

G(xn, x∗, x∗) = 0.

Theorem 3. Under the conditions of Theorem 2, if
6

∑
i=1

λi ≤ max{λ1 + λ2, λ3 + λ4, λ5 + λ6},

then the fixed point problem for T is well-posed.

Proof. Taking advantage of Theorem 2, we get that T has a fixed point x∗ ∈ X. We
shall prove that x∗ is a unique fixed point of T. Assume the contrary, that y∗ is another

fixed point of T. By virtue of the hypotheses, let
6
∑

i=1
λi ≤ λ1 + λ2, which is only true if

λ3 = λ4 = λ5 = λ6 = 0. Then we get

G(x∗, x∗, y∗) ≤ λ1
G(x∗, x∗, x∗)G(x∗, x∗, x∗)

β + M(x∗, x∗)
+ λ2

G(x∗, x∗, Tx∗)G(x∗, x∗, Tx∗)
β + M(x∗, x∗)

= 0,

that is, G(x∗, x∗, y∗) = 0, a contradiction. In the other cases, it is easy to get that
x∗ = y∗. Therefore, x∗ is a unique fixed point. Suppose that {yn} is a sequence in X
such that lim

n→∞
G(yn, yn, Tyn) = 0. Next, we discuss following cases.

Case 1 If
6
∑

i=1
λi ≤ λ1 + λ2, which implies that λ3 = λ4 = λ5 = λ6 = 0, we have

G(Tyn, x∗, x∗) =G(Tyn, Tyn, Tx∗)

≤λ1
G(yn, yn, yn)G(yn, yn, yn)

β + M(yn, yn)
+ λ2

G(yn, yn, Tyn)G(yn, yn, Tyn)

β + M(yn, yn)

=λ2G(yn, yn, Tyn).

Letting n→ ∞, we conclude that lim
n→∞

G(Tyn, x∗, x∗) = 0.

Case 2 If
6
∑

i=1
λi ≤ λ3 + λ4, which implies that λ1 = λ2 = λ5 = λ6 = 0, we have

G(Tyn, x∗, x∗) =G(Tyn, Tx∗, Tyn)

≤λ3
G(yn, yn, yn)G(yn, yn, yn)

M(yn, yn)
+ λ4

G(yn, yn, Tyn)G(yn, yn, Tyn)

M(yn, yn)

=λ4G(yn, yn, Tyn).

Letting n→ ∞, we conclude that lim
n→∞

G(Tyn, x∗, x∗) = 0.
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Case 3 If
6
∑

i=1
λi ≤ λ5 + λ6, which implies that λ1 = λ2 = λ3 = λ4 = 0, we have

G(Tyn, x∗, x∗) =G(Tx∗, Tyn, Tyn)

≤λ5
G(yn, yn, yn)G(yn, yn, yn)

M(yn, yn)
+ λ6

G(yn, yn, Tyn)G(yn, yn, Tyn)

M(yn, yn)

=λ6G(yn, yn, Tyn).

Letting n→ ∞, we conclude that lim
n→∞

G(Tyn, x∗, x∗) = 0.

By the above cases, we have G(Tyn, x∗, x∗) ≤ 1
3 (λ2 + λ4 + λ6)G(yn, yn, Tyn). Then

G(yn, x∗, x∗) ≤s[G(yn, Tyn, Tyn) + G(Tyn, x∗, x∗)]

≤s(1 + λ2 + λ4 + λ6)G(yn, yn, Tyn).

Letting n→ ∞, we conclude that lim
n→∞

G(yn, x∗, x∗) = 0, hence lim
n→∞

G(yn, yn, x∗) = 0.

If a map T satisfies F(T) = F(Tn), n ∈ N0, then T is said to have the P property [27,28].
Note that if T has a fixed point x∗, then x∗ is also a fixed point of Tn, but it is well-known
that the converse is not true.

Theorem 4. Let (X, G) be a Gb-metric space with coefficient s ≥ 1 and T : X → X be a mapping
with F(T) 6= ∅ satisfying

G(Tx, Tx, T2x) ≤ ηG(x, x, Tx) (2)

for any x ∈ X, where η ∈ [0, 1). Then T has the P property.

Proof. Obviously, we can assume that n > 1. Let z = Tnz for all n > 1. We have

G(z, z, Tz) = G(TTn−1z, TTn−1z, T2Tn−1z)

≤ ηG(Tn−1z, Tn−1z, TTnz)

= ηG(TTn−1z, TTn−2z, T2Tnz)

≤ η2G(Tn−1z, Tn−2z, TTnz)

≤ . . .

≤ ηnG(z, z, Tz).

Letting n→ ∞, we get G(z, z, Tz) = 0, which implies that z = Tz.

Theorem 5. Under the conditions of Theorem 2, T has the P property.

Proof. For any x ∈ X, we have

G(Tx, Tx, T2x) =G(Tx, Tx, TTx)

≤λ1
G(x, x, x)G(x, x, x)

1 + M(x, x)
+ λ2

G(x, x, Tx)G(x, x, Tx)
1 + M(x, x)

+ (λ3 + λ5)
G(x, x, Tx)G(Tx, Tx, x)

1 + M(x, Tx)
+ (λ4 + λ6)

G(x, x, T2x)G(Tx, Tx, Tx)
1 + M(x, Tx)

≤(λ2 + λ3 + λ5)G(x, x, Tx),

which implies that

G(Tx, Tx, T2x) ≤ (λ2 + λ3 + λ5)G(x, x, Tx).

Note that λ2 + λ3 + λ5 < 1; accordingly, (2) is satisfied. Thus, T has the P property.
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3. Application

In this section, we apply Theorem 1 to guarantee the existence of a solution to the
following integral equation:

x(t) = f (t) + γ
∫ b

a
u(t, τ)K1(τ, x(τ))dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ (3)

for t ∈ [a, b], where f : [a, b] → R, u : [a, b]× [a, b] → R and K1, K2 : [a, b]× R → R are
continuous functions. Let X = C([a, b],R) denote the space of all continuous functions on
[a, b]. We endow with the Gb-metric mapping

G(x, y, z) =

(
sup

t∈[a,b]
|x(t)− y(t)|+ sup

t∈[a,b]
|y(t)− z(t)|+ sup

t∈[a,b]
|x(t)− z(t)|

)2

,

while the function w : X × X × (0, 1) → X is defined as w(x, y; α) = αx + (1 − α)y.
It is clear that (X, G, w) is a complete convex Gb-metric space with s = 2.
Define T : X → X by

Tx(t) = f (t) + γ
∫ b

a
u(t, τ)K1(τ, x(τ))dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ. (4)

Obviously, T is well-defined. In order to find a solution for integral Equation (3), it is
sufficient to find a fixed point of the operator T.

Now, we state the following consequence.

Theorem 6. Assume that the following conditions are satisfied:

(1) γ ≤ 1;

(2)
∫ b

a u(t, τ)d(τ) ≤ 1;

(3) |Ki(τ, x(τ))− Ki(τ, y(τ))| ≤
√

5
5 |x− y|, i = 1, 2, and

∫ b

a
u(t, τ)|K1(τ, y(τ)) + K2(τ, x(τ))|dτ ≤ 1.

Then, the integral Equation (3) has a unique solution in X.

Proof. It is clear that any fixed point of (4) is a solution of (3). Using the condtions of (1)–(3),
we obtain
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G(Tx, Ty, Ty) =

(
2 sup

t∈[a,b]
|Tx(t)− Ty(t)|

)2

≤γ2

(
2 sup

t∈[a,b]

∣∣∣∣∫ b

a
u(t, τ)K1(τ, x(τ))dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ

−
∫ b

a
u(t, τ)K1(τ, y(τ))dτ

∫ b

a
u(t, τ)K2(τ, y(τ))dτ

∣∣∣∣)2

≤γ2

(
2 sup

t∈[a,b]

∣∣∣∣∫ b

a
u(t, τ)|K1(τ, x(τ))− K1(τ, y(τ))|dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ

+
∫ b

a
u(t, τ)K1(τ, y(τ))dτ

∫ b

a
u(t, τ)|K2(τ, x(τ))− K2(τ, y(τ))|dτ

∣∣∣∣)2

≤4γ2

(
sup

t∈[a,b]
sup

τ∈[a,b]
|K1(τ, x(τ))− K1(τ, y(τ))|

∣∣∣∣∣ sup
t∈[a,b]

∫ b

a
u(t, τ)dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ

∣∣∣∣∣
+ sup

t∈[a,b]
sup

τ∈[a,b]
|K2(τ, x(τ))− K2(τ, y(τ))|

∣∣∣∣∫ b

a
u(t, τ)K1(τ, y(τ))dτ

∫ b

a
u(t, τ)dτ

∣∣∣∣
)2

≤4γ2

(√
5

5
sup

t∈[a,b]
|x− y| sup

t∈[a,b]

∣∣∣∣∫ b

a
u(t, τ)dτ

∫ b

a
u(t, τ)K2(τ, x(τ))dτ

+
∫ b

a
u(t, τ)K1(τ, y(τ))dτ

∫ b

a
u(t, τ)dτ

∣∣∣∣)2

≤4
5

γ2 sup
t∈[a,b]

(∫ b

a
u(t, τ)dτ

)2
(

sup
t∈[a,b]

|x− y| sup
t∈[a,b]

∣∣∣∣∫ b

a
u(t, τ)K2(τ, x(τ))dτ

+
∫ b

a
u(t, τ)K1(τ, y(τ))dτ

∣∣∣∣)2

≤4
5

γ2

(
2 sup

t∈[a,b]
|x− y| sup

t∈[a,b]

∣∣∣∣∫ b

a
u(t, τ)|K1(τ, y(τ)) + K2(τ, x(τ))|dτ

∣∣∣∣
)2

≤1
5

(
2 sup

t∈[a,b]
|x− y|

)2

=
1
5

G(x, y, y),

which satisfies all conditions of Theorem 1 with y = z. Hence, we can get that the integral
Equation (3) has a unique solution x(t) satisfying lim

n→∞
xn(t) = x(t) where the sequence

{xn} is defined by xn = αn−1xn−1 + (1− αn−1)Txn−1, αn ∈ (0, 1
4 ).

Author Contributions: D.J., C.L. and Y.C. contributed equally and significantly in writing this article.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Heilongjiang Province of
China (Grant No. YQ2021C025).

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our thanks to the anonymous referees and the editor
for their constructive comments and suggestions, which greatly improved this article.

Conflicts of Interest: The authors declare no conflict of interest.



Axioms 2023, 12, 108 16 of 16

References
1. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3,

133–181. [CrossRef]
2. Gahler, S. 2-metrische Raume und ihre topologische Strüktür. Math. Nachr. 1963, 26, 115–148. [CrossRef]
3. Dhage, B.C. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc. 1992, 84, 329–336.
4. Czerwik, S. Contraction mappings in metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11.
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