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Abstract: Multi-objective evolutionary algorithms mainly include the methods based on the Pareto
dominance relationship and the methods based on decomposition. The method based on Pareto
dominance relationship will produce a large number of non-dominated individuals with the increase
in population size or the number of objectives, resulting in the degradation of algorithm performance.
Although the method based on decomposition is not limited by the number of objectives, it does
not perform well on the complex Pareto front due to the fixed setting of the weight vector. In this
paper, we combined these two different approaches and proposed a Multi-Objective Evolutionary
Algorithm based on Decomposition with Dual-Population and Adaptive Weight strategy (MOEA/D-
DPAW). The weight vector adaptive adjustment strategy is used to periodically change the weight
vector in the evolution process, and the information interaction between the two populations is
used to enhance the neighborhood exploration mechanism and to improve the local search ability
of the algorithm. The experimental results on 22 standard test problems such as ZDT, UF, and
DTLZ show that the algorithm proposed in this paper has a better performance than the mainstream
multi-objective evolutionary algorithms in recent years, in solving two-objective and three-objective
optimization problems.

Keywords: evolutionary algorithm; multi-objective optimization; dual-population; weight adaption

1. Introduction

In recent years, the field of multi-objective optimization has developed rapidly. A multi-
objective optimization problem (MOP) refers to the existence of two or more conflicting
objectives, the optimization of one which may lead to the deterioration of the other ob-
jectives, so that the globally unique optimal solution cannot be obtained, as in a single
objective optimization problem. Multi-Objective Evolutionary Algorithm (MOEA) is often
used to solve this kind of problem, which is usually based on the continuous iterative
evolution of individuals in the population, and it finally obtains the solution set with
uniform distribution and good convergence.

The current mainstream MOEAs can be divided into three categories, respectively:
the method based on the Pareto dominance relationship, the method based on evaluation
metrics, and the method based on decomposition. The basic idea of MOEAs, based on
Pareto dominance relationship is to generate the next generation population according
to certain hybridization and mutation strategies, order all individuals in the population
according to the dominance relationship, and screen individuals according to the degree of
individual dominance and the sparsity of the objective space. Deb et al. [1] improved the
classical NSGA algorithm, introduced the concept of congestion degree, proposed the elite
selection strategy, and designed the fast non-dominated sorting algorithm, NSGA-II, with
the elite selection strategy. On the basis of this algorithm framework, they also proposed
a multi-objective evolutionary algorithm, NSGA-III [2], based on reference points, which
pays more attention to the non-dominant individuals in the population, and achieves a
good performance in solving high-dimensional MOPs. Yuan et al. [3] improved the NSGA-
II algorithm for job-shop scheduling problems in an intelligent manufacturing environment,
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adopted a process-based random mutation strategy and a crossover method to generate a
new generation of population, and adopted the analytic hierarchy process to determine the
optimal solution. Zhang et al. [4] introduced the rotation characteristic into the simulated
binary crossover operator SBX and proposed an improved simulated binary crossover
algorithm RSBX based on rotation and the combination with NSGA-II to significantly
improve the performance of the algorithm. Yi et al. [5] introduced an adaptive mutation
operator to improve the standard NSGA-III algorithm and to enhance the ability of the
algorithm to solve complex optimization problems. Based on the NSGA-III algorithm,
Cui et al. [6] used the selection operator to determine the reference point of the minimum
ecological digit, and then selected an individual with the shortest boundary intersection
distance, based on punishment, to better balance convergence and diversity. Gu et al. [7]
introduced the information feedback model and proposed an improved algorithm, IFM-
NSGA-III, which used the historical information of individuals in previous generations in
the updating process of the current generation.

The method is based on evaluation metrics such as Inverted Generational Distance
(IGD) and Hypervolume (HV), which are used to guide the population closer to the Pareto
front. Sun et al. [8] proposed a method based on IGD metrics in order to select excellent in-
dividuals in each generation of individuals, and designed an efficient dominant comparison
method to rank the results. Hong et al. [9] developed a new metrics-based algorithm that
uses an enhanced diversification mechanism, combined a new solution generator and an
external archive, and used a double local search mechanism to search different subregions
of the Pareto front. Yuan et al. [10] introduced a cost-value-based distance into the target
space to evaluate the contributions of individuals to explore potential fields, proposed a
metrics-based CHT algorithm and embedded it into the evolutionary algorithm, achieving
good experimental results in the MOPs where individuals appear in the local infeasible
region. Li et al. [11] proposed a multi-modal MOEA based on weighted indexes, named
MMEA-WI, and integrated the diversity information of solutions in the decision space
into a performance index of target space to ensure that the Pareto front can be approached
more effectively. Li et al. [12] believed that the evaluation of evolutionary algorithms
is essentially a binary classification, and then proposed an online asynchronous training
method of a support vector machine model based on empirical kernel, to classify promising
and unpromising solutions, and then reversely added the newly generated solutions as
training samples to improve the accuracy of the classifier. Garcia et al. [13] proposed an
metrics-based algorithm COARSE-EMOA to solve the MOPs with equality constraints.
A reference set of a feasible Pareto front was used to calculate the generation distance, and
then it was used as the density estimation to obtain a better solution set distributed near
the Pareto front.

Zhang et al. [14] proposed a Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D), which provided a new idea for MOEAs. This kind of algorithm no
longer uses the traditional Pareto dominance relationship to guide the population evolution,
but it uses the aggregation function to decompose the multi-objective problem into a number
of simple single-objective problems, and co-evolve. The weight vector is used to control the
direction of population evolution, which greatly reduces the computational complexity of
the algorithm and has strong searching ability. It has become a classic method to solve MOPs,
and has been continuously improved and extended by scholars, based on this algorithm. Zhu
et al. [15] proposed a decomposed multi-objective evolutionary algorithm MOEA/D-DAE
based on detection escape strategy in order to solve the problem that the algorithm is prone to
stagnation in the complex feasible domain of constrained multi-objective optimization prob-
lems. Cao et al. [16] used the multi-population heuristic algorithm PBO as an effective search
engine, and proposed a new multi-objective evolutionary algorithm MOEA/D-PBO based
on decomposition. Wang et al. [17] proposed an improved algorithm AES-MOEA/D based
on an adaptive evolutionary strategy, and adopted the evolutionary strategy of competition
between the SBX and DE operators to overcome the problem of species diversity degradation
caused by a single operator. Xie et al. [18] designed an improved algorithm, DTR-MOEA/D,
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with local target space knowledge and the dynamic transfer of reference points, established
the dynamic transfer criterion of reference points according to the population density rela-
tionship in different regions, and adopted the population diversity enhancement strategy
guided by regional target space knowledge to improve the population diversity. Chen et
al. [19] used the improved directions in the current and historical populations to generate
new solutions, and introduced this mechanism into the MOEA/D-PBI algorithm, greatly
improving the convergence ability of the algorithm.

In solving practical problems, Zhang et al. [20] designed a novel integral squeeze
film bearing damper based on the multi-objective optimization problem, and combined
the non-dominated sorting genetic algorithm and grey correlation analysis for the multi-
objective optimization of stiffness and stress. Akbari et al. [21] designed and optimized
the blades of small wind turbines to maximize power output and starting torque. They
took the chord length and the twist angle as design variables, and used a multi-objective
optimization study to evaluate the optimal blade geometry. Jiang et al. [22] proposed
a multi-objective optimization procedure combined with the NSGA-II algorithm with
entropy weighted TOPSIS for the lightweight design of a dump truck carriage, and the
multi-objective lightweight optimization of the dump truck carriage was carried out based
on the Kriging surrogate model and the NSGA-II algorithm.

On the basis of referring to plenty of relevant work and experimental analysis, this
paper makes a comprehensive comparison and analysis of two major methods, respectively:
MOEAs based on Pareto dominance relationship and MOEAs based on decomposition.
MOEAs based on Pareto dominance relationship usually use a non-dominated sorting
algorithm to sort population individuals and to introduce a crowding degree operator
to filter out overlapping individuals in the population, which can better maintain the
diversity of population individuals, but there is also an obvious problem, where in the face
of MOPs with a complex Pareto front, the searching ability of the algorithm is poor, and
the convergence rate of the individual population is slow. However, MOEAs based on
decomposition are different. Since the decomposition method is used to transform multi-
objective optimization problems into multiple single-objective optimization problems,
the individual searching ability of such methods is strong, and it is easier to search the
boundary of Pareto front, but the problem of an uneven searching ability is likely to occur
when facing complex MOPs. Therefore, it is very necessary to combine these two types of
mainstream algorithms and to put forward a more comprehensive method which can avoid
the defects of these two types of algorithms. At the same time, some new mechanisms and
strategies should be introduced to ensure the smooth progress of the search process. Based
on the above analysis, the research roadmap of the algorithm proposed in this paper is
formed, as shown in Figure 1.

In this paper, we combined MOEAs based on Pareto dominance relationship and
MOEAs based on decomposition, and proposed an improved algorithm called MOEA/D,
with Dual-Population and Adaptive Weight strategy (MOEA/D-DPAW). In the process
of iterative evolution, two different populations are set up to complete the evolution
in their own way. The two groups exchange and share information with each other,
resulting in better individuals. Furthermore, MOEA/D-DPAW used the Pareto dominance
relationship between individuals and the crowding degree operator to ensure the diversity
of the population, and used the weight vector adaptive adjustment strategy and enhanced
neighborhood search mechanism to improve the local search ability of the algorithm in
complex space to ensure the convergence of the algorithm. The final solution set obtained
by the algorithm can maintain a more uniform distribution of a population of individuals
on the premise of approximately fitting the real Pareto front.

The remainder of the paper is organized as follows. Section 2 introduces the previous
knowledge. In the Section 3, the proposed algorithm framework and related improvement
strategies are described in detail. Section 4 is the experimental part which compares
and analyzes the proposed algorithm with the mainstream evolutionary multi-objective
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optimization algorithm in recent years. Section 5 summarizes the main work of this paper
and points out further research directions.

Method Based on
Decomposition

Method Based on  
Pareto Dominance

Strong Search Ability 
Easily Trapped in Local Space

Good Population Diversity  
Weak Search Ability

MOEA/D-DPAW

Adaptive Weight  
Adjustment Strategy

Enhanced Neighborhood
Search Mechanism

Combine the two methods

Dual-Population

Start

End

Figure 1. Research Roadmap of the Proposed Algorithm MOEA/D-DPAW.

2. Previous Knowledge
2.1. Problem Model

Taking minimization MOP as an example, it can be formulated as follows:

minimize F(x) = ( f1(x), f2(x), . . . , fm(x))T

subject to x ∈ X
(1)

where x = (x1, x2, . . . , xn)T ∈ X is an n-dimensional decision vector in space Rn, and X rep-
resents the decision space formed by all decision variables. y = ( f1(x), f2(x), . . . , fm(x)) ∈
Y is an m-dimensional optimization objective, and Y represents the objective space formed
by all optimization objectives. m is the number of optimization objectives. For a vi-
able solution x∗ ∈ X, if and only if there is no other viable solution x ∈ X satisfying
fi(x) ≤ fi(x∗), i = 1, 2, . . . , m, and there is at least one j ∈ {1, 2, . . . , m} that makes
f j(x) ≤ f j(x∗) valid, then x is called a Pareto optimal solution of the MOP. In the de-
cision space, all feasible solutions satisfying the Pareto optimal solution conditions form
the Pareto optimal solution set PS ⊆ X. In the corresponding objective space, the definition
of Pareto front is PF = {F(x)|x ∈ PS}. The essence of MOPs is to make the individuals in
the population approach the real Pareto front, and to finally find a group of compromise
solutions approaching the Pareto front.
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2.2. Dominance Relationship and Crowding Degree

For MOPs, it is assumed that individuals p and q are two solutions in the population. If
p is better than q, then p dominates q. Specifically, two conditions must be satisfied: (1) For
all targets, individual p is no worse than q; that is, fi(p) ≤ fi(q), i = 1, 2, . . . , m. (2) There
is at least one objective for which p is better than q, that is, ∃i ∈ {1, 2, . . . , m} satisfies
fi(p) < fi(q). In the process of population evolution, there will be many non-dominated
individuals. When the population size exceeds the capacity initially set, it is necessary to
use the fast non-dominated sorting algorithm to select individuals with high convergence
as much as possible, and to maintain the diversity of the population through the crowding
degree operator. In this paper, the crowding degree of individual p in population P is
defined as follows:

Crowding(p) = 1− ∏
q∈P,q 6=p

f (p, q) (2)

f (p, q) =


distance(p, q)

R
, distance(p, q) ≤ R

1, otherwise
(3)

where Crowding(p) represents the crowding degree of individual p, and distance(p, q)
represents the Euclidean distance between individuals p and q in the decision space. R is
the size of the neighborhood radius. According to the Equations (2) and (3), the crowding
degree of individuals is always within the range of [0,1]. The crowding degree of an
individual in a population depends on the number and distance of other individuals in
its neighborhood. The greater the number of individuals in the neighborhood, or the
smaller the Euclidean distance between an individual in the neighborhood and the current
individual, the greater the crowding degree of the individual will be, and the easier it
will be to be eliminated during population maintenance. In the process of the population
maintenance operation, the most crowded individuals are constantly removed. If there
are multiple individuals with the most crowded degree, one of them will be randomly
selected, and then the crowding degree of other individuals belonging to the removed
individual neighborhood will be updated. This process is repeated until the population
size is satisfied.

2.3. Method of Decomposition

In the MOEA/D algorithm and its variants, the core idea is to split the multi-objective
optimization problem into a set of scalar optimization problems, and to optimize a set of
scalar optimization problems simultaneously. Each subproblem only needs to combine the
information provided by several neighboring subproblems to complete the optimization
calculation. First, a set of weight vectors λ = (λ1, λ2, . . . , λm)T , λi ≥ 0 should be initialized
to meet the condition ∑m

i=1 λi = 1. There are three common decomposition methods for all
decision variables x in the decision space x ∈ X, as follows:

• Weighted Sum approach: The weight vector is used as a coefficient corresponding to
the objective function one by one, and the mathematical formula is shown as below:

minimize gws(x|λ) =
m

∑
i=1

λi fi(x) (4)

where gws is the aggregate function that needs to be minimized. The idea of the
decomposition method is simple, and it is only applicable to the regular Pareto front,
and the effect is poor when dealing with problems with a complex Pareto front.

• Tchebycheff approach: The decomposition method formula of this method is shown
as below:

minimize gte(x|λ, z∗) = max1≤i≤m{λi| fi(x)− z∗i |} (5)
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where gte is the aggregate function that needs to be minimized, and z∗ = (z∗1 , z∗2 , . . . , z∗m)T

is a set of reference points satisfying z∗i ≤ min{ fi(x)|x ∈ X}. For any Pareto optimal
solution x, there will be a set of weight vector λ which makes x become the optimal
solution in the Tchebycheff equation. This method can be used to obtain different Pareto
optimal solutions by changing the weight vector. Because this method has a good effect
on most problems, has universality, and is easy to implement, so in the experimental
part, this paper chooses the Tchebycheff decomposition method.

• Penalty-based Boundary Intersection approach: This method attempts to find the
intersection point between a group of rays passing through the target space from
an ideal point and the Pareto front. If these rays are uniformly distributed, then the
intersection points found will be approximately uniformly distributed:

minimize gpbi(x|λ, z∗) = d1 + θd2 (6)

d1 =

∥∥(z∗ − F(x))Tλ
∥∥∥∥λ

∥∥ (7)

d2 =‖ F(x)− (z∗ − d1
λ∥∥λ
∥∥ ) ‖ (8)

where gpbi is the aggregate function that needs to be minimized, θ is the penalty
parameter, and the meaning of z∗ is the same as the Tchebycheff approach. Let y be
the projection point of F(x) on the ray, with z∗ as the origin and −λ as the direction
vector, then d1 is the distance between y and z∗, and d2 is the distance between y and
F(x). When using this method, the penalty parameter θ is very important, and the
setting of θ will directly determine the final performance of the algorithm. However,
when solving practical problems, it is difficult to determine the size of parameter θ at
the beginning, and so this method is not used in the experimental part of this paper.

3. Proposed Algorithm
3.1. Framework

In this paper, we proposed a Multi-Objective Evolutionary Algorithm Based on Decom-
position with Dual-Population and Adaptive Weight strategy (MOEA/D-DPAW). The frame-
work of the algorithm is shown in Figure 2. There are two different populations in MOEA/D-
DPAW, which are respectively used in the evolutionary algorithm based on decomposition
and the evolutionary algorithm based on Pareto domination. During each iteration, two
populations evolve in their own way, exchanging and sharing information with each other,
resulting in better individuals.

In order to ensure the convergence of the algorithm, the evolutionary population P1
will continue to evolve according to the MOEA/D based on the Tchebycheff decomposition
approach. Firstly, the corresponding weight vector will be assigned to all individuals, and
then the genetic operator will be used for each subproblem to generate new solutions in its
neighborhood. After that, the update operation of the population individuals and ideal
points will be completed. An external population EP is maintained in the process, to collect
all the non-dominant solutions during the evolution of the population. In addition, because
the evenly distributed fixed weight vector is not conducive to solving the complex MOPs, in
the process of population P1 evolution, MOEA/D-DPAW uses the weight vector adaptive
adjustment strategy to periodically adjust the weight vector, which makes the algorithm
more applicable to practical problems, and makes the population of individuals closer to
the Pareto front. This is covered in more detail in Section 3.2. At the same time, due to the
limitation of neighborhood, the individual exploration of population P1 will always focus
on some specific areas in the objective space, so the algorithm has a poor search ability
when facing a complex Pareto front. To solve this problem, MOEA/D-DPAW uses the
enhanced neighborhood exploration mechanism. By means of further interaction between
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the individuals in population P2 and population P1, the exploration range of individuals in
population P1 is expanded, thus further improving the search ability of the algorithm. This
part will be introduced in detail in Section 3.3.

Start

P1:Population Based on
Decomposition

P2:Population Based on
Pareto Dominance

Weight Assignment

Crossover & Mutation by
Aggregation Function

Periodically Adjust  
Weight Vector

Population Size > N

Population Maintenance

Enhanced Individual Exploration

Terminated

End

N

Y

N

Y

Individual  
Copy

Individual
Replacement

Evolution Based on
Decomposition

Evolution Based on
Pareto Dominance

Figure 2. Framework of the Proposed Algorithm MOEA/D-DPAW.

In terms of maintaining the individual diversity of the population, MOEAs based on
decomposition often lack some specific methods to avoid the problem of uneven distribu-
tion of individuals within the population. In the face of complex MOPs, the individuals
of the population may be concentrated in some specific areas. In view of this, the evolu-
tionary population P2 based on the Pareto dominance relationship is introduced into the
MOEA/D-DPAW algorithm. Before each iteration evolution, population P2 will merge
with individuals in population P1, and then it conducts a fast non-dominated sorting of
the resulting population. Based on the concept of crowding degree that is proposed in
Section 2.2, population maintenance operations will be carried out. On the premise of
ensuring the uniform distribution of individuals, excellent individuals will be selected for
the subsequent enhanced neighborhood exploration mechanism. To sum up, the overall
algorithm of MOEA/D-DPAW is shown in Algorithm 1. Lines 7 to 13 are the evolutionary
process, based on the Pareto dominance relationship. Lines 14 to 33 are the evolutionary
process based on decomposition; specifically, lines 19 to 23 are the process of updating the
subproblem using the Tchebycheff formula, and lines 24 to 31 are the process of maintaining
the external population EP. Finally, lines 34 to 36 are the call of the weight vector adaptive
adjustment strategy, and line 37 is the call of the enhanced neighborhood exploration
mechanism, which can refer to the contents of Sections 3.2 and 3.3, respectively.
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Algorithm 1 MOEA/D-DPAW

1: EP← ∅
2: Initialize the population P1, P2 and the weight vector set λ
3: Determine the neighbors Bi from each weight vector of λi
4: Calculate the reference point z∗ according to P1
5: Gen← 0
6: while Gen ≤ GenMax do
7: P2 ← P1 ∪ P2
8: Fast-non-dominated-sort(P2) and calculate crowding degree C by Equations (2) and (3)
9: while |P2|>N do

10: Randomly select the individual p which has highest crowding degree
11: P2 ← P2\p
12: Update C about the neighbors of p
13: end while
14: O← ∅
15: for all i ∈ {1, 2...N} do
16: Randomly select mating solutions from Bi to generate an offspring x
17: z∗ ← min(z∗, F(x))
18: O← O ∪ x
19: for all j ∈ Bi do
20: if gte(x|λj, z∗) ≤ gte(xj|λj, z∗) then
21: xj ← x
22: end if
23: end for
24: for all o ∈ O do
25: if @q ≺ EP, q < o then
26: EP← EP ∪ o
27: EP← EP\{q ∈ EP|o ≺ q}
28: end if
29: while |EP|>2N do
30: Remove the individual with the highest crowding distance from EP
31: end while
32: end for
33: end for
34: if Gen % (5% × GenMax)=0 then
35: Adaptive-Weight-Strategy(P1, λ, EP, N) by Algorithm 2
36: end if
37: Enhanced-Individual-Exploration(P1, P2) by Algorithm 3
38: end while
39: return P1

3.2. Adaptive Weight Strategy

It can be seen from the three decomposition methods in Section 2.3 that the setting
of the size of the weight vector is crucial. Each different weight vector corresponds to a
unique sub-problem that is formed after decomposition. However, in the original MOEA/D
algorithm, the weight vector is fixed at the initialization, and there will be no changes
afterwards, so that it is difficult to immediately determine the most appropriate weight
vector size in the face of complex MOPs. To solve this problem, the MOEA/D-DPAW
algorithm proposed in this paper uses the weight vector adaptive adjustment strategy,
and periodically adjusts the weight vector in the process of population evolution, which
can make these decomposed subproblems approach to the real Pareto front better. In the
initialization phase, MOEA/D-DPAW uses a uniform random method to generate an initial
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set of weight vectors λ = (λ1, λ2, . . . , λm)T ∈ Rm. WS-transform [23] is applied to project
the weight vector of the scalar quantum problem to its solution mapping vector:

λ = WS(λ) = (
1

λ1

∑m
i=1

1
λi

,
1

λ2

∑m
i=1

1
λi

...
1

λm

∑m
i=1

1
λi

) (9)

In the process of population evolution, MOEA/D-DPAW will periodically adjust the
weight vector every 5%T interval, where T is the number of evolution generation. During
the weight vector adjustment, Equation (10) was used to calculate individual sparsity first
for the individual p, and then the most crowded 5%N subproblems were removed, where
N is the population size.

Sparsity(p) =
m

∏
i=1

distance(p, qi) (10)

MOEA/D-DPAW uses the external population EP to store the non-dominated solu-
tions found during the search. When adjusting the weight vector to create a new sub-
problem, Equation (10) should be used to calculate the sparse degree of individuals in
EP relative to the current population. Then, the sparsest individual xs in EP should be
selected each time to generate a new subproblem and to calculate its objective function
value F(xs) = ( f s

1 , f s
2 , . . . , f s

m). Finally, Equation (11) should be used to generate a new
weight vector λ and associate with it, and this new subproblem is added to the population.
The specific process of the Adaptive Weight Strategy algorithm is shown in Algorithm 2.

λs = (

1
f s
1−z∗1

∑m
i=1

1
f s
i −z∗i

,
1

f s
2−z∗2

∑m
i=1

1
f s
i −z∗i

...
1

f s
m−z∗m

∑m
i=1

1
f s
i −z∗i

) (11)

Algorithm 2 Adaptive Weight Strategy

Require: P (Population), λ (Weight vectors), EP (External population), N (Population size)

1: θ ← 0.05N
2: count← 0
3: while count < θ do
4: Calculate the sparsity degree of each individual using Equation (2) and (3)
5: Remove the individual with the minimum sparsity degree
6: count← count + 1
7: end while
8: while count > 0 do
9: Calculate the sparsity degree of each individual between P and EP using

Equation (10)
10: Generate a new weight vector λs using Equation (11)
11: Select the individual xs which has highest sparsity degree of EP
12: Add the newly subproblem λs associated with xs to P
13: count← count− 1
14: end while
15: Update neighbors of each weight vector of λ
16: return P, λ

3.3. Enhanced Neighborhood Exploration Mechanism

In general, MOEAs based on decomposition tend to search in the direction of the Pareto
front in the process of population evolution. When faced with MOPs with a complex Pareto
front, it may lead to repeated searching in some specific areas by the individual population.
However, MOEAs based on the Pareto dominance relationship always maintain a group of
representative non-dominant individuals in the process of population evolution, and coupled
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with the limitation of crowding degree, and so they perform well in individual diversity. There-
fore, MOEA/D-DPAW uses the enhanced neighborhood exploration mechanism to combine
the evolutionary characteristics of two different populations, as shown in Algorithm 3.

In the process of each iterative evolution, the search in population P2 is based on
a Pareto domination relationship. For all individuals in population P2, the number of
individuals in population P1 within the neighborhood range is checked; if the number
is less than one, it indicates that the current space is a region that is difficult to explore
using the decomposition algorithm, but that there is a high possibility of excellent solutions.
Therefore, this individual is asked to use the mutation operator to generate new solutions,
and to add them to the population P1. Finally, we perform population maintenance
operations on P1, according to Section 2.2, to obtain the population for the next iteration.
The size of the neighborhood radius parameter r is equal to the average distance between
population P2 and the nearest several individuals of the current individual, which is equal
to the size of the neighborhood in the evolution process of population P1. Via the enhanced
neighborhood exploration mechanism, the population of individuals can avoid repeated
searching in a fixed area, improve the diversity of the population individuals, and have a
better ability to deal with MOPs with a complex Pareto front.

Algorithm 3 Enhanced Individual Exploration

Require: P1 (Population based on decomposition), P2 (Population based on Pareto domina-
tion)

1: E← ∅
2: for all q ∈ P2 do
3: count← 0
4: for all q ∈ P1 do
5: if distance(p, q) ≤ r then
6: count← count + 1
7: end if
8: end for
9: if count ≤ 1 then

10: E← E ∪ q
11: end if
12: end for
13: for all q ∈ E do
14: p′ ← Variation(p)
15: P1 ← P1 ∪ p′

16: end for
17: Population Maintenance on P1
18: return P1

3.4. Computational Complexity

The MOEA/D-DPAW algorithm proposed in this paper mainly consists of two parts.
The first part is the algorithm is based on decomposition with population P1, and the
computational complexity of this part mainly comes from the decomposition and updating
of subproblems and individual exploration. The complexity of this part is O(mTN2),
where m is the number of objectives and T is the neighborhood size. N is the number of
individuals in population P1 or P2. The second part is the algorithm based on the Pareto
dominance relationship with population P2. The computational complexity of this part is
mainly derived from the non-dominated sorting of population individuals, the complexity
of which is O(mN2). The complexity of the individual replication operation of population
P1 and population P2 is O(N), while the complexity of the individual replacement operation
is O(mNlogN) because it involves the calculation of crowding degree. In the adaptive
weight vector adjustment strategy used in this paper, the computational complexity is
O(θmNlogN), where θ is the periodic adjustment parameter of the weight vector, which
is set to 0.05N. In the enhanced neighborhood exploration mechanism proposed in this
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paper, the computational complexity is mainly derived from the traversal and screening
of all individuals in population P1 and population P2, and the time complexity is O(N2).
Based on the above analysis, the overall computational complexity of MOEA/D-DPAW
algorithm is O(mTN2 + mN2 + θmNlogN + N2) ≈ O(mTN2). It can be seen that the
introduction of dual-population, weight vector adaptive adjustment strategy, and enhanced
neighborhood exploration mechanism exploration mechanism do not significantly increase
the computational complexity of the algorithm. The overall computational complexity of
the MOEA/D-DPAW algorithm is the similar to the original MOEA/D algorithm, and it
can still complete the iterative evolution of the population relatively quickly.

4. Experiment and Analysis
4.1. Experimental Setup

The experimental environment of this paper is an Intel (R) Core (TM) i5-9500 CPU
@ 3.00 GHz, 16 GB RAM. All comparison methods are implemented in the PlatEMO [24]
platform based on MATLAB. In order to test the performance of the proposed algorithm, 22
standard test problems were selected for the two-objective optimization problem and the
three-objective optimization problem. Specifically, this paper uses ZDT1-ZDT4, ZDT6, and
UF1-UF7 as the test set of the two-objective optimization problem, and uses DTLZ1-DTLZ7
and UF8-UF10 as the test set of the three-objective optimization problem. For all two-
objective optimization problems, the population size is set to N = 150, and the maximum
fitness evaluation of the algorithm is set to 60,000. For all of the three-objective optimization
problems, the population size is set to N = 200, and the maximum fitness evaluation of the
algorithm is set to 100,000. The neighborhood size is set to T = 5, tested with a simulated
binary crossover operator and polynomial mutation operator, and their distribution index
is set to η = 20, crossing probability to pc = 1, and mutation probability to pm = 1/N.

4.2. Method of Comparison

In this paper, the following five MOEAs in recent years are selected as the comparison
benchmark, and the relevant parameters are set in accordance with the corresponding
references during the experiment.

• AGEMOEA [25]: A method based on non-Euclidean distance is used to estimate the
geometric structure of the Pareto frontier, and the diversity and population density
are dynamically adjusted to achieve a good convergence effect.

• MOEA/D-URAW [26]: A variant of the MOEA/D algorithm, which uses a uniform
random weight generation method and an adaptive weight method based on popula-
tion sparsity to solve complex multi-objective optimization problems.

• NSGA-II-SDR [27]: A variant of the NSGA-II algorithm, based on the angle between
the candidate solutions, proposes an adaptive niche technique that identifies only
the best convergent candidate solutions as non-dominant solutions in each niche,
thus better balancing the convergence and diversity of evolutionary multi-objective
optimization.

• CMOPSO [28]: An improvement of the multi-objective particle swarm optimization
algorithm, which uses a multi-objective particle swarm optimization algorithm based
on competition mechanism. Particles are updated on the basis of each generation of
population competition.

• MOEA/D-DAE [29]: A variant of the MOEA/D algorithm, which uses the detection
escape strategy to detect the algorithm stagnation state by using the feasible ratio and
the overall constraint violation change rate, and then adjusts the constraint violation
weight in time to guide the population search out of the stagnation state.
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4.3. Performance Metric

In this paper, Inverted Generational Distance (IGD) and Hypervolume (HV) are used
to evaluate the performance of the algorithm. The IGD value is calculated as follows:

IGD(P, P∗) = ∑x∈P∗ distance(x, P)
|P∗| (12)

where P∗ is a set of reference points that is uniformly distributed on the real Pareto front,
and distance(x, P) is the Euclidean distance between the individual closest to individual x
in population P. IGD reflects the average value of the minimum distance between points,
and points between the actual Pareto frontier and the approximate Pareto frontier obtained
by the algorithm, which can comprehensively reflect the convergence and diversity of
the algorithm. The smaller the IGD index value, the higher the quality of the solution set
obtained. The HV value is calculated as follows:

HV(P) = δ(
m⋃

i=1

[ fi(x), z∗i ]) (13)

where [ fi(x), z∗i ] represents the hypercube formed between the population P and the ideal
reference point under the i-th objective. δ represents the Lebesgue measure, which is used
to calculate volume. The HV index can be regarded as the supervolume of the space formed
by the actual Pareto solution set and the reference point after the algorithm is completed.
The higher the value of the HV indicator, the better the algorithm performance.

4.4. Results and Analysis

All experiments in this paper were independently run 30 times, and the mean and
standard deviation of the experimental results were recorded. The Wilcoxon rank sum test
with a significance level of 0.05 was used for the statistical analysis of the experimental
results. The symbols “+”, “−” and “≈” indicate that the experimental results of another
comparison algorithm are significantly better than, significantly worse than, or approximate
to the experimental results of the MOEA/D-DPAW algorithm.

The results of IGD in six algorithms in this experiment on 12 two-objective test prob-
lems of ZDT and UF are shown in Table 1. According to the table, the MOEA/D-DPAW
algorithm proposed in this paper has obtained the best IGD values on six test sets: ZDT1,
ZDT3, UF1, UF2, UF4, and UF6. For the ZDT2 and ZDT4 problem, although the CMOPSO
algorithm has the best solution effect, the IGD values calculated using the MOEA/D-DPAW
algorithm are close to it. For the ZDT6, UF3, UF5, and UF7 problems, the performance
of the MOEA/D-DPAW algorithm is slightly inferior to that of the MOEA/D-DAE and
the CMOPSO algorithm. The results of HV in six algorithms in this experiment on 12
two-objective test problems of ZDT and UF are shown in Table 2. According to the table,
The MOEA/D-DPAW algorithm proposed in this paper has obtained the best HV values
on seven test sets: ZDT1, ZDT2, ZDT4, UF2, UF4, UF5, and UF6. For the ZDT3 and ZDT6
problem, the MOEA/D-URAW and the CMOPSO algorithms, respectively, obtain the best
performances, but the results of the MOEA/D-DPAW algorithm are almost equal to them.
For the UF1, UF3, and UF7 problems, the CMOPSO algorithm has the best performance. Al-
though the MOEA/D-DPAW algorithm is not as good as the CMOPSO algorithm on those
test problems, it still has excellent performance compared with other algorithms. Therefore,
the MOEA/D-DPAW algorithm has excellent performance in solving the two-objective
optimization problem, which proves the effectiveness of the improved strategy proposed
in this paper, and the convergence and diversity of the solution set can be guaranteed.

The results of IGD in six algorithms in this experiment on 10 three-objective test
problems of DTLZ and UF are shown in Table 3. According to the table, it can be seen that
the MOEA/D-DPAW algorithm proposed in this paper obtained the best IGD values on
the DTLZ2, DTLZ4, DTLZ5, DTLZ7, UF8, and UF9 test problems. For the UF10 problem,
the AGEMOEA algorithm achieves the best solution, but the solution by the MOEA/D-
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DPAW algorithm is very close to it. For the problems of DTLZ1, DTLZ3, and DTLZ6,
the performance of the MOEA/D-DAE algorithm is better. Although the performance
of the MOEA/D-DPAW algorithm is inferior to that of the MOEA/D-DAE algorithm, it
is still more outstanding compared with the remaining four algorithms. The results of
HV in six algorithms in this experiment on nine three-objective test problems of DTLZ
and UF are shown in Table 4. According to the table, the MOEA/D-DPAW algorithm
proposed in this paper has obtained the best HV value on the four test problems of DTLZ2,
DTLZ4, UF8, and UF9. The MOEA/D-DAE algorithm also obtained the best HV value
for the DTLZ1, DTLZ3, DTLZ5, DTLZ6, and DTLZ7 problems, indicating the excellent
performance of these two algorithms in solving three-objective optimization problems.
From the perspective of data distribution, both the MOEA/D-DPAW algorithm and the
MOEA/D-DAE algorithm have their advantages and disadvantages. Regarding the UF10
problem, the AGEMOEA algorithm achieved the best running results, and the MOEA/D-
DPAW algorithm performed slightly worse than the AGEMOEA algorithm. Based on the
above analysis, the MOEA/D-DPAW algorithm proposed in this paper also has a good
performance when solving the three-objective optimization problem, and it can finally
obtain the solution set with uniform distribution and a good convergence effect.

In order to display the operation results of the algorithm more intuitively, this paper
selects three two-objective optimization problems, ZDT1, ZDT2, and ZDT3, three three-
objective optimization problems DTLZ1, DTLZ4, and DTLZ7, with six representative
MOPs altogether.

Table 1. IGD values obtained by six algorithms about two-objective optimization problems on ZDT
and UF.

AGEMOEA MOEA/D-
URAW NSGA-II-SDR CMOPSO MOEA/D-DAE MOEA/D-

DPAW

ZDT1 4.5566× 10−3

(6.87× 10−5) −
2.4524× 10−2

(1.77× 10−2) −
6.9117× 10−3

(5.58× 10−4) −
2.7065× 10−3

(5.07× 10−5) −
3.9702× 10−3

(5.41× 10−5) −
2.6074× 10−3

(2.84× 10−5)

ZDT2 4.5403× 10−3

(8.37× 10−5) −
2.5001× 10−2

(2.13× 10−2) −
7.1562× 10−3

(6.65× 10−4) −
2.6063× 10−3

(2.18× 10−5) +
3.8912× 10−3

(4.80× 10−5) −
2.6713× 10−3

(3.75× 10−5)

ZDT3 5.7301× 10−3

(1.25× 10−4) −
1.5227× 10−2

(5.57× 10−3) −
7.3570× 10−3

(5.29× 10−4) −
4.6740× 10−3

(5.97× 10−5) −
3.0474× 10−3

(2.20× 10−5) =
3.0440× 10−3

(3.07× 10−5)

ZDT4 4.4869× 10−3

(7.35× 10−5) −
1.9056× 10−1

(1.17× 10−1) −
1.7007× 100

(9.77× 10−1) −
2.5600× 10−3

(1.87× 10−5) =
3.9801× 10−3

(1.43× 10−4) −
2.5614× 10−3

(1.80× 10−5)

ZDT6 3.7375× 10−3

(1.06× 10−4) −
3.8146× 10−2

(1.13× 10−2) −
3.9215× 10−3

(2.32× 10−4) −
2.0549× 10−3

(1.12× 10−5) +
2.0538× 10−3

(9.57× 10−6) +
3.0974× 10−3

(1.80× 10−5)

UF1 1.1084× 10−1

(3.08× 10−2) −
1.5812× 10−1

(6.28× 10−2) −
9.8125× 10−2

(3.07× 10−2) −
9.8281× 10−2

(2.75× 10−2) −
1.0932× 10−1

(2.46× 10−2) −
5.6112× 10−2

(2.53× 10−2)

UF2 3.8838× 10−2

(1.12× 10−2) −
9.2979× 10−2

(4.17× 10−2) −
5.1230× 10−2

(4.79× 10−3) −
4.1317× 10−2

(1.83× 10−2) −
3.6030× 10−2

(8.57× 10−3) −
2.5671× 10−2

(6.07× 10−3)

UF3 2.7212× 10−1

(5.31× 10−2) −
2.2370× 10−1

(2.86× 10−2) =
2.2401× 10−1

(3.91× 10−2) =
1.1325× 10−1

(1.83× 10−2) +
2.2560× 10−1

(4.50× 10−2) =
2.2389× 10−1

(5.22× 10−2)

UF4 4.2069× 10−2

(1.11× 10−3) =
7.3622× 10−2

(2.48× 10−3) −
6.9834× 10−2

(3.86× 10−3) −
7.5978× 10−2

(5.37× 10−3) −
4.7901× 10−2

(2.65× 10−3) −
4.1958× 10−2

(1.37× 10−3)

UF5 2.9557× 10−1

(5.91× 10−2) +
8.2835× 10−1

(1.68× 10−1) −
5.6403× 10−1

(2.35× 10−1) −
3.4625× 10−1

(1.17× 10−1) =
2.8012× 10−1

(6.97× 10−2) +
3.4526× 10−1

(1.06× 10−1)

UF6 2.1861× 10−1

(1.29× 10−1) −
3.6294× 10−1

(8.79× 10−2) −
3.7128× 10−1

(1.03× 10−1) −
2.2384× 10−1

(1.36× 10−1) −
2.2171× 10−1

(1.16× 10−1) −
1.7370× 10−1

(1.07× 10−1)

UF7 2.0336× 10−1

(1.68× 10−1) −
3.2097× 10−1

(1.35× 10−1) −
5.6390× 10−2

(6.95× 10−3) +
4.2142× 10−2

(8.18× 10−2) +
1.2998× 10−1

(1.37× 10−1) =
1.3069× 10−1

(1.65× 10−1)

+/−/≈ 1/10/1 0/11/1 1/10/1 4/6/2 2/7/3
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Table 2. HV values obtained by six algorithms about two-objective optimization problems on ZDT
and UF.

AGEMOEA MOEA/D-
URAW NSGA-II-SDR CMOPSO MOEA/D-DAE MOEA/D-

DPAW

ZDT1 7.1987× 10−1

(7.12× 10−5) −
6.9618× 10−1

(1.11× 10−2) −
7.1439× 10−1

(9.20× 10−4) −
7.2132× 10−1

(1.10× 10−4) =
7.2031× 10−1

(8.91× 10−5) =
7.2179× 10−1

(4.37× 10−5)

ZDT2 4.4430× 10−1

(8.86× 10−5) −
4.1205× 10−1

(2.49× 10−2) −
4.3866× 10−1

(1.07× 10−3) −
4.4593× 10−1

(9.49× 10−5) =
4.4497× 10−1

(6.43× 10−5) =
4.4635× 10−1

(4.39× 10−5)

ZDT3 5.9919× 10−1

(3.56× 10−5) −
6.0067× 10−1

(9.53× 10−3) =
5.9570× 10−1

(9.80× 10−4) −
6.0025× 10−1

(2.00× 10−5) =
5.9972× 10−1

(3.38× 10−5) =
6.0025× 10−1

(2.86× 10−5)

ZDT4 7.1982× 10−1

(1.51× 10−4) =
4.9527× 10−1

(1.25× 10−1) −
1.1887× 10−2

(3.91× 10−2) −
7.2080× 10−1

(3.77× 10−5) =
7.1990× 10−1

(5.28× 10−4) =
7.2085× 10−1

(3.91× 10−5)

ZDT6 3.8827× 10−1

(9.93× 10−5) −
3.3722× 10−1

(1.49× 10−2) −
3.8797× 10−1

(2.28× 10−4) −
3.8990× 10−1

(1.42× 10−5) =
3.8894× 10−1

(2.64× 10−5) =
3.8989× 10−1

(2.05× 10−5)

UF1 5.9141× 10−1

(3.37× 10−2) =
5.3667× 10−1

(4.43× 10−2) −
5.9203× 10−1

(3.11× 10−2) =
6.4258× 10−1

(2.07× 10−2) +
5.9444× 10−1

(3.18× 10−2) +
5.9283× 10−1

(2.48× 10−2)

UF2 6.8149× 10−1

(7.27× 10−3) −
6.4148× 10−1

(2.14× 10−2) −
6.5972× 10−1

(5.73× 10−3) −
6.8410× 10−1

(5.82× 10−3) −
6.8280× 10−1

(9.50× 10−3) −
6.9356× 10−1

(4.70× 10−3)

UF3 4.2156× 10−1

(4.92× 10−2) −
3.7971× 10−1

(2.83× 10−2) −
4.3565× 10−1

(4.95× 10−2) =
5.5462× 10−1

(2.84× 10−2) +
4.5738× 10−1

(4.15× 10−2) +
4.3776× 10−1

(4.94× 10−2)

UF4 3.8987× 10−1

(9.88× 10−4) =
3.3750× 10−1

(4.01× 10−3) −
3.5040× 10−1

(4.93× 10−3) −
3.4091× 10−1

(6.96× 10−3) −
3.8255× 10−1

(2.35× 10−3) −
3.9087× 10−1

(1.46× 10−3)

UF5 2.2734× 10−1

(6.03× 10−2) −
1.1752× 10−2

(3.67× 10−2) −
3.7383× 10−2

(4.51× 10−2) −
2.2329× 10−1

(7.19× 10−2) −
1.9594× 10−1

(8.21× 10−2) −
2.3272× 10−1

(5.43× 10−2)

UF6 3.0167× 10−1

(7.36× 10−2) −
1.8115× 10−1

(5.64× 10−2) −
1.3430× 10−1

(7.64× 10−2) −
3.0416× 10−1

(6.17× 10−2) −
2.9014× 10−1

(8.92× 10−2) −
3.2208× 10−1

(6.49× 10−2)

UF7 4.6429× 10−1

(1.17× 10−1) =
3.2311× 10−1

(8.29× 10−2) −
5.0512× 10−1

(1.25× 10−2) +
5.3911× 10−1

(6.15× 10−2) +
4.4741× 10−1

(1.18× 10−1) −
4.6793× 10−1

(9.88× 10−2)

+/−/≈ 0/8/4 0/11/1 1/9/2 3/4/5 2/5/5

Table 3. IGD values obtained by six algorithms about three-objective optimization problems on DTLZ
and UF.

AGEMOEA MOEA/D-
URAW NSGA-II-SDR CMOPSO MOEA/D-DAE MOEA/D-

DPAW

DTLZ1 2.0613× 10−2

(2.27× 10−4) =
1.5962× 10−1

(1.70× 10−1) −
1.5352× 100

(7.82× 10−1) −
1.4187× 10−2

(1.47× 10−4) +
1.4106× 10−2

(1.85× 10−4) +
2.0733× 10−2

(1.28× 10−4)

DTLZ2 5.2410× 10−2

(1.20× 10−4) −
5.4875× 10−2

(1.16× 10−3) −
7.0669× 10−2

(2.59× 10−3) −
3.8143× 10−2

(4.62× 10−4) =
5.5726× 10−2

(4.67× 10−4) −
3.8036× 10−2

(2.77× 10−4)

DTLZ3 5.2694× 10−2

(3.10× 10−4) +
8.2878× 100

(4.99× 100) −
6.8274× 10+1

(2.11× 10+1) −
5.8418× 100

(4.95× 100) +
4.0454× 10−2

(2.81× 10−3) +
6.3007× 10−2

(6.13× 10−3)

DTLZ4 5.2463× 10−2

(1.25× 10−4) −
2.1671× 10−1

(2.33× 10−1) −
6.8917× 10−2

(2.04× 10−3) −
4.1291× 10−2

(7.46× 10−4) −
5.6860× 10−2

(9.63× 10−4) −
3.8195× 10−2

(3.76× 10−4)

DTLZ5 5.1969× 10−3

(1.59× 10−4) −
4.4681× 10−3

(1.20× 10−4) −
6.1547× 10−3

(4.06× 10−4) −
2.8355× 10−3

(3.65× 10−4) −
4.9753× 10−3

(1.05× 10−4) −
2.2375× 10−3

(3.14× 10−5)

DTLZ6 4.8476× 10−3

(6.32× 10−5) −
3.7324× 10−2

(1.70× 10−1) −
5.7994× 10−3

(3.30× 10−4) −
2.0859× 10−3

(1.65× 10−5) +
2.0784× 10−3

(1.44× 10−5) +
4.6200× 10−3

(1.03× 10−4)

DTLZ7 1.1606× 10−1

(1.16× 10−1) −
7.4706× 10−2

(4.55× 10−3) −
8.3862× 10−2

(3.12× 10−3) −
4.2191× 10−2

(7.07× 10−4) −
6.1264× 10−2

(1.03× 10−3) −
3.8302× 10−2

(3.89× 10−4)

UF8 2.4862× 10−1

(6.79× 10−2) −
3.0642× 10−1

(3.08× 10−2) −
3.2636× 10−1

(2.11× 10−2) −
5.4976× 10−1

(1.02× 10−1) −
2.4558× 10−1

(6.03× 10−2) −
1.4738× 10−1

(8.40× 10−2)

UF9 1.6155× 10−1

(6.83× 10−2) =
4.0613× 10−1

(7.16× 10−2) −
4.8438× 10−1

(7.48× 10−2) −
8.3236× 10−1

(1.20× 10−1) −
1.9118× 10−1

(7.86× 10−2) −
1.5937× 10−1

(7.65× 10−2)

UF10 3.6358× 10−1

(8.10× 10−2) =
6.4174× 10−1

(1.12× 10−1) −
1.3944× 100

(3.92× 10−1) −
3.3365× 100

(4.89× 10−1) −
3.6439× 10−1

(8.53× 10−2) =
3.6367× 10−1

(7.68× 10−2)

+/−/≈ 1/6/3 0/10/0 0/10/0 3/6/1 3/6/1
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Table 4. HV values obtained by six algorithms about three-objective optimization problems on DTLZ
and UF.

AGEMOEA MOEA/D-
URAW NSGA-II-SDR CMOPSO MOEA/D-DAE MOEA/D-

DPAW

DTLZ1 8.4252× 10−1

(3.47× 10−4) +
5.3287× 10−1

(3.11× 10−1) −
3.4133× 10−3

(1.68× 10−2) −
8.5111× 10−1

(5.83× 10−4) +
8.5268× 10−1

(2.90× 10−4) +
8.4117× 10−1

(3.90× 10−4)

DTLZ2 5.6175× 10−1

(3.00× 10−4) −
5.5715× 10−1

(1.72× 10−3) −
5.2251× 10−1

(5.41× 10−3) −
5.6387× 10−1

(1.12× 10−3) −
5.5815× 10−1

(1.13× 10−3) −
5.7376× 10−1

(5.31× 10−4)

DTLZ3 5.5835× 10−1

(2.08× 10−3) +
5.1647× 10−1

(4.31× 10−3) −
5.3619× 10−1

(3.27× 10−2) −
5.5981× 10−2

(1.71× 10−1) −
5.7501× 10−1

(8.29× 10−4) +
5.5038× 10−1

(7.16× 10−3)

DTLZ4 5.6182× 10−1

(3.41× 10−4) −
4.8870× 10−1

(1.02× 10−1) −
5.2749× 10−1

(3.77× 10−3) −
5.5911× 10−1

(1.78× 10−3) −
5.5728× 10−1

(1.17× 10−3) −
5.7348× 10−1

(7.17× 10−4)

DTLZ5 1.9943× 10−1

(1.98× 10−4) =
1.9954× 10−1

(2.00× 10−4) =
1.9831× 10−1

(3.61× 10−4) −
2.0056× 10−1

(2.48× 10−4) +
2.0125× 10−1

(3.16× 10−5) +
1.9946× 10−1

(1.10× 10−4)

DTLZ6 1.9985× 10−1

(5.70× 10−5) =
1.9142× 10−1

(3.67× 10−2) −
1.9949× 10−1

(1.55× 10−4) =
2.0142× 10−1

(1.70× 10−5) +
2.0143× 10−1

(1.09× 10−5) +
1.9995× 10−1

(4.63× 10−5)

DTLZ7 2.7206× 10−1

(1.44× 10−2) −
2.6880× 10−1

(2.11× 10−3) −
2.5826× 10−1

(2.08× 10−3) −
2.8016× 10−1

(7.92× 10−4) +
2.8487× 10−1

(3.11× 10−4) +
2.7742× 10−1

(8.43× 10−4)

UF8 3.5375× 10−1

(4.38× 10−2) −
3.1125× 10−1

(3.26× 10−2) −
2.0278× 10−1

(2.86× 10−2) −
1.7675× 10−2

(1.73× 10−2) −
3.5435× 10−1

(4.49× 10−2) −
4.1812× 10−1

(6.58× 10−2)

UF9 6.4945× 10−1

(6.08× 10−2) =
4.0670× 10−1

(5.48× 10−2) −
2.6278× 10−1

(7.22× 10−2) −
2.7339× 10−2

(3.36× 10−2) −
6.2154× 10−1

(7.11× 10−2) −
6.5909× 10−1

(6.73× 10−2)

UF10 2.1485× 10−1

(7.62× 10−2) +
2.7731× 10−2

(3.04× 10−2) −
2.0316× 10−1

(5.27× 10−2) +
1.9435× 10−1

(7.34× 10−2) −
1.9891× 10−1

(6.79× 10−2) =
1.9983× 10−1

(7.43× 10−2)

+/−/≈ 3/4/3 0/9/1 1/8/1 4/6/0 5/4/1

A comparison graph is drawn between the solution set obtained after the first run
of six algorithms and the real Pareto front. Among them, the operation results of six
algorithms on the ZDT1 problem are shown in Figure 3. It can be seen from the figure that
the MOEA/D-DPAW algorithm proposed in this paper has the best convergence effect
with the AGEMOEA algorithm and the CMOPSO algorithm, which almost completely fits
the real Pareto front and has a good population distribution. The results show that the
MOEA/D-DPAW algorithm has an excellent searching ability and weight vector adaptive
adjustment strategy, and its enhanced neighborhood exploration mechanism can effectively
guide the population to explore the Pareto front. In addition, the AGEMOEA algorithm
and the CMOPSO algorithm have relatively low complexities and can be fully iterated, and
so the final result is also excellent. The performance of the NSGA-II-SDR algorithm is the
second, and there is some deficiency in the convergence. Moreover, the MOEA/D-URAW
and the MOEA/D-DAE algorithms have the worst effects, and there is a significant gap
between them and the other four algorithms in terms of convergence and diversity.

The results of six algorithms on the ZDT2 problem are shown in Figure 4. It can be
seen from the figure that the MOEA/D-DPAW algorithm proposed in this paper has the
best convergence effect with the CMOPSO algorithm and the highest degree of closeness
to the real Pareto front, and the population has good diversity. The effectiveness of the
dual-population is illustrated again, and the CMOPSO algorithm is based on the particle
swarm optimization algorithm, which is also suitable for this problem. Among the other
four comparison algorithms, their convergence is slightly worse than that of the MOEA/D-
DPAW algorithm, and the population distribution is relatively dispersed. The population
individuals obtained by the MOEA/D-URAW algorithm and the NSGA-II-SDR algorithm
are obviously not evenly distributed. In the MOEA/D-DAE algorithm, the individuals
in the final population are concentrated in the upper left part of the Pareto frontier, and
the lower right part of the Pareto frontier becomes an unknown region that the algorithm
failed to explore.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison Between the Pareto Front and the Final Population Solution Set Obtained by the
Six Different Algorithms on ZDT1 Test Problem Set. Subfigures (a) AGEMOEA, (b) MOEA/D-URAW,
(c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW correspond to the
running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR, CMOPSO, MOEA/D-
DAE, and MOEA/D-DPAW, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Comparison Between the Pareto Front and the Final Population Solution Set Obtained by the
Six Different Algorithms on ZDT2 Test Problem Set. Subfigures (a) AGEMOEA, (b) MOEA/D-URAW,
(c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW correspond to the
running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR, CMOPSO, MOEA/D-
DAE, and MOEA/D-DPAW, respectively.

The results of six algorithms on the ZDT3 problem are shown in Figure 5. The real
Pareto front of this problem is discrete distribution, which is more complex than the first
two problems. As can be seen from the figure, the MOEA/D-DPAW algorithm proposed in
this paper has the best convergence effect with the CMOPSO algorithm and the highest
degree of closeness to the real Pareto front, and the population has good diversity. It shows
that the improved strategy in the MOEA/D-DPAW algorithm is still effective, and that
good results can be obtained when facing relatively complex MOPs. Among the other four
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comparison algorithms, their convergence is relatively worse than that of the MOEA/D-
DPAW algorithm, the final population obtained by the MOEA/D-URAW algorithm is also
relatively discrete, and the diversity is not fully guaranteed. Based on the above analysis,
the effectiveness and superiority of the proposed MOEA/D-DPAW algorithm in solving
two-objective optimization problems can also be intuitively seen.

The results of six algorithms on the DTLZ1 problem are shown in Figure 6. It can be
seen from the figure that the performance of the MOEA/D-DPAW algorithm proposed
in this paper is the best. This indicates that the advantages of the MOEA/D-DPAW
algorithm are more obvious when facing high-dimensional MOPs, and that the enhanced
neighborhood exploration mechanism can more effectively guide population individuals to
search the Pareto front. Although the populations obtained via the other five comparison
methods are also close to the true Pareto front, the distribution of individual populations
is more dispersed than that of the MOEA/D-DPAW algorithm proposed in this paper.
The population distribution effect obtained by the NSGA-II-SDR algorithm is the worst,
while the population distribution obtained by the other four algorithms is significantly
better than that obtained by the NSGA-II-SDR algorithm, but still inferior to the MOEA/D-
DPAW algorithm.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Comparison Between the Pareto Front and the Final Population Solution Set Obtained
by the Six Different Algorithms on the ZDT3 Test Problem Set. Subfigures (a) AGEMOEA,
(b) MOEA/D-URAW, (c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW
correspond to the running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR,
CMOPSO, MOEA/D-DAE, and MOEA/D-DPAW, respectively.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Comparison Between the Pareto Front and the Final Population Solution Set Ob-
tained by the Six Different Algorithms on DTLZ1 Test Problem Set. Subfigures (a) AGEMOEA,
(b) MOEA/D-URAW, (c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW
correspond to the running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR,
CMOPSO, MOEA/D-DAE, and MOEA/D-DPAW, respectively.

The results of six algorithms on the DTLZ4 problem are shown in Figure 7. It can be
seen from the figure that the convergence and diversity of the MOEA/D-DPAW algorithm
proposed in this paper is better. This further demonstrates the effectiveness of the MOEA/D-
DPAW algorithm in solving three-objective optimization problems. In the solution set
obtained by the NSGA-II-SDR, CMOPSO, and MOEA/D-DAE algorithms, there are some
individuals that are far away from Pareto front, and the convergence of the algorithm is
weak. In addition, in the solution set obtained by the MOEA/D-URAW, NSGA-II-SDR, and
MOEA/D-DAE algorithms, the distribution among individuals is not uniform enough to
adequately maintain the diversity of the population.

The results of six algorithms on the DTLZ7 problem are shown in Figure 8. The real
Pareto front of this problem is discretely distributed in three-dimensional space, which
is more complex than the previous two problems. As can be seen from the figure, the
MOEA/D-DPAW algorithm proposed in this paper and the MOEA/D-DAE algorithm have
the best performances, and the population individuals can ensure convergence to the Pareto
front and can have a relatively uniform distribution. This shows that in the face of complex
high-dimensional MOPs, the weight vector adaptive adjustment strategy adopted in this
paper can fit the actual Pareto front well, and enhancing the neighborhood search strategy
can further improve the search ability of the algorithm, so that the population can finally
obtain the best convergence effect. The effect of the AGEMOEA algorithm and the CMOPSO
algorithm is second; there are some individuals far from Pareto front, and the convergence
is worse than the MOEA/D-DPAW algorithm. The MOEA/D-URAW algorithm and the
NSGA-II-SDR algorithm have the worst effects, which do not only converge to the Pareto
front completely, but the distribution of population individuals will concentrate to within
fixed areas, and the population diversity is not fully guaranteed. Based on the above
analysis, the effectiveness and superiority of the proposed MOEA/D-URAW algorithm in
solving the three-objective optimization problem can also be seen intuitively.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison Between the Pareto Front and the Final Population Solution Set Obtained
by the Six Different Algorithms on the DTLZ4 Test Problem Set. Subfigures (a) AGEMOEA,
(b) MOEA/D-URAW, (c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW
correspond to the running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR,
CMOPSO, MOEA/D-DAE, and MOEA/D-DPAW, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparison Between the Pareto Front and the Final Population Solution Set Ob-
tained by the Six Different Algorithms on DTLZ7 Test Problem Set. Subfigures (a) AGEMOEA,
(b) MOEA/D-URAW, (c) NSGA-II-SDR, (d) CMOPSO, (e) MOEA/D-DAE, and (f) MOEA/D-DPAW
correspond to the running results of algorithms AGEMOEA, MOEA/D-URAW, NSGA-II-SDR,
CMOPSO, MOEA/D-DAE, and MOEA/D-DPAW, respectively.

5. Conclusions

Aiming at the multi-objective optimization problem, this paper proposed an improved
MOEA/D algorithm with a Dual-Population and Adaptive Weight strategy. In the algo-
rithm, two different populations evolve according to their own standards; each uses its
own advantages to exchange information, so as to further improve the performance of
the solution. In addition, the weight vector adaptive adjustment strategy is used in the
proposed algorithm to periodically change the weight vector in the evolution process,
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which makes the algorithm more suitable for solving MOPs with a complex Pareto front. At
the same time, the enhanced neighborhood exploration mechanism is used to improve the
local search ability of the algorithm, so as to avoid that the population individuals always
focus on a specific area when facing the complex MOPs. The comparative experimental
results on 22 standard test problems show that the algorithm proposed in this paper has a
better solving accuracy and a better convergence effect, compared with many mainstream
evolutionary multi-objective optimization algorithms in recent years when facing the two-
objective optimization problems and three-objective optimization problems. Additionally,
it can maintain the diversity of the individual population well, and population individuals
can be distributed more evenly on the premise of being close to the real Pareto front.

In the future, based on the proposed algorithm in this paper, it can be extended to
solving MOPs with higher dimensions, and exploring the performances of related strategies
in more complex and high-dimensional spaces. Additionally, more attention should be
paid to its effect in solving the parameter optimizations of practical problems.
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