
Citation: Yin, X.; Zhang, Z.

Multiplicative Consistent q-Rung

Orthopair Fuzzy Preference Relations

with Application to Critical Factor

Analysis in Crowdsourcing Task

Recommendation. Axioms 2023, 12,

1122. https://doi.org/10.3390/

axioms12121122

Academic Editor: Darjan

Karabašević
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Abstract: This paper presents a group decision-making (GDM) method based on q-rung orthopair
fuzzy preference relations (q-ROFPRs). Firstly, the multiplicative consistent q-ROFPRs (MCq-ROFPRs)
and the normalized q-rung orthopair fuzzy priority weight vectors (q-ROFPWVs) are introduced.
Then, to obtain q-ROFPWVs, a goal programming model under q-ROFPRs is established to minimize
their deviation from the MCq-ROFPRs and minimize the weight uncertainty. Further, a group goal
programming model of ideal MCq-ROFPRs is constructed to obtain the expert weights using the
compatibility measure between the ideal MCq-ROFPRs and the individual q-ROFPRs. Finally, a
GDM method with unknown expert weights is solved by combining the group goal programming
model and the simple q-rung orthopair fuzzy weighted geometric (Sq-ROFWG) operator. The
effectiveness and practicality of the proposed GDM method are verified by solving the crucial
factors in crowdsourcing task recommendation. The results show that the developed GDM method
effectively considers the important measures of experts and identifies the crucial factors that are more
reliable than two other methods.

Keywords: q-rung orthopair fuzzy preference relations (q-ROFPRs); goal programming model;
multiplicative consistency; group decision making; crowdsourcing task recommendation
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1. Introduction

With the rise of the sharing economy on a global scale, traditional human resource
service models are gradually changing. Crowdsourcing, a new flexible employment model,
has become a new strategy for enterprises to optimize resource allocation and enhance
innovation capabilities. Compared to traditional employment relationships, under the
crowdsourcing model, companies do not establish formal full-time employment relation-
ships with talents. Instead, companies can flexibly hire talents on demand based on their
employment needs without the need for complex entry and exit processes. Due to the
advantages of high employment flexibility, low employment costs, and low employment
risks of the crowdsourcing model, as well as breaking the dependence of workers on
commercial organizations, more and more enterprises and organizations facing external
competition and internal resource shortages are seeking to use crowdsourcing platforms
for production and innovation activities.

On knowledge-intensive crowdsourcing platforms, task publishers, problem solvers,
and transaction data are growing exponentially. The high cost of information search
and the lack of intelligent task recommendation mechanisms have had a negative impact
on crowdsourcing participants [1,2]. How to activate the potential of structured and
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unstructured data elements and achieve efficient matching between massive tasks and
public intellectual resources is a problem worth studying.

Preference relation (PR) is an important tool for experts to describe the critical degree
of the factors in crowdsourcing task recommendation. With the q-rung orthopair fuzzy
(q-ROF) set (q-ROFS) theory developing, the q-rung orthopair fuzzy preference relation
(q-ROFPR) has the advantages of describing the uncertainty and preference information in
crowdsourcing task recommendation.

Thus, we develop a group decision-making (GDM) method under q-ROFPRs for
finding out the critical factors in crowdsourcing task recommendation and define the
compatibility measure between q-ROFPRs to reflect the important measures of experts.
The contributions are provided as follows:

(1) The implication relations and constraints between intuitionistic fuzzy sets (IFSs)
and q-ROFSs are analyzed.

(2) We define the multiplicative consistent q-ROFPRs (MCq-ROFPRs) and the nor-
malized q-rung orthopair fuzzy priority weight vectors (q-ROFPWVs) and provide the
conversion method for q-ROFPWVs to construct MCq-ROFPRs.

(3) In decision-making problems, evaluators cannot always give MCq-ROFPRs when
comparing alternatives, and it is necessary to establish a method to obtain the priority
weight vectors (PWVs) of general q-ROFPR. Thus, a goal programming model for obtaining
the PWVs is considered to minimize the difference between q-ROFPRs and MCq-ROFPRs
and minimize the uncertainty of the PWVs based on the conversion method between
q-ROFPWVs and MCq-ROFPRs.

(4) In some GDM problems, decision-makers cannot always subjectively provide
expert groups’ weight vectors. In contrast, the judgmental ability of experts can not only
provide feedback on the authority and expertise of experts but also objectively indicate
the importance of the evaluator in the evaluation process [3]. In this paper, we extend
the goal programming model to the overall goal planning model, use it to construct the
ideal MCq-ROFPR, and combine the compatibility measures to obtain the objective weight
vector of the expert group.

(5) A GDM method under q-ROFPRs is provided by combing the overall goal program-
ming model and the simple q-ROF weighted geometric (Sq-ROFWG) operator. Considering
the advantage of FPRs in expressing experts’ preferences for crowdsourcing recommenda-
tion influencing factors, the effectiveness and practicality of the developed GDM method
are verified by solving crucial factors in crowdsourcing task recommendation.

The rest of this paper is organized as follows: Section 2 analyzes some existing
literature and provides its drawbacks. Section 3 introduces some concepts of intuitionistic
fuzzy preference relations (IFPRs) and multiplicative consistent IFPRs (MCIFPRs). Then,
q-ROFPRs and MCq-ROCPRs are developed in Section 4. Next, Section 5 puts forward a
goal programming model under MCq-ROFPRs for obtaining the PWVs of experts. The
GDM method combining the group goal programming model and the Sq-ROFWG operator
is developed in Section 6. An example of critical factor identification for crowdsourcing task
recommendation illustrates the effectiveness of the developed GDM method in Section 7.
Finally, some conclusions are made in Section 8.

2. Literature Review

In real-life decision problems, decision-makers need to select the best solution from
a set of alternatives or arrive at a ranking of alternatives. A group of experts provides
preference information on the alternatives, and then the decision-makers use reasonable
decision-making methods to obtain credible and convincing decision results. The expert
provides their preference for the alternatives based on their expertise. Preference rela-
tionship (PR) is an important tool for experts to describe preference information after
comparing alternatives. The traditional PR mainly characterizes the preference degree
between alternatives on a scale of 1/9~9 [4] and has been widely used in economic, environ-
mental, and risk management fields [5–9]. At present, the research on multiplicative PRs
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(MPRs) [10], additive PRs (APRs) [11], fuzzy PRs (FPRs) [12], and linguistic PRs (LPRs) [13]
is complete. FPRs use the membership value to characterize the PRs between experts for
different solutions. LPRs, on the other hand, described experts’ preference information
using a set of linguistic terms. Nowadays, the complexity of real decision-making prob-
lems increases with the continuous progress of society. When dealing with time-sensitive
and complex decision problems, experts often do not know enough about the evaluated
objects or solutions due to their knowledge limitations, resulting in three aspects of their
perceptions: positive, negative, and hesitant. In such cases, experts do not necessarily
fit their cognitive results when using the above PRs to characterize their preferences for
the alternatives. IFSs are an extension of the fuzzy set [14], which has the advantage of
containing information on membership, nonmembership, and hesitation at the same time.
Thus, Xu [15] proposed the concept of IFPRs by incorporating IFSs into PRs. Compared
with MPRs, APRs, FPRs, and LPRs, IFPRs can describe the fuzzy nature of the alternatives
in a more delicate and reasonable way [16–18].

The concept of q-ROFSs was put forward by Yager [19], which is an extension of IFSs.
We see that q-ROFSs continue the advantageous feature that IFSs contain three aspects of
information, and the value area and information amount of membership and nonmem-
bership are larger than those of IFSs. It ensures that any IFS is included in the scope of
q-ROFS and enhances the flexibility of information representation for decision-makers. The
existing research on q-ROFSs mainly includes operation laws, aggregation operators, and
decision methods, where operation laws are the basis for calculating operators, operators
are used to assemble multiple q-ROFSs with weights, and decision methods are used to
solve realistic decision problems. The q-ROF decision methods have been widely applied
in different fields. Yager [19] defined some operation laws and ordered weighted aggre-
gation (OWA) operators for q-ROFSs. Liu and Wang [20] developed the q-ROF-weighted
average (q-ROFWA) and weighted geometric (q-ROFWG) operators and applied them
to multi-attribute decision-making (MADM) problems. Wei et al. [21] investigated some
Heronian operators of q-ROFSs and applied them to select enterprise resource planning
systems. Peng et al. [22] developed the exponential operation methods of q-ROFSs, and
the developed q-ROF MADM methods have advantages in finding the optimal alterna-
tive without being counterintuitive. Riaz et al. [23] developed a q-ROF TOPSIS method
to solve the transport policy selection problem. Alkan and Kahraman [24] analyzed the
measures taken by countries in response to COVID-19, adopted a q-ROF TOPSIS method,
and tried to find out the ideal government strategies against the COVID-19 pandemic.
Arya and Kumar [25] defined the entropy and divergence measures of q-ROFSs and de-
veloped a comprehensive TODIM-VIKOR to measure the uncertainty of medical supplier
selection problems.

In the above decision-making problems, using aggregation operators and decision-
making methods of q-ROFSs, the decision information is provided with some common
features. The evaluators provide attribute values for each alternative. However, in some
decision-making problems, due to the limitations of obtaining knowledge information
about the relevant attributes of the alternative set, the evaluator may prefer to provide
evaluation information in the form of a two-by-two comparison of alternatives. It is called
the preference relations (PRs) or comparison matrix. Thus, the experts do not need to
determine the preference information of the alternative under each attribute, and the
binary relationship obtained by two-by-two comparison appears to be relatively easy and
refined [26,27].

Recently, the q-rung orthopair fuzzy information has been combined with PRs and
has been used to develop the concepts of q-ROFPRs. Li et al. [28] defined some q-ROFPRs,
including consistency, incompleteness, consistent incompleteness, and acceptable incom-
pleteness. Zhang et al. [29,30] defined the q-ROFPRs with additive or multiplicative
consistency. Zhang and Chen [31,32] completed the q-ROFPRs with additive or multiplica-
tive consistency and developed some GDM methods with incomplete q-ROFPRs. However,
experts’ weights are subjective, and the important measures of experts are not reflected in



Axioms 2023, 12, 1122 4 of 20

the above GDM methods. In addition, the group q-ROFPRs aggregated using individual
q-ROFPRs may not satisfy multiplicative consistency.

Thus, we developed a GDM method in the q-ROFPR environment to find out the
critical factors in crowdsourcing task recommendation.

3. Preliminaries

To express the importance measure between the two alternatives, the MPR is defined
as follows:

Definition 1 [4]. Let X = {Xi|i ∈ [n]} be an alternative set and Ω =
(
aij
)

n×n be the MPR,
where aij denotes the preference degree of the alternative Xi over Xj by a scale of 1/9~9, satisfying

aij ∈ [1/9, 9], aij = 1/aji, i, j ∈ [n]. (1)

Remark 1. The symbol [n] represents [n] = {1, 2, . . . , n}.

Further, Saaty [4] defined the consistency of MPR, which is used to measure the
reliability and reasonableness of PRs.

Definition 2 [4]. Let PR Ω =
(
aij
)

n×n be an MCPR, then

aij = aikakj, i, j, k ∈ [n]. (2)

Since aij = 1/aji, the multiplicative consistency condition is aijajkaki = aikakjaji, i, j, k ∈ [n].
Saaty [4] provided a sufficient condition for an MCPR Ω =

(
aij
)

n×n, i.e., there exists a standard

weight vector w = (w1, w2, . . . , wn)
T , such that aij = wi/wj, where

n
∑

i=1
wi = 1, wi ∈ [0, 1].

Orlovsky [33] first used the membership function in fuzzy sets to express the relative
importance among alternatives to deal with decision problems characterized by fuzzy
uncertainty information. Further, Tanino [34] refined the definition of FPRs. The concept of
fuzzy sets is provided below.

Definition 3 [35]. A fuzzy set A on the universe X is defined as follows:

A = {〈xi, µA(xi)〉|xi ∈ X } (3)

where µA : X → [0, 1] is the membership function, and the membership value µA(xi) of xi is a
fuzzy number (FN), which indicates the membership degree of the element xi belong to A.

Definition 4 [33]. Let B =
(
bij
)

n×n be an FPR on X, where bij is the preference degree of the
alternative Xi and Xj, then

bij + bji = 1, bij ∈ [0, 1], i, j ∈ [n]. (4)

Definition 5 [33]. If an FPR B =
(
bij
)

n×n is an MCPR, then it satisfies the following conditions:

bijbjkbki = bikbkjbji, i, j, k ∈ [n]. (5)

Similar to the PRs of 1/9 to 9 scales, the FPR satisfies the sufficient condition of multiplicative
consistency if there is a standard weight vector ω = (ω1, ω2, . . . , ωn)

T such that

bij =
ωi

ωi + ωj
, i, j, k ∈ [n] (6)
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The elements of both MPRs and FPRs are values of 1/9~9 or 0~1. In dealing with
some decision problems of high complexity and uncertainty, evaluators prefer to express
their preferences among alternatives in terms of certainty, negativity, and hesitation. Thus,
IFPRs have been introduced [15,36].

Definition 6 [37,38]. An IFS I on X is defined as follows:

I = {〈xi, µI(xi), νI(xi)〉|xi ∈ X } (7)

where µI(xi) and νI(xi) denote the membership and nonmembership degrees of the elements xi
belonging to the set I, respectively. πI(xi) = 1− µI(xi)− νI(xi) is the hesitation degree of the
element xi belonging to the set I.

For convenience, (µI(xi), νI(xi)) is an intuitionistic fuzzy number (IFN) and is abbre-
viated as β = (µI , νI), where µI , νI ∈ [0, 1], µI + νI ≤ 1. πI = 1− µI − νI is the hesitation
degree of β.

Definition 7 [15]. Let RI =
(
r̃ij
)

n×n be an IFPR on the alternative set X, where r̃ij =
(
µij, νij

)
is

an IFN, then
µij = νji, νij = µji, µii = νii = 0.5, i, j ∈ [n] (8)

where µij denotes the preference degree of the alternative Xi over Xj, νij is the preference degree of
the alternative Xj over Xi, and πij = 1− µij − νij is the hesitation degree.

Liao and Xu [36] gave a general definition of MCIFPRs based on the membership
values.

Definition 8 [31]. If an IFPR RI =
(
r̃ij
)

n×n satisfies

µijµjkµki = µkjµjiµik, i, j, k ∈ [n] (9)

then RI is an MCIFPR.
Because µij = νji, νij = µji, its multiplicative consistency condition is µijµjkµki = νijνjkνki,

i, j, k ∈ [n].

Similar to FPRs, Wang [39] provided a normalized intuitionistic fuzzy weight vector
(IFWV) and gave a conversion relation between the weight vector and the multiplicative
consistency.

Definition 9 [38]. If a weight vector ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T satisfies

n
∑
j 6=i

ω
µ
i ≤ ων

i , ω
µ
i + n− 2 ≥

n
∑
j 6=i

ων
i , i ∈ [n], then ω̃ is a normalized IFWV, where ω̃i =

(
ω

µ
i , ων

i

)
is an IFN.

Theorem 1 [36]. If an IFPR TI =
(
t̃ij
)

n×n satisfies the following conditions:

tij =
(

tµ
ij, tν

ij

)
=


(0.5, 0.5), i = j(

2ω
µ
i

ω
µ
i −ων

i +ω
µ
j −ων

j +2
,

2ω
µ
j

ω
µ
i −ων

i +ω
µ
j −ων

j +2

)
, i 6= j

(10)

then TI is an MCIFPR, where ω̃i =
(

ω
µ
i , ων

i

)
is the normalized IFWV in Definition 9.

If ω̃i =
(

ω
µ
i , ων

i

)
satisfies ω

µ
i = 1− ων

i in Definition 1, then RI degenerates to an

MCIFPR B =
(
bij
)

n×n =
(

tµ
ij

)
n×n

, and tµ
ij = 1− tν

ij = ω
µ
i /
(

ω
µ
i + ω

µ
j

)
.
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Yager [19] extended IFSs and introduced the concept of q-ROFSs. The q-ROFSs
continue the advantageous features of IFSs and extend the information range consisting of
membership and nonmembership values, which ensures that all IFSs are included in the
scope of q-ROFSs.

Definition 10 [19]. Let P be a q-ROFS on X, and then the q-ROFS is defined as follows:

P = {〈xi, ρP(xi), σP(xi)〉|xi ∈ X } (11)

where ρP(xi) and σP(xi) denote the membership and nonmembership degrees of the element xi

belonging to the set P, respectively. πP(xi) =
q
√

1− ρ
q
P(xi)− σ

q
P(xi) is the hesitation degree.

For convenience, (ρP(xi), σP(xi)) is a q-ROFN, and the q-ROFN is abbreviated as
p = (ρ, σ), where ρ, σ ∈ [0, 1], ρ2 + σ2 ≤ 1. πP = q

√
1− ρq − σq is the hesitation degree.

From Definitions 4 and 10, any IFN is a q-ROFN. For any two q-ROFNs pi =
(ρi, σi)(i = 1, 2). Yager [19] provided the partial order relation ρ1 ≤ ρ2, σ1 ≥ σ2 ⇒ p1 ≤ p2 .
However, the partial order relation does not distinguish all the q-ROFNs.

Liu and Wang [20] defined the score and accuracy measures of q-ROFNs to sort them.

Definition 11 [20]. Let p1 = (ρ1, σ1) and p2 = (ρ2, σ2) be two q-ROFNs, then
(1) if s(p1) < s(p2), then p1 ≺ p2;
(2) if s(p1) = s(p2) and h(p1) < h(p2), then p1 ≺ p2;
(3) if s(p1) = s(p2) and h(p1) = h(p2), then p1 ∼ p2, namely, ρ1 = ρ2 and σ1 = σ2;
where s(pi) = ρ2

i − σ2
i and h(pi) = ρ2

i + σ2
i are score and accuracy measures of pi(i = 1, 2),

respectively.

According to Definition 11, if p1 ≤ p2, then p1 ≺ p2.

4. Multiplicative Consistent q-ROFPRs

From Definition 10, for any q-ROFN p = (ρ, σ) satisfying ρq + σq ≤ 1, if α = (µ, ν)
satisfying µ = ρq,ν = σq, and µ + ν ≤ 1, then α is an intuitionistic fuzzy number (IFN)
according to Definition 6. Therefore, for a q-ROFN, its membership and nonmembership
degrees can be converted into IFNs using ϕ(x) = xq.

The q-ROFSs are introduced into PRs, and the definition of q-ROFPRs is shown as
follows:

Definition 12 [30]. Let RP =
(

p̃ij
)

n×n =
(
ρij, σij

)
n×n be a q-ROFPR on X, where p̃ij =

(
ρij, σij

)
is a q-ROFN, then

ρij = σji, σij = ρji, ρii = σii =
q√0.5, i, j ∈ [n] (12)

where ρij denotes the preference degree of the alternative Xi over Xj, σij is the preference degree

of the alternative Xj to Xi, πij = q
√

1− ρ
q
ij − σ

q
ij is the degree of uncertainty and hesitation, and

πii =
q
√

1− ρ
q
ii − σ

q
ii = 0, i ∈ [n].

In Definition 12, ρii = σii =
q
√

0.5 means that the alternative Xi is equally important
relative to Xi. For IFPRs, µii + νii = 0.5 = ρ

q
ii = σ

q
ii means that the alternative Xi is equally

important relative to Xi.
Similar to FPRs and IFPRs, the MCq-ROFPRs are defined as follows:

Definition 13 [30]. If the q-ROFPR RP =
(

p̃ij
)

n×n satisfies

ρ
q
ijρ

q
jkρ

q
ki = ρ

q
ikρ

q
kjρ

q
ji, i, j, k ∈ [n] (13)

then RP is an MCq-ROFPR.
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Since ρij = σji, σij = ρji, i, j ∈ [n], then the multiplicative consistency condition is equivalent
to ρ

q
ijρ

q
jkρ

q
ki = σ

q
ijσ

q
jkσ

q
ki, i, j, k ∈ [n].

Similar to the intrinsic connection between IFSs and q-ROFSs, Theorem 2 further
presents the connection between IFPRs and q-ROFPRs.

Theorem 2. Let RI =
(
r̃ij
)

n×n =
(
µij, νij

)
n×n be an IFPR and RP =

(
p̃ij
)

n×n =
(
ρij, σij

)
n×n

be a q-ROFPR, the function ϕ : [0, 1]→ [0, 1] satisfies ϕ(x) = xq, and ϕ−1 is its inverse function.
(1) When RP is an MCq-ROFPR, if RI satisfies r̃ij =

(
ϕ
(
ρij
)
, ϕ
(
σij
))

, then RI is an
MCIFPR.

(2) When RI is an MCIFPR, if RP satisfies p̃ij =
(

ϕ−1(µij
)
, ϕ−1(νij

))
, then RP is an

MCq-ROFPR.

Proof.
(1) Since RP is an MCq-ROFPR, then ρ

q
ijρ

q
jkρ

q
ki = σ

q
ijσ

q
jkσ

q
ki, i, j, k ∈ [n]. If

r̃ij =
(

ϕ
(
ρij
)
, ϕ
(
σij
))

, in IFPR RI , then

µijµjkµki = ϕ
(
ρij
)

ϕ
(

ρjk

)
ϕ(ρki) = ρ

q
ijρ

q
jkρ

q
ki,

νijνjkνki = ϕ
(
σij
)

ϕ
(

σjk

)
ϕ(σki) = σ

q
ijσ

q
jkσ

q
ki.

Therefore, µijµjkµki = νijνjkνki, then RI satisfies consistent consistency.
(2) The proof is similar to (1).
Based on the partial order relations between q-ROFNs, we discuss the properties of

q-ROFPRs. �

Property 1. (Midpoint transferability) Let RP =
(

p̃ij
)

n×n be an MCq-ROFPR,

(1) When λ ≥ q
√

0.5, if p̃ij ≥
(

λ, q
√

1− λq
)

and p̃jk ≥
(

λ, q
√

1− λq
)

, then σik = ρki ≤ λ.

(2) When λ ≤ q
√

0.5, if p̃ij ≤
(

λ, q
√

1− λq
)

and p̃jk ≤
(

λ, q
√

1− λq
)

, then σki = ρik ≤
q
√

1− λq.

Proof.
(1) When λ ≥ q

√
0.5, q
√

1− λq ≤ q
√

0.5, then ρji ≤ q
√

0.5 ≤ ρij and ρkj ≤ q
√

0.5 ≤ ρjk.
Proving by the converse method, assume that σik = ρki ≥ λ ≥ q

√
0.5, then ρ

q
ik ≤ 0.5. From

Definition 13, ρ
q
ik =

ρ
q
ijρ

q
jk

ρ
q
kjρ

q
ji
· ρq

ki ≥ 0.5, contradicts the assumption. Therefore, σik = ρki ≤ λ.

(2) The proof is similar to (1). �

Theorem 3. Property 1(1) is equivalent to Property 1(2).

Proof. When λ ≤ q
√

0.5, q
√

1− λq ≥ q
√

0.5, p̃ij ≤
(

λ, q
√

1− λq
)

, p̃jk ≤
(

λ, q
√

1− λq
)

,

because p̃ij = p̃ji, p̃ij ≤
(

λ, q
√

1− λq
)

, p̃jk ≤
(

λ, q
√

1− λq
)
⇔ p̃ji ≥

(
q
√

1− λq, λ
)

,

p̃kj ≥
(

q
√

1− λq, λ
)

.

Assume that q
√

1− λq = κ ≥ q
√

0.5, Property 1(2) can be expressed in the following
form: When κ ≥ q

√
0.5, if p̃kj ≥

(
κ, q
√

1− κq
)

and p̃ji ≥
(
κ, q
√

1− κq
)
, then σki = ρik ≤ κ.

Therefore, Property 1(2) is equivalent to Property 1(1). �

Theorem 4. The equivalence of Property 1 is as follows: ρij ≥ λ ≥ q
√

0.5, ρjk ≥ λ ≥ q
√

0.5⇒
σik = ρki ≤ λ.
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Proof. In fact, p̃ij =
(
ρij, σij

)
, ρ

q
ij + σ

q
ij ≤ 1. Therefore, ρij ≥ λ ≥ q

√
0.5⇔ p̃ij ≥

(
λ, q
√

1− λq
)

.
�

Property 1(1) can be expressed equivalently in the following form:
ρij ≥ λ, ρjk ≥ λ⇒ σik = ρki ≤ λ .

When λ = q
√

0.5, Property 1 degenerates to the following special form:

Property 2. Let RP =
(

p̃ij
)

n×n =
(
ρij, σij

)
n×n be an MCq-ROFPR, then

p̃ij ≥
(

q√0.5, q√0.5
)

, p̃jk ≥
(

q√0.5, q√0.5
)
⇒ σik = ρki ≤

q√0.5 (14)

Property 2 shows that if the alternative Xi is better than Xj, and the alternative Xj is
better than Xk, the preference degree of the alternative Xk over Xk is less than q

√
0.5.

In GDM problems, how consistent or divergent between experts or between experts
and the expert group is important for the impact of the decision process. Definitions 14 and
15 will give the divergence and compatibility measures between the two PRs.

Definition 14. Let R =
(

p̃ij
)

n×n =
(
ρij, σij

)
n×n and R = (µik, νik)n×n be two

q-ROFPRs, the divergence measure between R and R is defined as follows:

D
(

R, R
)
=

(
n
∏
i 6=j

max
{

ρij ,ρij

}
min

{
ρij ,ρij

} · max{σij ,σij}
min{σij ,σij}

) 1
n(n−1)

.

Since ρij = σji and ρij = σji, therefore,

D
(

R, R
)
=

 n

∏
i<j

max
{

ρij, ρij

}
min

{
ρij, ρij

} · max
{

σij, σij
}

min
{

σij, σij
}


1
n(n−1)

(15)

Theorem 5. For any two q-ROFPRs R and R, the divergence measure D
(
R, R

)
satisfies D

(
R, R

)
≥ 1,

and when D
(
R, R

)
= 1, then R = R.

Definition 15. The compatibility measure between any two q-ROFPRs R and R is C
(

R, R
)
=

1/D
(

R, R
)
.

According to Definition 15 and Theorem 5, Corollary 1 is easily obtained.

Corollary 1. (1) 0 < C
(

R, R
)
≤ 1; (2) C

(
R, R

)
= 1, when and only when R = R;

(3) C
(

R, R
)
= C

(
R, R

)
.

The compatibility measure can be used to measure the gap between PRs. The higher
the compatibility measure, the stronger the consistency degree between PRs. When two
PRs are exactly equal, the compatibility measure is 1.

Property 3. R =
(
ρij, σij

)
n×n, Rk =

(
ρk

ij, σk
ij

)
n×n

, and Rl =
(

ρl
ij, σl

ij

)
n×n

are three q-RPFPRs,

if Rk and Rl satisfy ρl
ij = 1/ρk

ij, σl
ij = 1/σk

ij, i < j, then C
(

R, Rk
)
= C

(
R, Rl

)
.

Proof. Let ρk
ij = λ

ρ
ijρij, σk

ij = λσ
ijσij, then ρl

ij = ρij/λ
ρ
ij, σl

ij = σij/λσ
ij. According to

Definition 14, D
(

R, Rk
)

= D
(

R, Rl
)

=

(
n
∏
i<j

max
{

λ
ρ
ij, 1/λ

ρ
ij

}
·max

{
λσ

ij, 1/λσ
ij

}) 1
n(n−1)

.

Therefore, C
(

R, Rk
)
= C

(
R, Rl

)
. �
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5. The Goal Programming Model under MCq-ROFPRs for q-ROFPWVs

This section defines the normalized q-ROFPWVs of MCq-ROFPRs, and the specific
formula for q-ROFPWVs to construct MCq-ROFPRs is provided. In decision-making
problems, evaluators may not always be able to give MCIFPR when comparing alternatives
and thus need to study methods to obtain preference weight vectors corresponding to
general PFPR. To this end, based on the conversion formula between PFPWV and MCIFPR,
an objective planning model for obtaining the priority weight vector is considered to
minimize the difference between PFPR and MCIFPR and minimize the uncertainty of the
priority weight vector.

(1) MCq-ROFPRs based on normalized weight vectors

Definition 16. If the weight vector ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T satisfies

n

∑
j 6=i

(
ω

ρ
j

)q
≤ (ωσ

i )
q,
(

ω
ρ
i

)q
+ n− 2 ≥

n

∑
j 6=i

(
ωσ

j

)q
, i ∈ [n] (16)

then ω̃ is the normalized q-ROFWV, and ω̃i =
(

ω̃
ρ
i , ω̃σ

i

)
is a q-ROFN.

Definition 17. The function g : [0, 1]× [0, 1]× [0, 1]× [0, 1]→ [0, 1] satisfies

g(x1, x2, x3, x4) = xq
1 +

(
1− xq

2

)
+ xq

3 +
(

1− xq
4

)
(17)

Theorem 6. Let ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T be a normalized q-ROFWV, if Tp =

(
t̃ij
)

n×n, it satisfies
the following conditions:

t̃ij =
(

tρ
ij, tσ

ij

)
=


(

q
√

0.5, q
√

0.5
)

, i = j q

√
2(ω

ρ
i )

q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

) , q

√√√√ 2
(

ω
ρ
j

)q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

)
, i 6= j

(18)

Then Tp is an MCq-ROFPR.

Proof. First, prove that Tp is a q-ROFPR, i.e., prove that t̃ij is a q-ROFN. When i = j, it

obviously holds. When i 6= j, because
(

ω
ρ
i

)q
≤ 1−

(
ωσ

i
)q,
(

ω
ρ
j

)q
≤ 1−

(
ωσ

j

)q
, according

to Definition 17, then

(
tρ
ij

)q
+
(

tσ
ij

)q
=

2
((

ω
ρ
i

)q
+
(

ω
ρ
j

)q)
(

ω
ρ
i

)q
+ 1−

(
ωσ

i
)q

+
(

ω
ρ
j

)q
+ 1−

(
ωσ

j

)q ≤ 1.

Therefore, t̃ij is a q-ROFN. Then Tp is a q-ROFPR. Then, it should prove that Tp satisfies
the multiplicative consistency.

(
tρ
ijt

ρ
jktρ

ki

)q
=

2
(

ω
ρ
i ω

ρ
j ω

ρ
k

)q

g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)
g
(

ω
ρ
j , ωσ

j , ω
ρ
k , ωσ

k

)
g
(

ω
ρ
k , ωσ

k , ω
ρ
i , ωσ

i

) =
(

tσ
ijt

σ
jktσ

ki

)q
.

�
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Corollary 2. For a q-ROFPR RP =
(

p̃ij
)

n×n, if there exists a normalized q-ROFWV

ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T satisfying

p̃ij =
(
ρij, σij

)
=


(

q
√

0.5, q
√

0.5
)

, i = j q

√
2(ω

ρ
i )

q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

) , q

√√√√ 2
(

ω
ρ
j

)q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

)
, i 6= j

(19)

then RP is an MCq-ROFPR.

Theorem 7. Let RP =
(

p̃ij
)

n×n be an MCq-ROFPR, and ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T
(

ω̃i =
(

ω
ρ
i , ωσ

i

))
be the normalized q-ROFWV of RP, if the IFWV λ̃ =

(
λ̃1, λ̃2, . . . , λ̃n

)T
satisfies λ̃i =

(
λ

ρ
i , λσ

i

)
=((

ω
ρ
i

)q
,
(
ωσ

i
)q
)

, then λ̃ is a normalized IFWV.

(2) Priority weight vector based on the goal programming model
For a q-ROFPR RP =

(
p̃ij
)

n×n, if there exists a standardized q-ROFWV

ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T , then RP is an MCq-ROFPR. However, in some realistic decision

problems, experts may not be able to propose an MCq-ROFPR. To obtain the standardized
weight vector of RP, we propose a goal programming model with the objective of mini-
mizing the deviation between RP and TP and minimizing the hesitation of TP. Finally, the
corresponding standardized weight vector of RP is obtained [32].

From Theorem 6, an MCq-ROFPR Tp =
(
t̃ij
)

n×n can be constructed based on the
standardized q-ROFWV ω̃. The membership deviation and nonmembership deviation

between RP and TP are δij =
2(ω

ρ
i )

q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

) − ρ
q
ij, γij =

2
(

ω
ρ
j

)q

g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

) − σ
q
ij.

The smaller the membership deviation
∣∣δij
∣∣ and the nonmembership deviation

∣∣γij
∣∣,

the higher the consistency degree between RP and the MCq-ROFPR TP.
In addition to considering the deviation values, the hesitancy of the elements of the

MCq-ROFPR TP is
(
πij
)q

= 1−
2
(
(ω

ρ
i )

q
+
(

ω
ρ
j

)q)
g
(

ω
ρ
i ,ωσ

i ,ωρ
j ,ωσ

j

) .

For 0 ≤ x < y ≤ 1, the increase or decrease in the value 1− x/y is consistent with that

of y− x. Therefore, ηij = g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)
− 2
((

ω
ρ
i

)q
+
(

ω
ρ
j

)q)
should be considered

for the hesitation of TP. Furthermore, since

1
n2

n
∑

i=1

n
∑

j=1
ηij

= 1
n2

n
∑

i=1

n
∑

j=1

((
ω

ρ
i

)q
−
(
ωσ

i
)q

+
(

ω
ρ
j

)q
−
(

ωσ
j

)q
+ 2
)
− 2
((

ω
ρ
i

)q
+
(

ω
ρ
j

)q)
= 1

n2

n
∑

i=1

n
∑

j=1

(
(τ(ω̃i))

q +
(
τ
(
ω̃j
))q
)
= 1

n

n
∑

i=1
(τ(ω̃i))

q = 1
n

n
∑

i=1

(
1−

(
ω

ρ
i

)q
−
(
ωσ

i
)q
) ,

and the hesitation value ηij is less than or equal to the hesitancy of the upper triangular
element of RP =

(
p̃ij
)

n×n

1
n

n

∑
i=1

(
1−

(
ω

ρ
i

)q
− (ωσ

i )
q
)
≤ 2

n(n− 1) ∑
1≤i<j≤n

(
1− ρ

q
ij − σ

q
ij

)
(20)

The lower the hesitation, the stronger the confidence of TP.
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Based on the above analysis, the following model (21) is constructed to minimize the
deviation and minimize the hesitation:

minT =

n
∑

i=1

(
1−

(
ω

ρ
i

)q
−
(
ωσ

i
)q
)

n
+

n

∑
i=1

n

∑
j 6=i

(∣∣δij
∣∣+ ∣∣γij

∣∣)

s.t.



2
(

ω
ρ
i

)q
− g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)(
ρ

q
ij + δij

)
= 0,

2
(

ω
ρ
j

)q
− g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)(
σ

q
ij + γij

)
= 0,

0 ≤ ω
ρ
i , ωσ

i ≤ 1,
(

ω
ρ
i

)q
+
(
ωσ

i
)q ≤ 1,

n
∑
j 6=i

(
ω

ρ
j

)q
≤
(
ωσ

i
)q,
(

ω
ρ
i

)q
+ n− 2 ≥

n
∑
j 6=i

(
ωσ

j

)q

(n− 1)
n
∑

i=1

(
1−

(
ω

ρ
i

)q
−
(
ωσ

i
)q
)
≤ 2 ∑

1≤i<j≤n

(
1− ρ

q
ij − σ

q
ij

)
i, j ∈ [n], j 6= i

(21)

According to Definition 12, ρij = σji, σij = ρji ⇒ δij = γji, i, j ∈ [n] . Therefore, the
model (21) only needs to consider the upper triangular element of the PR: i, j ∈ J,
J = {(i, j) : 1 ≤ i < j ≤ n}. Assume that

δ+ij =

∣∣δij
∣∣+ δij

2
, δ−ij =

∣∣δij
∣∣− δij

2
, γ+

ij =

∣∣γij
∣∣+ γij

2
, γ−ij =

∣∣γij
∣∣− γij

2
, i, j ∈ J

Then
∣∣δij
∣∣ = δ+ij + δ−ij , δij = δ+ij − δ−ij ,

∣∣γij
∣∣ = γ+

ij + γ−ij , γij = γ+
ij − γ−ij , δ+ij × δ−ij =

0, γ+
ij × γ−ij = 0.

Therefore, model (21) can be replaced with the following model (22):

minT =

n
∑

i=1

(
1−

(
ω

ρ
i

)q
−
(
ωσ

i
)q
)

n
+ ∑

1≤i<j≤n

(
δ+ij + δ−ij + γ+

ij + γ−ij

)

s.t.



2
(

ω
ρ
i

)q
− g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)(
ρ

q
ij + δ+ij − δ−ij

)
= 0,

2
(

ω
ρ
j

)q
− g
(

ω
ρ
i , ωσ

i , ω
ρ
j , ωσ

j

)(
σ

q
ij + γ+

ij − γ−ij

)
= 0,

0 ≤ ω
ρ
i , ωσ

i ≤ 1,
(

ω
ρ
i

)q
+
(
ωσ

i
)q ≤ 1,

n
∑
j 6=i

(
ω

ρ
j

)q
≤
(
ωσ

i
)q,
(

ω
ρ
i

)q
+ n− 2 ≥

n
∑
j 6=i

(
ωσ

j

)q

(n− 1)
n
∑

i=1

(
1−

(
ω

ρ
i

)q
−
(
ωσ

i
)q
)
≤ 2 ∑

1≤i<j≤n

(
1− ρ

q
ij − σ

q
ij

)
δ+ij , δ−ij , γ+

ij , γ−ij ≥ 0, δ+ij × δ−ij = 0, γ+
ij × γ−ij = 0

(22)

The normalized weight vector of RP can be obtained by solving the model (22):
ω̃ = (ω̃1, ω̃2, . . . , ω̃n)

T .

6. Group Decision-Making Method Based on the Group Goal Programming Model
and the Sq-ROFWG Operator
6.1. Problem Description

In the GDM problem under q-ROFPRs with unknown expert weights, the alternative
set is X = {Xi|i ∈ [n]}, and the expert group is E = {ek|k ∈ [m]}. Based on the alternative
information provided by the decision-makers, the expert ek(k ∈ [m]) makes a two-by-
two comparison of the alternatives Xi(i ∈ [n]) and Xj(j ∈ [n]), provides the q-ROFPR

Rk
P =

(
p̃k

ij

)
n×n

(k ∈ [m]), where p̃k
ij =

(
ρk

ij, σk
ij

)
(i, j ∈ [n]; k ∈ [m]) is a q-ROFN. In order to

obtain the ranking of the alternatives in X, the normalized q-ROFWV
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ω̃∗ =
(
ω̃∗1 , ω̃∗2 , . . . , ω̃∗n

)T is obtained. Thus, we propose a GDM method based on the
Sq-ROFWG operator and goal programming model, apply it to solve the q-ROFWV, and
finally obtain the optimal alternative.

6.2. Expert Weight Calculation

To solve the GDM problem, we need to determine the weight vector of the expert
group first. Thus, the above individual goal programming model should be extended to a
GDM method, and the overall normalized q-ROFWV ω̃ = (ω̃1, ω̃2, . . . , ω̃n)

T is obtained
to construct an ideal MCq-ROFPR R = (ρik, σik)n×n. Then, we develop the compatibility

measure between the individual q-ROFPR Rl =
(

p̃l
ij

)
n×n

=
(

ρl
ij, σl

ij

)
n×n

and the ideal

MCq-ROFPR Rl =
(

p̃l
ij

)
n×n

=
(

ρl
ij, σl

ij

)
n×n

to obtain the weight vector of experts.

The consistency of each element of the ideal MCq-ROFPR R with the corresponding
element of the individual q-ROFPR given by each expert should be high, i.e., the deviation
should be minimized. Next, the overall goal programming model is constructed to obtain
the ideal MCq-ROFPR R. The standardized weight vector of R is ω̃ = (ω̃1, ω̃2, . . . , ω̃n)

T .
Inspired by the models (21) and (22), an overall programming model with the objective of
minimizing the deviation among R and all individuals Rl and minimizing the hesitation
of the weight vector ω̃ is constructed. In contrast to model (22), if the overall deviation is
considered, only the relevant variables and objectives of the model (22) need to be adjusted,
and the detailed adjustments are as follows:

minT =

n
∑

i=1

(
1−

(
ω̃

ρ
i

)q
−
(
ω̃σ

i
)q
)

n
+

s

∑
l=1

∑
1≤i<j≤n

(
δ+ij + δ−ij + γ+

ij + γ−ij

)
s

ωi, ηij, ρ2
ij, σ2

ij, δ+ij , δ−ij , γ+
ij , γ−ij → ω̃i, ηij,

(
ρl

ij

)q
,
(

σl
ij

)q
, δl+

ij , δl−
ij , γl+

ij , γl−
ij , l ∈ [s]

Furthermore, the overall goal programming model (23) is constructed as follows:

minT =

n
∑

i=1

(
1−

(
ω̃

ρ
i

)q
−
(
ω̃σ

i
)q
)

n
+

s

∑
l=1

∑
1≤i<j≤n

(
δl+

ij + δl−
ij + γl+

ij + γl−
ij

)
s

s.t.



2
(

ω̃
ρ
i

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)((
ρl

ij

)q
+ δl+

ij − δl−
ij

)
= 0,

2
(

ω̃
ρ
j

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)((
σl

ij

)q
+ γl+

ij − γl−
ij

)
= 0,

0 ≤ ω̃
ρ
i , ω̃σ

i ≤ 1,
(

ω̃
ρ
i

)q
+
(
ω̃σ

i
)q ≤ 1,

n
∑
j 6=i

(
ω̃

ρ
j

)q
≤
(
ω̃σ

i
)q,
(

ω̃
ρ
i

)q
+ n− 2 ≥

n
∑
j 6=i

(
ω̃σ

j

)q

s(n− 1)
n
∑

i=1

(
1−

(
ω̃

ρ
i

)q
−
(
ω̃σ

i
)q
)
≤ 2 ∑

1≤i<j≤n

(
1−

s
∑

l=1

((
ρl

ij

)q
+
(

σl
ij

)q))
δl+

ij , δl−
ij , γl+

ij , γl−
ij ≥ 0, δl+

ij × δl−
ij = 0, γl+

ij × γl−
ij = 0

(23)

Because 2
(

ω̃
ρ
i

)q
− g

(
ω̃

ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)((
ρl

ij

)q
+ δl+

ij − δl−
ij

)
= 0, (i, j) ∈ Jl , l ∈ [s] is

equivalent to

2
(

ω̃
ρ
i

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

) s

∑
l=1

(
ρl

ij

)q
+ δl+

ij − δl−
ij

s
= 0, (i, j) ∈ J.
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Similarly, 2
(

ω̃
ρ
j

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)((
σl

ij

)q
+ γl+

ij − γl−
ij

)
= 0, (i, j) ∈ Jl , l ∈ [s] is

equivalent to

2
(

ω̃
ρ
j

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

) s

∑
l=1

(
σl

ij

)q
+ γl+

ij − γl−
ij

s
= 0, (i, j) ∈ J.

And δ
l+
ij =

s
∑

l=1
δl+

ij

s , δ
l−
ij =

s
∑

l=1
δl−

ij

s , γl+
ij =

s
∑

l=1
γl+

ij

s , γl−
ij =

s
∑

l=1
γl−

ij

s .
Based on the above analysis, model (23) can be converted into the model (24).

minJ =

n
∑

i=1

(
1−

(
ω̃

ρ
i

)q
−
(
ω̃σ

i
)q
)

n
+ ∑

1≤i<j≤n

(
δ

l+
ij + δ

l−
ij + γl+

ij + γl−
ij

)

s.t.



2
(

ω̃
ρ
i

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)( s
∑

l=1

(
ρl

ij

)q
/s
)
− δl+

ij + δl−
ij = 0,

2
(

ω̃
ρ
j

)q
− g
(

ω̃
ρ
i , ω̃σ

i , ω̃
ρ
j , ω̃σ

j

)( s
∑

l=1

(
σl

ij

)q
/s
)
− γl+

ij + γl−
ij = 0,

0 ≤ ω̃
ρ
i , ω̃σ

i ≤ 1,
(

ω̃
ρ
i

)q
+
(
ω̃σ

i
)q ≤ 1,

n
∑
j 6=i

(
ω̃

ρ
j

)q
≤
(
ω̃σ

i
)q,
(

ω̃
ρ
i

)q
+ n− 2 ≥

n
∑
j 6=i

(
ω̃σ

j

)q

s(n− 1)
n
∑

i=1

(
1−

(
ω̃

ρ
i

)q
−
(
ω̃σ

i
)q
)
≤ 2 ∑

1≤i<j≤n

s
∑

l=1

(
1−

((
ρl

ij

)q
+
(

σl
ij

)q))
δ

l+
ij , δ

l−
ij , γl+

ij , γl−
ij ≥ 0, δ

l+
ij × δ

l−
ij = 0, γl+

ij × γl−
ij = 0

. (24)

The model (24) is solved to obtain the overall normalized q-ROFWV
ω̃ = (ω̃1, ω̃2, . . . , ω̃n)

T
(

ωi =
(

ω
ρ
i , ωσ

i

))
, and the ideal q-ROFPR R =

(
ρij, σij

)
n×n

is con-

structed as

R =
(

ρij, σij

)
n×n

=


(

q
√

0.5, q
√

0.5
)

, i = j q

√
2(ω

ρ
i )

q

g
(

ω̃
ρ
i ,ω̃σ

i ,ω̃ρ
j ,ω̃σ

j

) , q

√√√√ 2
(

ω
ρ
j

)q

g
(

ω̃
ρ
i ,ω̃σ

i ,ω̃ρ
j ,ω̃σ

j

)
, i 6= j

. (25)

The ideal MCq-ROFPR R =
(

ρij, σij

)
n×n

is constructed based on the overall goal

programming model with the objective of minimizing the hesitancy of R and the deviation
between R and all individuals Rl . Therefore, the compatibility measure between the
individual PRs Rl and the ideal R reflects the consistency degree between the expert and
the group opinion and examines the expert’s judgment level. Therefore, the compatibility
measure between individual PRs Rl and ideal PR R is used to obtain the expert weights
λ = (λ1, λ2, . . . , λs)

T .

λl =
C
(

Rl , R
)

s
∑

l=1
C
(

Rl , R
) , l ∈ [s] (26)

6.3. Aggregation of Individual q-ROFPRs Using the Sq-ROFWG Operator

After obtaining the weight vectors of the expert group, using a reasonable q-ROF
operator to aggregate the individual q-ROFPRs into a comprehensive q-ROFPR is one of the
important steps to solve the GDM problem. Next, the aggregation operators are analyzed
as follows:
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Definition 18. Let αi = (ρi, σi)(i ∈ [n]) be a set of q-ROFNs, whose weight vector is
ω = (ω1, ω2, . . . , ωn)

T , then
(1) The q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator [20] is defined as

follows:

q− ROFWG(α1, α2, . . . , αn) =

(
n

∏
i=1

ρ
ωi
i , q

√
1−

n

∏
i=1

(
1− σ

q
i

)ωi

)
(27)

(2) The symmetric q-rung orthopair fuzzy weighted geometric (SYq-ROFWG) operator is
defined as follows:

SYq− ROFWG(α1, α2, . . . , αn) =

 q

√√√√√√√
n
∏
i=1

(
ρ

q
i

)ωi

n
∏
i=1

(
ρ

q
i

)ωi
+

n
∏
i=1

(
1− ρ

q
i

)ωi
, q

√√√√√√√
n
∏
i=1

(
σ

q
i

)ωi

n
∏
i=1

(
σ

q
i

)ωi
+

n
∏
i=1

(
1− σ

q
i

)ωi

 (28)

Let Rl =
(

p̃l
ij

)
n×n

=
(

ρl
ij, σl

ij

)
n×n

be the q-ROFPR provided by the expert group

el(l = 1, 2, . . . , s), and λl(l = 1, 2, . . . , s) be the weights of Rl . Assume that all Rl are MCq-
ROFPRs, then they satisfy(

ρl
ij

)q(
ρl

jk

)q(
ρl

ki

)q
=
(

σl
ij

)q(
σl

jk

)q(
σl

ki

)q

According to Definition 18, the q-ROFWG and SYq-ROFWG operator is used to
assemble the individual PRs Rl(l = 1, 2, . . . , s) that satisfy the multiplicative consistency,
and the analysis is as follows:

(1) The obtained integrated q-ROFPR Rq−ROFWG =
(

ρ
q−ROFWG
ij , σ

q−ROFWG
ij

)
n×n

using

the q-ROFWG operator satisfies

ρ
q−ROFWG
ij =

s

∏
l=1

(
ρl

ij

)λl
, σ

q−ROFWG
ij = q

√
1−

s

∏
l=1

(
1−

(
σl

ij

)q)λl
(29)

then
(

ρ
q−ROFWG
ij

)q(
ρ

q−ROFWG
jk

)q(
ρ

q−ROFWG
ki

)q
=

(
σ

q−ROFWG
ij

)q(
σ

q−ROFWG
jk

)q(
σ

q−ROFWG
ki

)q
does not necessarily hold. Therefore, Rq−ROFWG does not necessarily satisfy

the multiplicative consistency.
(2) The obtained integrated PR RSYPFWG =

(
ρSYPFWG

ij , σSYPFWG
ij

)
n×n

using the SYq-

ROFWG operator satisfies

ρ
SYq−ROFWG
ij = q

√√√√√ s
∏

l=1

((
ρl

ij

)q)λl

s
∏

l=1

((
ρl

ij

)q)λl
+

s
∏

l=1

(
1−
(

ρl
ij

)q)λl
,

σ
SYq−ROFWG
ij = q

√√√√√ s
∏

l=1

((
σl

ij

)q)λl

s
∏

l=1

((
σl

ij

)q)λl
+

s
∏

l=1

(
1−
(

σl
ij

)q)λl

(30)

then
(

ρ
SYq−ROFWG
ij

)q(
ρ

SYq−ROFWG
jk

)q(
ρ

SYq−ROFWG
ki

)q
=
(

σ
SYq−ROFWG
ij

)q(
σ

SYq−ROFWG
jk

)q(
σ

SYq−ROFWG
ki

)q
does not necessarily hold. Therefore, RSYq−ROFWG does not satisfy the

multiplicative consistency.
Based on the above analysis, the integrated q-ROFPR obtained from individual

MCq-ROFPRs using the q-ROFWG and SYq-ROFWG operators is not necessarily an
MCq-ROFPR.
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Therefore, we propose the simple q-ROF weighted geometric (Sq-ROFWG) operator.

Definition 19. Let αi = (ρi, σi)(i ∈ [n]) be a set of q-ROFNs, whose weight vector is
ω = (ω1, ω2, . . . , ωn)

T . The Wq-ROFWG operator is defined as follows:

SPFWG(α1, α2, . . . , αn) =

(
n

∏
i=1

ρ
ωi
i ,

n

∏
i=1

σ
ωi
i

)
(31)

Theorem 8. If the individual PRs Rl(l ∈ [s]) are all MCq-ROFPRs, then the integrated matrix
obtained using the Sq-ROFWG operator is still an MCq-ROFPR.

Proof. The integrated matrix obtained using the SYq-ROFWG is RSYq−ROFWG =(
ρ

SYq−ROFWG
ij , σ

SYq−ROFWG
ij

)
n×n

. From Definition 19, RSYq−ROFWG satisfies ρ
SYq−ROFWG
ij =

s
∏
l=1

(
ρl

ij

)λl
and σ

SYq−ROFWG
ij =

s
∏
l=1

(
σl

ij

)λl
. Then

(
ρ

Sq−ROFWG
ij ρ

Sq−ROFWG
jk ρ

Sq−ROFWG
ki

)q
=

(
s

∏
l=1

(
ρl

ijρ
l
jkρl

ki

)λl
)q

,(
σ

Sq−ROFWG
ij σ

Sq−ROFWG
jk σ

Sq−ROFWG
ki

)q
=

(
s

∏
l=1

(
σl

ijσ
l
jkσl

ki

)λl
)q

.

Since all Rl(l ∈ [s]) satisfy the multiplicative consistency, then
(

ρl
ij

)q(
ρl

jk

)q(
ρl

ki

)q
=(

σl
ij

)q(
σl

jk

)q(
σl

ki

)q
. Thus,(

ρ
Sq−ROFWG
ij

)q(
ρ

Sq−ROFWG
jk

)q(
ρ

Sq−ROFWG
ki

)q
=
(

σ
Sq−ROFWG
ij

)q(
σ

Sq−ROFWG
jk

)q(
σ

Sq−ROFWG
ki

)q
.

Therefore, the integrated matrix obtained using the Sq-ROFWG operator is an
MCq-ROFPR. �

Theorem 9. If the individual PR Rl(l ∈ [s]) and the ideal MCq-ROFPR R satisfy D
(

Rl , R
)
≤ τ,

then the integrated PR R obtained from the Sq-ROFWG operator satisfies D
(

R, R
)
≤ τ, where τ is

the deviation threshold.

Proof. For any x, y > 0, ln max{x,y}
min{x,y} = |ln x− ln y|. From D

(
Rl , R

)
≤ τ, then

eln D(Rl ,R) = e
1

2n(n−1)

n
∑

i<k
ln

max{ρl
ik ,ρik}

min{ρl
ik ,ρik}

·
max{σl

ik ,σik}
min{σl

ik ,σik} = e
1

2n(n−1)

n
∑

i<k
|ln µl

ik−ln µik |+|ln νl
ik−ln νik |

≤ eln τ ,

then ∣∣∣∣∣ s

∑
l=1

λl

(
ln ρl

ik − ln ρik

)∣∣∣∣∣ ≤
∣∣∣∣∣ s

∑
l=1

λl

(
ln σl

ik − ln σik

)∣∣∣∣∣.
Furthermore,

eln D(R,R)

= e
1

2n(n−1)

n
∑

i<k
(|ln

s
∏

l=1
(ρl

ik)
λl−ln ρik |+|ln

s
∏

l=1
(σl

ik)
λl−ln σik |)

= e
1

2n(n−1)

n
∑

i<k
(|

s
∑

l=1
λl(ln ρl

ik−ln ρik)|+|
s
∑

l=1
λl(ln σl

ik−ln σik)|)

≤ e

s
∑

l=1
λl(

n
∑

i<k

1
2n(n−1) (|ln ρl

ik−ln ρik |+|ln σl
ik−ln σik |))

=
s

∏
l=1

(
eln D(Rl ,R)

)λl ≤ eln τ

.



Axioms 2023, 12, 1122 16 of 20

Therefore, D
(

R, R
)
≤ τ. �

According to Theorem 8, if all the individual q-ROFPRs satisfy the multiplicative
consistency, then the combined q-ROFPRs obtained using the Sq-ROFWG operator still
satisfy the multiplicative consistency. According to Theorem 9, if the compatibility measure
between the individual PRs and the ideal MCq-ROFPRs is less than a given threshold, then
the compatibility measure between the integrated PRs using the Sq-ROFWG operator and
the ideal MCq-ROFPRs is still less than the given threshold. Therefore, the Sq-ROFWG
operator is used as an aggregation operator to obtain the integrated q-ROFPRs.

6.4. GDM Method Based on the Group Goal Programming Model and the Sq-ROFWG Operator

Above all, the steps of the developed GDM method are as follows:
Step 1: Use the individual PRs Rl =

(
p̃l

ij

)
n×n

(l ∈ [s]) provided by the expert group

to construct the model (24) and solve it to obtain the ω̃ = (ω̃1, ω̃2, . . . , ω̃n)
T . The ideal

MCq-ROFPR R =
(

µij, νij

)
n×n

is obtained using Equation (25).

Step 2: calculate the divergence measure and compatibility measure between Rl and
R using Equation (15) and Definition 14.

C
(

Rl , R
)
=

1
D
(

Rl , R
) , l ∈ [s] (32)

The weight vector λ = (λ1, λ2, . . . , λs)
T of experts is calculated using Equation (26).

Step 3: combine the expert weight vector λ and aggregate Rl =
(

p̃l
ij

)
n×n

(l ∈ [s]) to

obtain the combined PR R =
(

p̃k
ij

)
n×n

using the Sq-ROFWG operator (Equation (31)).

Step 4: construct the goal programming model (22) to calculate the vector
ω̃ = (ω̃1, ω̃2, . . . , ω̃n)

T based on the combined q-ROFPR R =
(

p̃k
ij

)
n×n

.

Step 5: rank the weight vectors to obtain the optimal alternative based on Definition 11.

7. A Numerical Example

In order to find out the critical factors of crowdsourcing task recommendation, assume
that a group of three decision-makers formed an expert group E = {e1, e2, e3}: a platform
manager e1, a system designer e2, and a professor e3 focused on crowdsourcing. The
weight vector of decision-makers is unknown. The experts compared four factors: subject
preference X1, skill X2, historical performance X3, and social capital X4. Before designing a
recommendation system, it is necessary to use expert experience to identify critical factors in
crowdsourcing task recommendation, serving the feature extraction of the recommendation
system.

The experts ek(k = 1, 2, 3) compare the influence factors Xi and Xj(i, j = 1, 2, 3, 4; i 6= j)

and provide the q-ROFPRs Rk
P =

(
p̃k

ij

)
4×4

(k = 1, 2, 3), where p̃k
ij =

(
ρk

ij, σk
ij

)
is a q-ROFN.

Next, assume that q = 3, the four factors are ranked using the developed GDM method,
and the steps are as follows:

R1
P =



(
q
√

0.5, q
√

0.5
)

(0.60, 0.70) (0.70, 0.60) (0.65, 0.70)

(0.70, 0.60)
(

q
√

0.5, q
√

0.5
)

(0.80, 0.30) (0.75, 0.45)

(0.60, 0.70) (0.30, 0.80)
(

q
√

0.5, q
√

0.5
)

(0.75, 0.60)

(0.70, 0.65) (0.45, 0.75) (0.60, 0.75)
(

q
√

0.5, q
√

0.5
)





Axioms 2023, 12, 1122 17 of 20

R2
P =



(
q
√

0.5, q
√

0.5
)

(0.75, 0.55) (0.80, 0.50) (0.80, 0.50)

(0.55, 0.75)
(

q
√

0.5, q
√

0.5
)

(0.60, 0.70) (0.80, 0.55)

(0.50, 0.80) (0.70, 0.60)
(

q
√

0.5, q
√

0.5
)

(0.75, 0.55)

(0.50, 0.80) (0.55, 0.80) (0.55, 0.75)
(

q
√

0.5, q
√

0.5
)



R3
P =



(
q
√

0.5, q
√

0.5
)

(0.75, 0.55) (0.75, 0.60) (0.80, 0.35)

(0.55, 0.75)
(

q
√

0.5, q
√

0.5
)

(0.65, 0.45) (0.40, 0.45)

(0.60, 0.75) (0.45, 0.65)
(

q
√

0.5, q
√

0.5
)

(0.40, 0.65)

(0.35, 0.80) (0.45, 0.40) (0.65, 0.40)
(

q
√

0.5, q
√

0.5
)


Step 1: Substitute the q-ROFPRs Rk

P =
(

p̃k
ij

)
4×4

(k = 1, 2, 3) into the model (24) and

solve the normalized q-ROFWV.

ω̃ = ((0.5873, 0.8196), (0.5061, 0.8593), (0.4454, 0.9238), (0.3999, 0.9205))T

The ideal MCq-ROFPR R =
(

µij, νij

)
4×4

is obtained using Equation (21).

R =



(
q
√

0.5, q
√

0.5
)

(0.5832, 0.6091) (0.7522, 0.5705) (0.7565, 0.5151)

(0.6091, 0.5832)
(

q
√

0.5, q
√

0.5
)

(0.6882, 0.6058) (0.6929, 0.5476)

(0.5705, 0.7522) (0.6058, 0.6882)
(

q
√

0.5, q
√

0.5
)

(0.6713, 0.6028)

(0.5151, 0.7565) (0.5476, 0.6929) (0.6028, 0.6713)
(

q
√

0.5, q
√

0.5
)


Step 2: calculate the compatibility measures between Rk

P(k = 1, 2, 3) and R using
Equations (15) and (32).

C
(

R1, R
)
= 0.8470, C

(
R2, R

)
= 0.8999, C

(
R3, R

)
= 0.8091

The expert weight vector is calculated as λ = (0.3314, 0.3521, 0.3165)T using
Equation (26).

Step 3: gather individual PRs Rk
P(k = 1, 2, 3) using the Sq-ROFWG operator

(Equation (31)) to obtain the comprehensive q-ROFPR R =
(

p̃k
ij

)
4×4

.

R =



(
q
√

0.5, q
√

0.5
)

(0.6965, 0.5958) (0.7499, 0.5627) (0.7468, 0.4993)

(0.5958, 0.6965)
(

q
√

0.5, q
√

0.5
)

(0.6770, 0.4596) (0.6288, 0.4829)

(0.5627, 0.7499) (0.4596, 0.6770)
(

q
√

0.5, q
√

0.5
)

(0.6147, 0.5968)

(0.4993, 0.7468) (0.4829, 0.6288) (0.5968, 0.6147)
(

q
√

0.5, q
√

0.5
)


Step 4: Substitute R =

(
p̃k

ij

)
4×4

into the model (22) to obtain the normalized q-ROFWV.

ω∗ = ((0.5765, 0.8226), (0.4931, 0.8530), (0.4019, 0.9249), (0.3854, 0.9174))T

Step 5: Calculate the scores of the weight vector according to Definition 11.

s(ω∗1 ) = −0.3651, s(ω∗2 ) = −0.5008, s(ω∗3 ) = −0.7262, s(ω∗4 ) = −0.7148.

Then the ranking of influence factors is obtained as X3 ≺ X4 ≺ X2 ≺ X1. Therefore,
the crucial factor in crowdsourcing task recommendation is X1(subject preference).
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In addition, the divergence measures between the individual q-ROFPRs Rk
P(k = 1, 2, 3)

and the ideal MCq-ROFPR R are calculated using Definition 14.

D
(

R1, R
)
= 1.1806, D

(
R2, R

)
= 1.1112, D

(
R3, R

)
= 1.2360.

The divergence between the combined q-ROFPR R and R is D
(

R, R
)
= 1.0755, the com-

patibility measure is C
(

R, R
)
= 0.9298, which demonstrates the soundness of Theorem 9.

The q-ROFPR-based GDM method is compared with the q-ROF geometric averaging
operator (q-ROFGAO) and the arithmetic averaging operator (q-ROFAAO) [28] to find the
critical factors of crowdsourcing task recommendation. The scores and sort results obtained
using the three different methods are presented in Figure 1. The scores of the q-ROFGAO
method are 0.1656, 0.0360, −0.0727, and −0.1148, and the scores of the q-ROFAAO method
are 0.1951, 0.0351, −0.0659, and −0.1643. The sorting results of the three methods are
generally consistent, but there are differences in the sorting of X3 and X4. This is due to
the objective weight vector of experts obtained by comparing the differences in individual
and group FPRs. The proposed q-ROFPR-based GDM method uses objective weighting
methods to identify critical factors in crowdsourcing task recommendation, which is more
reliable than the q-ROFGAO and q-ROFAAO methods.
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Figure 1. Comparative results of three different methods: (a) scores; (b) sort result.

Finally, the managerial implications are provided as follows: in the problem of crowd-
sourcing task recommendation, all participants place greater emphasis on subject prefer-
ence, then skill, social capital, and historical performance.

8. Conclusions

In the GDM process, q-ROFSs have a strong advantage in expressing the uncertainty of
attributes. Meanwhile, q-ROFPRs play a very important role in expressing the PRs among
the alternatives flexibly without scoring all alternatives under the corresponding attributes.
However, in the existing MCq-ROFPR methods, experts’ weights are subjective, and the
importance measures of experts are not reflected in the GDM methods. In addition, the
group q-ROFPRs aggregated using individual q-ROFPRs may not satisfy multiplicative
consistency.

Thus, we developed a GDM method under q-ROFPRs, considering the important
measures of experts. Firstly, the implication relations and constraints between IFSs and
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q-ROFSs were analyzed. Then, we introduced the MCq-ROFPRs and the normalized
q-ROFPWVs. Next, a goal programming model under q-ROFPRs was developed to obtain
the q-ROFPWVs. Further, a GDM method under q-ROFPRs was provided by combing the
overall goal programming model and the simple q-ROF weighted geometric (Sq-ROFWG)
operator. Finally, the effectiveness and practicality of the developed GDM method were
verified by identifying crucial factors in crowdsourcing task recommendation. The results
show that the developed GDM method effectively considers the importance measures of
experts and identifies the critical factors that are more reliable than the q-ROFGAO and
q-ROFAAO methods in crowdsourcing task recommendation.

However, the developed GDM method only quantitatively estimates the preference
degree of experts in finding out critical factors. In the future, we will use natural language
processing and deep learning methods to evaluate the importance of influencing factors
and improve the efficiency of crowdsourcing task recommendation.
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