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Abstract: In this paper, we focus on Brauer’s height zero conjecture, Robinson’s conjecture, and
Olsson’s conjecture regarding the direct product of finite groups and give relative versions of these
conjectures by restricting them to the algebraic concept of the anchor group of an irreducible character.
Consider G to be a finite simple group. We prove that the anchor group of the irreducible character
of G with degree p is the trivial group, where p is an odd prime. Additionally, we introduce the
relative version of the Green correspondence theorem with respect to this group. We then apply the
relative versions of these conjectures to suitable examples of simple groups. Classical and standard
theories on the direct product of finite groups, block theory, and character theory are used to achieve
these results.
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1. Introduction

Let G be a finite group and p be a prime divisor of |G|. Let B be a p-block of group
G with defect group D. We consider the triple (k,R, F) to be a p-modular system [1–3].
This system comprises a complete discrete valuation ring R with a field of fractions k of
characteristic 0, where k contains all the primitive |G|th roots of unity. We denote υp as a
valuation on the field k such that υp(p) = 1. Next, there is the residual field F = R/J(R)
of characteristic p, where J(R) is the Jacobson radical of ringR. We can use the field k as a
splitting field and F as an algebraically closed field. Let Irr(G) be the set of all ordinary
irreducible characters of G, which corresponds to the set of all simple kG-modules. LetM
be a simple kG-module, affording the irreducible character ψ of G. Then, there exists an
RG-lattice L such that k⊗R L =M, but L is not uniquely determined up to isomorphism
(see [1,4]). In this case, L is said to be a fullRG-lattice inM, and, according to ([1], Chapter
2, Exercise 16.7), L is an indecomposable RG-lattice. Recall that an RG-lattice L is a left
RG-module that has a finite R-basis. Let K(B) be the number of ordinary irreducible
characters of B and IBr(G) be the set of all irreducible Brauer characters of G. We use ψ0

to denote the restriction of the ordinary irreducible character ψ to the set of all p-regular
elements (p does not divide the order of the elements) of G. Let L(B) be the number of
irreducible Brauer characters of B. We define BL(G) as the set of all p-blocks of G. We use
=G to refer to equivalence up to G-conjugacy.

Consider the order of the finite group G to be |G| = pαm such that g.c.d.(p, m) = 1,
α, m ∈ Z+ for a fixed prime number p. Let ψ ∈ Irr(G). As is well-known, the degree of ψ
divides the order of G, as demonstrated in ([5], Theorem 2.4) and ([6], Theorem 3.11). If
pn =

|G|p
ψ(1)p

, where xp denotes the p-part of a natural number x, then n is the highest power

of p such that pn divides |G|
ψ(1) . The non-negative number n is called the p-defect of ψ. We
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can also define the p-defect of ψ as de f (ψ) := υp(
|G|

ψ(1) ). Let Irr(B) be the set of all ordinary
irreducible characters of G that belong to a p-block B of G. The defect number of B refers to
the maximum p-defect of irreducible characters belonging to the p-block B, and we write

de f (B) := Max{de f (ψ); ψ ∈ Irr(B)}.

The height of ψ can be written as h(ψ) = de f (B)− de f (ψ). If de f (ψ) = α, we can say that
ψ is of height zero or the full defect, and we write K0(B) = {ψ ∈ Irr(B)|h(ψ) = 0}. On the
other hand, if de f (ψ) = 0, then we say that ψ is of defect zero, and we have ψ(1)p = |G|p
(see [3,5,6]). The work in this paper relies on these numerical invariants of the p-block B of
the finite group G. Many questions and conjectures exist in this area of research. We are
concerned with Brauer’s height zero conjecture (BHZC), Robinson’s conjecture (RC), and
Olsson’s conjecture (OC) (see Sections 1.1–1.3 below).

Consider RG to be an interior G-algebra over R. Let eB be a p-block idempotent of
RG; that is, e2

B = eB, and eB is in the center of RG. Then, there exists a p-subgroup D of
G in which D is a minimal p-subgroup of G, such that eB ∈ trG

D((RG)D). Here, trG
D is the

relative trace map, and (RG)D is the set of D-fixed elements of RG (see ([4], Chapter 2,
Section 11)). A defect group of a p-block B is of order pde f (B). We refer the reader to ([7],
Definition 4j), ([8], p. 71), ([5], Chapter 5, Theorem 1.2), and ([9], Chapter 7, Definition
(57.10)) for further theory on defect groups.

The remainder of this paper is organized as follows. This section contains five subsec-
tions: a literature review of BHZC, a literature review of RC, a literature review of OC, the
anchor group of irreducible characters, and a description of our methods for solving and
dealing with these problems. Section 2 provides preliminaries of classical and standard
theories regarding the direct product of finite groups. We offer some of the characteristics
of ordinary irreducible characters. In Section 3, we present the main results; in particular,
we prove that RC holds for the direct product H1 × H2 of two finite groups H1 and H2 if
and only if it holds for each of them. We prove that the same conclusion holds for Brauer’s
height zero and Olsson’s conjectures. In Section 3, we give the conjectures MARC, MHZC,
and MAOC related to the algebraic concept of “the anchor group of an irreducible charac-
ter”. These conjectures are the relative versions of RC, BHZC, and OC, respectively. We
prove the relative version of Robinson’s conjecture MARC in some cases. Let G be a finite
simple group that contains the irreducible character ψ of degree p, where p is an odd prime.
We prove that the anchor group of ψ is the trivial group. We also introduce the relative
version of the Green correspondence theorem for this group and give suitable examples
of this type of theory. Finally, we include a discussion and conclusions that support our
results and arguments.

1.1. Literature Review of Brauer’s Height Zero Conjecture

In 1955, R. Brauer [10] conjectured that “the defect groups of a p-block B are abelian
if and only if all irreducible characters in B have height zero.” This conjecture is called
Brauer’s height zero conjecture (BHZC) and is considered to be one of the most challenging
and fundamental conjectures in the representation theory of finite groups, having a signifi-
cant impact on group theory research. Over the past few decades, several authors have
contributed to proving the “only if” implication of BHZC. First, in 1961, P. Fong [11] proved
the “only if” implication of BHZC for principle blocks. He also proved the “if” implication
of BHZC for the p-solvable group. Later, in [12], he proved the “only if” implication of
BHZC for the solvable groups, where the prime number is the largest divisor of the group
order. Then, the proof of BHZC was completed for solvable groups in [13,14]. In 1984, D.
Gluck and T. R. Wolf [15] proved the “only if” implication of BHZC for the p-solvable group.
More recently, in 2012, G. Navarro and P. H. Tiep [16] proved the “only if” implication of
BHZC for a 2-block B with a Sylow 2-subgroup as a defect group of B. In 2013, R. Kessar
and G. Malle [17] proved the “if” implication of BHZC for all finite groups after decades of
other contributions on the subject. The next year, B. Sambale [18] investigated BHZC in
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the case of p-blocks of finite groups with metacyclic defect groups. He proved that BHZC
holds for all 2-blocks with defect groups of order 16 at most. Very recently, in 2021, G. Malle
and G. Navarro [19] proved the “only if” implication of BHZC for the principle p-block for
all prime numbers. After that, the proof of BHZC was completed by proving the “only if”
implication of BHZC for any odd prime (see [20]).

1.2. Literature Review of Robinson’s Conjecture

In 1996, G. Robinson [21] submitted a proposal for the expansion of BHZC, comparing
the order of the center of a defect group of a p-block and the p-part of characters’ degrees
that belong to the p-block of a finite group G:

Robinson’s conjecture. Suppose G is a finite group. Let χ ∈ Irr(G), which belongs
to a p-block B of G with a defect group D. Then, pde f (χ) ≥ |Z(D)|. Moreover, the equality
holds if and only if D is abelian.

The other form of RC comes from the relation between the p-defect of the irreducible
character χ and the height of χ:

ph(χ) = pde f (B)−de f (χ), (1)

=
pde f (B)

pde f (χ)
, (2)

≤ |D|
|Z(D)| = [D : Z(D)]. (3)

The equality in RC holds if and only if D is abelian. If D is abelian, then D = Z(D)
according to ([22], Section 2.2, Example (1)), which implies that all irreducible characters in
B have height zero from (3). Then, we obtain the “if” implication of BHZC; hence, RC is
an expansion for this implication of BHZC. In 1998, M. Murai [23] introduced a reduction
of RC to p-blocks of the covering groups for all primes p ≥ 3. In 2014, B. Sambale [18]
investigated RC in the case of p-blocks of finite groups with metacyclic defect groups. He
proved that RC holds for all 2-blocks with a defect group of order 16 at most. Recently, in
2018, Z. Feng, C. Li, Y. Liu, G. Malle, and J. Zhang [24] proved that RC holds for all primes
p ≥ 3 for all finite groups using Murai’s reduction of RC. Later, they proved [25] that RC
holds using Murai’s reduction in the case p = 2 of finite quasi-simple classical groups.
Thus, to complete the proof of RC, it only remains to investigate the so-called isolated
2-blocks of the covering groups of exceptional Lie type in the case of an odd characteristic.

1.3. Literature Review of Olsson’s Conjecture

In [26], J. B. Olsson conjectured that “K0(B) ≤ [DB : D́B]”, where DB is the defect
group of the p-block B of G and D́B denotes the commutator subgroup of D, called Olsson’s
conjecture (OC). The definition of the commutator subgroup can be found in [22,27,28].
This conjecture has been proven under certain conditions, but it remains open in general.
For instance, in [29], B. Külshammer showed that OC for the p-block B can be derived from
the Alperin–Mckay conjecture for B. The same result appeared in [30,31]. We remind the
reader that the Alperin–Mckay conjecture states that K0(b) = K0(B), where b is the Brauer
correspondent of the p-block B inRNG(DB). The meaning of the Brauer correspondent of
the p-block can be found in [2,5,32,33]. However, OC is satisfied for p-solvable, alternating,
or symmetric groups in [34–36]. If DB is the abelian group, then the commutator D́B
is the trivial subgroup {1D}. Thus, OC leads to Brauer’s K(B) conjecture. Recall that
Brauer’s K(B) conjecture predicts that K(B) ≤ |DB|; see [37]. In particular, OC holds if DB
is metacyclic (see [38,39]) or if DB is minimal non-abelian and p = 2 (see [40]). In [41,42], S.
Hendren proved OC for some p-block with a defect group that is an extraspecial p-group
of order p3 and exponents p and p2. Recently, the authors of [43] proved that OC is fulfilled
for controlled blocks with certain defect groups. Furthermore, in the same paper [43], they
used the classification of a finite simple group to verify OC for defect groups of p-rank 2
and cases where p > 3 for a minimal non-abelian defect group.
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The following example appeared in [37]:

Example 1. Let G = S4 be the symmetric group of degree four. The number of irreducible characters
|Irr(S4)| = 5.
For the case p = 2
We have that the Klein four V4 is a normal 2-subgroup of S4 and the centralizer CS4(V4) = V4.
From ([32], Chapter V, Corollary 3.11), there is only one 2-block B0 of S4 with de f (B0) = 3. For
the defect group of B0, D(B0) ∼= D8, the dihedral group of order 8 is a non-abelian 2-group. Note
that there exists χ3 ∈ Irr(B0) with non-zero height. The center Z(D8) ∼= C2, which is the cyclic
group of order 2. We have

pde f (χ) > |Z(D)| = 2, f or all χ ∈ Irr(B0).

The commutator of D(B0) is isomorphic to C2. We have K0(B0) = 4 = [D8 : C2].

For the case p = 3

We have the principal 3-block B0 = {χ1, χ2, χ3}, with de f (B0) = 1. For the defect group of B0,
D(B0) ∼= C3, which is the cyclic group of order 3. Note that all χ ∈ Irr(B0) are of height zero and
satisfy pde f (χ) = |Z(D)| = 3. As D(B0) is an abelian group, the commutator D́(B0) = {1D(B0)

}
and K0(B0) = 3 = |C3|.

1.4. Anchor Group of Irreducible Characters

Let ψ ∈ Irr(G). Then, ψ may be extended to an algebra map in a unique way with
ψ : kG → k. We consider the element

eψ =
ψ(1)
|G| ∑

x∈G
ψ(x−1)x;

which is the unique central primitive idempotent in kG such that ψ(eψ) 6= 0 (see ([44],
Theorem 3.3.1)). As the center Z(RGeψ) is a subring of the center Z(kGeψ), the algebra
RGeψ is a primitive G-interiorR-algebra (see [4]).

The anchor group of an irreducible character appeared for the first time in [45], defined
as the defect group of the primitive G-interiorR-algebraRGeψ for any irreducible character
ψ of G. As the anchor group of an irreducible character is a defect group, it is a p-subgroup
of G (see [46]).

Let us present the most important characteristics of the anchor group of irreducible
characters that we use in this paper. The following theorem appears in ([45], Theorems 1.2
and 1.3).

Theorem 1. Consider B to be a p-block of a finite group G with a defect group D. Let ψ ∈ Irr(B)
with anchor group Aψ. Suppose L is anRG-lattice affording ψ. The following holds:

1. The anchor group of ψ is a subgroup of the defect group D (up to G-conjugacy) of B.
2. The anchor group of ψ contains a vertex of L.
3. If the defect group D is abelian, then D is an anchor group of ψ.
4. If ψ has a full defect (height zero), then Aψ is the defect group of B.
5. If ψ0 ∈ IBr(G), then L is unique up to isomorphism and Aψ is a vertex of L.

Theorem 2 ([47]). Let G be a finite group and B be a p-block of G with a defect group DB. Suppose
ψ ∈ Irr(B) such that ψ0 ∈ IBr(B). Then, the anchor group Aψ of ψ is cyclic if and only if the
defect group DB is cyclic. In particular, if Aψ is cyclic, then it is the defect group of B.

Lemma 1 ([46]). Let G be a finite group. If ψ ∈ Irr(G) with a degree prime to p, then the anchor
group of ψ is a Sylow p-subgroup of G.
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1.5. Methodology

Our main methods are based on classical and standard theories on the direct product
of finite groups [22,27], block theory [5,32,48], and character theory [6,49]. In addition,
the Green correspondence theorem is key for studying block theory and calculating the
anchor groups of irreducible characters. In fact, given a p-subgroup P of a finite group G,
let NG(P) be the normalizer of P in G, Ind(RG|P) be the set of all isomorphism classes
of the indecomposable RG-lattices with vertex P, and Ind(RNG(P)|P) be the set of all
isomorphism classes of the indecomposableRNG(P)-lattices with vertex P. The following
is the Green correspondence theorem, which appears in [1–5,37,50].

Theorem 3. Consider the hypotheses in the above paragraph. There is a bijection between
Ind(RG|P) and Ind(RNG(P)|P). We say that the lattice L ∈ Ind(RG|P) corresponds to
the lattice Ĺ ∈ Ind(RNG(P)|P) if and only if Ĺ is the unique (up to isomorphism) direct summand
of the restriction ResG

NG(P)(L) with vertex P or L is the unique (up to isomorphism) direct summand

of the induction IndG
NG(P)(Ĺ) with vertex P.

We recall that the vertex of an indecomposable RG-lattice L is a unique (up to G-
conjugacy) minimal p-subgroup P of G, such that L is P-projective of G. Consequently, L is
a direct summand of the induced IndG

P (N) for someRP-lattice N.

2. Preliminaries

In this section, we present the classical and standard theories regarding the direct prod-
uct of finite groups. We detail some characteristics of the ordinary irreducible characters
used throughout the paper.

The following propositions are crucial for the representation of direct products of finite
groups.

Proposition 1. Let G be a direct product of the finite groups H1 and H2. Let B be a p-block of G
with defect group DB. If bi is a p-block of Hi with defect group Dbi

, i = 1, 2, then the following
holds:

(a) b1 ⊗ b2 is a p-block of G and BL(G) is of the form {bi ⊗ bj|bi ∈ BL(H1), bj ∈ BL(H2)}.
(b) K(B) = K(b1)K(b2) and L(B) = L(b1)L(b2).

(c) DB =G Db1 × Db2 .

Proof. See ([48], Propositions 2.3, 2.4, and 2.6).

We offer the classical and standard theories of the direct product of finite groups in
the following result.

Proposition 2. Let G be a direct product of the finite groups H1 and H2. Then, the following holds:

(a) G is abelian if and only if each of H1 and H2 are abelian.

(b) The center Z(G) = Z(H1)× Z(H2).

(c) The commutator Ǵ = H́1 × H́2.

Proof. For (a), see ([27], Chapter 9, Exercise 7). For (b), see ([22], Section 5.1, Exercise 1).
For (c), see ([28], Chapter 3, Exercise 165).

Theorem 4. Let G = H1 × H2 be a direct product of the finite groups H1 and H2. Then,

Irr(G) = {ψ⊗ φ|ψ ∈ Irr(H1), φ ∈ Irr(H2)}.

Proof. We write ψ⊗ φ := ψ.φ. See ([6], Chapter 4, Theorem 4.21).
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Now, we mention some properties of the ordinary irreducible characters (see ([6],
Chapter 2)). The ordinary irreducible character is a homomorphism if it is only linear (i.e.,
of degree one). Furthermore, the ordinary irreducible character has a kernel. It also has a
center, although it is not a group.

Definition 1. Consider G to be a finite group and ψ ∈ Irr(G).

• The kernel of ψ is defined as ker(ψ) := {x ∈ G : ψ(x) = ψ(1)}. It can easily be proven
that ker(ψ) is a normal subgroup of G. If ker(ψ) = {1G}, then we say that ψ is a faithful
character.

• The center of ψ is a subgroup of G, defined as Z(ψ) := {x ∈ G : |ψ(x)| = ψ(1)}.

Lemma 2. The group G is abelian if and only if every irreducible character of G is of degree one.

Lemma 3. Consider G to be a finite group and ψ be a character of G with ψ = ∑ njψj for
ψj ∈ Irr(G). Then, ker(ψ) =

⋂{ker(ψj)|nj > 0}.

Lemma 4. Let G be a finite group with a commutator subgroup Ǵ. Then,

Ǵ =
⋂
{ker(γ)|γ ∈ Irr(G), γ(1) = 1}.

Lemma 5. Let G be a finite group. Then, Z(G) =
⋂{Z(ψ)|ψ ∈ Irr(G)}.

Theorem 5. Let G be a finite group with an abelian Sylow p-subgroup. Suppose G has a faithful
irreducible character ψ of degree ψ(1) = pa. Then, ψ(1) is the exact power of p which divides
[G : Z(G)].

Proof. See ([6], Theorem 3.13).

3. Some Conjectures on Direct Products

In this section, we deal with BHCZ, RC, and OC. We prove that the direct product
H1 × H2 of the finite groups H1 and H2 satisfies these conjectures if and only if H1 and H2
satisfy these conjectures.

Proposition 3. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies RC if
and only if H1 and H2 satisfy RC.

Proof. Suppose Hi, i = 1, 2, are finite groups that satisfy RC. If χi ∈ Irr(Hi), which
belongs to a p-block bi of Hi with a defect group Di for i = 1, 2, then pde f (χi) ≥| Z(Di) |.
Moreover, the equality holds if and only if Di is abelian for i = 1, 2. We need to show that
pde f (χ1⊗χ2) ≥| Z(D1 × D2) |, where equality holds if and only if D1 × D2 is abelian. From
Proposition 1(a), (c), b1 ⊗ b2 is the p-block of the direct product H1 × H2 and has a defect
group that is equal up to G-conjugacy to D1 × D2. Per Proposition 2(b), the center of a
direct product of groups is the direct product of their centers. Now, from the definition of
the defect number of irreducible characters and Theorem 4, we have

de f (χ1 ⊗ χ2) = υp

(
|H1 × H2|
χ1 ⊗ χ2(1)

)
,

= υp

(
|H1| · |H2|

χ1(1) · χ2(1)

)
,

= υp(|H1| · |H2|)− υp(χ1(1) · χ2(1)),

= υp
(
|H1|) + υp(|H2|)− υp(χ1(1))− υp(χ2(1)

)
,

= υp

(
|H1|

χ1(1)

)
+ υp

(
|H2|

χ2(1)

)
.
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Hence,
de f (χ1 ⊗ χ2) = de f (χ1) + de f (χ2). (4)

Therefore,

pde f (χ1⊗χ2) = pde f (χ1).pde f (χ2) ≥ |Z(D1)| · |Z(D2)| = |Z(D1 × D2)|.

As Proposition 2(a) states, the direct product of finite groups is abelian if and only if each
of them is abelian; thus, the equality holds. The other direction is easily achieved through
the same steps and citations.

Remark 1. Let B be a p-block of the finite group H1 × H2 with a defect group D. Then, from
Proposition 1(a), (c), there exists a p-block bi of Hi with a defect group Di for i = 1, 2 such that
B = b1 ⊗ b2 is the p-block of H1 × H2 with defect group D =G D1 × D2. We have

pde f (B) = pde f (b1⊗b2) = |D1 × D2| = |D1| · |D2| = pde f (b1) · pde f (b2).

Hence,
de f (b1 ⊗ b2) = de f (b1) + de f (b2). (5)

Now, from Equations (4) and (5), the height of the irreducible character χ1 ⊗ χ2 can be calculated
as follows:

h(χ1 ⊗ χ2) = h(χ1) + h(χ2). (6)

Proposition 4. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies BHZC
if and only if H1 and H2 satisfy BHZC.

Proof. Suppose Hi, i = 1, 2, are finite groups that satisfy BHZC. Let Di be a defect group
of a p-block bi of Hi for i = 1, 2. Suppose the defect group D of a p-block b1 ⊗ b2 of
a finite group H1 × H2 is abelian. Then, D =G D1 × D2 and, per Proposition 2(a), the
direct product of groups is abelian if and only if each of them is abelian. Thus, the defect
group Di of a p-block bi of Hi is abelian for i = 1, 2. As H1 and H2 satisfy BHZC, for all
χi ∈ Irr(bi), we have h(χi) = 0, i = 1, 2. Then, from Equation (6), we obtain the height of all
irreducible characters in the p-block b1 ⊗ b2 as zero. For the converse implication, suppose
all irreducible characters χ1 ⊗ χ2 in the p-block b1 ⊗ b2 of H1 × H2 have height zero. From
Equation (6) and the fact that the height of an irreducible character is a non-negative integer
by definition, we find that all irreducible characters in a p-block bi of Hi for i = 1, 2 have
height zero. Hence, per BHZC, the defect group Di of a p-block bi of Hi is abelian for
i = 1, 2. Now, also per Proposition 2(a), the defect group D1 × D2 of the p-block b1 ⊗ b2 of
H1 × H2 is abelian. The same steps and citations can also be used to obtain the result in the
other direction.

Proposition 5. Let G be a direct product of the finite groups H1 and H2. Then, G satisfies OC if
and only if H1 and H2 satisfy OC.

Proof. Suppose B ∈ BL(G) with defect group DB. From Proposition 1(a), (c), there exists
a p-block bi of Hi with a defect group Dbi

, i = 1, 2, such that B = b1 ⊗ b2 is the p-block
of H1 × H2 with defect group DB =G Db1 × Db2 . First, we need to show that K0(B) =
K0(b1)K0(b2). Let χ ∈ Irr(G), which belongs to the p-block B of G. From Theorem 4,
χ = ψ ⊗ φ, where ψ ∈ Irr(H1) and φ ∈ Irr(H2). As B = b1 ⊗ b2, ψ ∈ Irr(b1) and
φ ∈ Irr(b2). Suppose χ has height zero. From Equation (6) and the fact that the height of
an irreducible character is a non-negative integer by definition, the irreducible characters ψ
and φ have height zero. From Proposition 1(b), we can infer that

K0(B) = K0(b1)K0(b2).
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Now, suppose G satisfies OC. Then, K0(B) ≤ [DB : D́B]. Hence, per Propositions 1(c) and
2(c), this is equivalent to

⇔ K0(B) ≤ [DB : D́B],

⇔ K0(b1)K0(b2) ≤ [Db1 × Db2 : D́b1 × D́b2 ],

⇔ K0(b1)K0(b2) ≤ [Db1 : D́b1 ][Db2 : D́b2 ].

Hence, K0(bi) ≤ [Dbi
: D́bi

] for i = 1, 2. Thus, H1 and H2 satisfy OC. The other direction is
proven similarly.

4. Relative Versions of Conjectures and the Green Correspondence Theorem

In this section, we give the conjectures MARC, MHZC, and MAOC, which are related
to the algebraic concept of “the anchor group of an irreducible character,” which are the
relative versions of RC, BHZC, and OC, respectively. By restricting these conjectures to the
anchor group instead of the defect group, we prove MARC in some cases. We introduce
the relative version of the Green correspondence theorem for a finite simple group G that
contains the irreducible character of G with degree p, where p is an odd prime. We give
suitable examples of this type of theory.

First, we give the relative version of RC.
MARC: Suppose G is a finite group. Let χ ∈ Irr(G) with anchor group Aχ. Then, pde f (χ) ≥
|Z(Aχ)|, and equality holds if and only if Aχ is abelian.

In the following results, we verify MARC in special cases.

Proposition 6. Consider G to be a finite group. Let χ ∈ Irr(G) with anchor group Aχ such that
the order |Z(Aχ)| = p. Then, MARC holds for χ.

Proof. Suppose χ ∈ Irr(G), which belongs to the p-block B of G with defect group D. If
the defect group D is abelian or the irreducible character χ is of height zero, then the anchor
group of χ is D, per Theorem 1(4), (5). Thus, the result holds by ([24], Lemma 3.1). If χ
has defect zero, then it is lying in a p-block B = {χ} with abelian defect group D = {1G}
per ([5], Theorem 6.29) (see also ([3], Theorem 2.3.2)). Thus,

pde f (χ) = p0 = |Z(Aχ)| = 1.

If χ has defect n, n ≥ 1. Thus,

pde f (χ) = pn ≥ |Z(Aχ)| = p.

Assume G = G/Q and Q is a normal subgroup of G. Let ψ ∈ Irr(G); we say that
the character ψ is the lift of ψ to G if it satisfies ψ(g) = ψ(gQ), where g ∈ G. From ([49],
Theorem 17.3), ψ ∈ Irr(G) if and only if ψ ∈ Irr(G) and ker(ψ) contains Q. So, we have
Irr(G) ⊆ Irr(G). From ([33], p. 137), there exists a unique p-block B of G that contains the
p-block B of G, and we write Irr(B) ⊇ Irr(B).

Proposition 7. Using the same hypotheses as above, let Q be a normal ṕ-subgroup of G and
ψ ∈ Irr(G). Suppose ψ ∈ Irr(G) is the lift of ψ to G. Let ψ0 ∈ IBr(G) with a cyclic anchor group.
If ψ satisfies MARC, then so does ψ.

Proof. Suppose B is a p-block of G that contains ψ and B is a p-block of G that contains ψ.
From the details above, Irr(B) ⊆ Irr(B). From ([33], Theorem 9.9(c)), the defect groups of
B and B are isomorphic. Since the anchor group of ψ is cyclic, it is the defect group of B per
Theorem 2. Hence, the anchor groups of ψ and ψ are isomorphic.
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If we restrict BHZC to the anchor group instead of the defect group, then the statement
is not true. In particular, the “if” implication is not true.

Example 2. Let p = 2, G = S4 be the symmetric group of degree four. From Example 1, there is
only one 2-block B0 of S4. From ([45], Example 5.8. (2)), there exists χ ∈ Irr(S4) of degree two
with anchor group V4, which is an abelian group, but the height of χ is not zero.

The relative version of BHZC is as follows:
MHZC: If every irreducible character in a p-block has height zero, then their anchor group
is abelian.

Furthermore, we can reduce OC to the anchor group of the irreducible character
(MAOC) as follows:
MAOC: Let χ ∈ Irr(G) with an anchor group Aχ. Suppose χ belongs to the p-block B of G.
Then,

K0(B) ≤ [Aχ : Áχ],

where Áχ is the commutator subgroup of Aχ.

Remark 2. Let D be an abelian defect group of the p-block B. We know that OC leads to Brauer’s
K(B) conjecture, which states that K(B) ≤ |DB|. However, this statement is not true in the case of
the anchor group of irreducible characters; that is, for any χ ∈ Irr(B), K(B) ≤ |Aχ| is not true
in general. From Examples 1 and 2, there is only one 2-block B0 of S4 that contains the irreducible
character χ of degree two with anchor group V4. We have K(B0) = 5 > |Aχ|.

We focus on a simple finite group that contains the irreducible character with degree
p, where p is an odd prime.

Theorem 6. Let G be a simple finite group. Let ψ ∈ Irr(G) with degree ψ(1) = p, where p is an
odd prime number. Then, the anchor group of ψ is the trivial group.

Proof. We have the degree ψ(1) = p, which divides the order of G, per ([5], Theorem
2.4) and ([6], Theorem 3.11). Thus, G has a non-trivial Sylow p-subgroup P of G. As
G is a simple group, either ker(ψ) = G or ker(ψ) = 1G. If ker(ψ) = G, then ψ is the
trivial character of G, which is not the case. Thus, ψ is a faithful irreducible character of
G. Furthermore, from Lemma 2, the group G is non-abelian. If P is non-abelian, then the
commutator Ṕ 6= {1P} and the center Z(P) 6= {1G}. Consider ResG

P (ψ) = ∑χi∈Irr(P) diχi

for a positive integer di. Since ψ(1) = p = ResG
P (ψ)(1), then 1 ≤ χi(1) ≤ ψ(1). As χi(1)

divides the order of P, the degree of χi; χi(1) is a power of p. We conclude that either
ResG

P (ψ) is the sum of the linear characters of P or ResG
P (ψ) is the irreducible character

of P. Let ResG
P (ψ) = di1 χi1 + di2 χi2 + . . . + dit χit , where diK > 0 and χiK (1) = 1. As is

well-known, ker(ResG
P (ψ)) ⊆ ker(ψ). Hence, per Lemma 3, ker(ResG

P (ψ)) =
⋂

1≤j≤t kerχij .
Therefore, via Lemma 4,

{1P} 6= Ṕ ⊆
⋂

1≤j≤t
ker(χij) ⊆ kerψ.

This contradicts the fact that ψ is faithful. Thus, ResG
P (ψ) is an irreducible character of P.

From Lemma 5, we have

{1G} 6= Z(P) =
⋂

χ∈Irr(P)

Z(χ) ⊆ Z(ResG
P (ψ)) ⊆ Z(ψ).

Hence, Z(ψ) 6= {1G}. Since G is simple, Z(ψ) = G and G is abelian. This leads us to another
contradiction. Thus, P is abelian, G is a non-abelian simple group, and Z(G) = {1G}.
Hence, from Theorem 5, p is the exact power of p which divides [G : Z(G)] = |G|. We can
infer that a Sylow p-subgroup of G is cyclic of order p. Now, the defect of ψ is defined
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as pde f (ψ) =
|G|p

ψ(1)p
= 1 and de f (ψ) = 0. Hence, per ([3], Theorem 2.3.2), ψ belongs to the

singleton p-block, and the defect group of the singleton p-block is the trivial group {1G}.
Then, the result is obtained from Theorem 1 (1).

Remark 3. In Theorem 6, we exclude p = 2, as no simple group exists with an irreducible character
of degree 2, as in ([49], Corollary 22.13).

The following corollary immediately follows from Theorem 6.

Corollary 1. Let G be a simple finite group that has an irreducible character of degree p, where p is
an odd prime. If χ ∈ Irr(G) with χ(1)p = p, then the anchor group of χ is the trivial group.

We introduce the relative version of the Green correspondence theorem (Theorem 3) in
a simple finite group G, which contains the irreducible character ψ of degree p, where p is
an odd prime. Let B be a p-block of G. We define Ind(B|A) to be the set of all isomorphism
classes of the indecomposableRG-lattices with vertex A, which belong to B. We write

Irr(B|A) := {χ ∈ Irr(B)|χ0 ∈ IBr(B) and A is the anchor group o f χ}.

Lemma 6. Per the same hypotheses as above, let χ ∈ Irr(G) with the non-trivial anchor group A
and χ0 ∈ IBr(G). We write N = NG(A) to be the normalizer of A in G. Let θ ∈ Irr(N) with
θ0 ∈ IBr(N) such that θ lies under ψ; that is, 〈ResG

N(ψ), θ〉 6= 0. Then, the irreducible characters
χ and θ have the same anchor group. However, if χ belongs to the p-block B of G and θ belongs to
the p-block b of N, then |Irr(B|A)| = |Irr(b|A)|.

Proof. Assume that L is the indecomposableRG-lattice affording χ and Ĺ is the indecom-
posableRN-lattice affording θ. Then, from Theorem 1 (5), L is unique up to isomorphism
and A is a vertex of L. Per Theorem 6, G possesses a cyclic Sylow p-subgroup that contains
all p-subgroups of G. Hence, the vertex of L is equal to the anchor group of an irreducible
character χ, which is equal to the defect group of the p-block B (see ([47], proof of Theorem
5)). Hence, a one-to-one correspondence exists between Irr(B|A) and Ind(B|A). Like-
wise, there is a one-to-one correspondence between Irr(b|A) and Ind(b|A). The condition
〈ResG

N(ψ), θ〉 6= 0, is equivalent to Ĺ being a direct summand of the restriction ResG
N(L) with

vertex A. Per the Green correspondence theorem [1], Ĺ has a vertex A. Thus, Ĺ ∈ Ind(b|A).
Therefore, the irreducible character θ has anchor group A, and |Irr(B|A)| = |Irr(b|A)|.

We extracted the Brauer character tables for the following examples from ([2], Ap-
pendix B). These tables can also be obtained for some examples (but not all) from GAP [51].
One can also extract the degree of the irreducible characters, the structure of the defect
group of a p-block of G, and its normalizer in the group G from GAP [51].

Example 3. Consider G to be a simple group GL(3, 2), the general linear group of order 168 =
23 · 3 · 7. The number of irreducible characters is |Irr(GL(3, 2))| = 6.
In the case of p = 3
We have four 3-blocks of G. The principal 3-block B0 of GL(3, 2) has defect 1 and contains three
irreducible characters, all of degree prime to 3. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 3-subgroup of GL(3, 2) per Lemma 1. The Sylow 3-subgroup of
GL(3, 2) is isomorphic to C3, a cyclic group of order 3. The two irreducible characters of GL(3, 2)
are of degree three, and their anchor groups are the trivial group {1GL(3,2)} per Theorem 6. The
irreducible character ψ of GL(3, 2) with ψp(1) = 3 has the trivial anchor group per Corollary
1. The normalizer of Aχ in GL(3, 2) is NGL(3,2)(Aχ) = S3, the symmetric group of degree three.
We have that C3 is a normal 3-subgroup of S3 and the centralizer CS3(C3) = C3. From ([32],
Chapter V, Corollary 3.11), there is only one 3-block b0 of S3 with de f (b0) = 1 that contains
the irreducible character θ lying under χ. Note that |Irr(B0|Aχ)| = 2 = |Irr(b0|Aχ)|. The
application of the relative versions of the conjectures is detailed in the following: the center of Aχ
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is isomorphic to C3, a cyclic group of order 3. Thus, for each χ ∈ Irr(GL(3, 2)), MARC holds
because of Proposition 6. As all irreducible characters in the principal 3-block B0 have height zero,
the defect group of B0 is abelian because of BHZC. Hence, their anchor groups are abelian based on
Theorem 1(3). Thus, MHZC holds. As Aχ

∼= C3 is an abelian group, the commutator Áχ = {1C3}.
We have K0(B0) = 3 = [C3 : {1C3}], so MAOC holds.
In the case of p = 7
We have two 7-blocks of G. The principal 7-block B0 of GL(3, 2) has defect 1 and contains five
irreducible characters, all of degree prime to 7. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 7-subgroup of GL(3, 2), which is isomorphic to C7, a cyclic group of
order 7. The singleton 7-block with the trivial defect group {1GL(3,2)}. The normalizer of Aχ in
GL(3, 2) is NGL(3,2)(Aχ) ∼= (C7 : C3), the non-abelian group of order 21. Let b0 be the principal
7-block of (C7 : C3) which contains θ lying under χ. Note that |Irr(B0|Aχ)| = 3 = |Irr(b0|Aχ)|.
The application of the relative versions of the conjectures is detailed in the following: for each
χ ∈ Irr(B0), the center of Aχ is isomorphic to C7. Then, per Proposition 6, MARC holds. We have
that all irreducible characters in the principal 7-block B0 have height zero. Hence, their anchor groups
are abelian, and MHZC holds. As Aχ

∼= C7 is an abelian group, the commutator Áχ = {1C7}. We
have K0(B0) = 5 < [C7 : {1C7}] = 7 , so MAOC holds.

Example 4. Consider G to be a simple group A5, the alternating group of degree five of order
60 = 22 · 3 · 5. The number of irreducible characters is |Irr(A5)| = 5.
In the case of p = 3
We have three 3-blocks of A5. The principal 3-block B0 of A5 has defect 1 and contains three
irreducible characters, all of the degree prime to 3. Hence, the anchor group Aχ of each irreducible
character χ in B0 is a Sylow 3-subgroup of A5, which is isomorphic to C3, a cyclic group of order 3.
As the two irreducible characters of A5 are of degree three, their anchor groups are the trivial group
{1A5} per Theorem 6. The normalizer of Aχ in A5 is NA5(Aχ) = S3, the symmetric group of degree
three. As in the previous example, there is only one 3-block b0 of S3, which contains the irreducible
character θ lying under χ. We have |Irr(B0|Aχ)| = 2 = |Irr(b0|Aχ)|. The application of the
relative versions of the conjectures is as follows: the center of Aχ is isomorphic to C3, a cyclic group
of order 3. Thus, for each χ ∈ Irr(A5), MARC holds. Note that all irreducible characters in the
principal 3-block B0 have height zero. Hence, their anchor groups are abelian, and MHZC holds. As
Aχ
∼= C3 is an abelian group, the commutator Áχ = {1C3}. We have K0(B0) = 3 = [C3 : {1C3}],

and MAOC holds.
In the case of p = 5
We have two 5-blocks of A5. The principal 5-block B0 of A5 has defect 1 and contains four irreducible
characters, all of degree prime to 5. Hence, the anchor group Aχ of each irreducible character χ
in B0 is a Sylow 5-subgroup of A5 per Lemma 1. The Sylow 5-subgroup of A5 is isomorphic to
C5, a cyclic group of order 5. The normalizer of Aχ in A5 is NA5(Aχ) ∼= D10, the dihedral group
of order 10. We have that C5 is a normal 5-subgroup of D10 and the centralizer CD10(C5) = C5.
From ([32], Chapter V, Corollary 3.11), there is only one 5-block b0 of D10 with de f (b0) = 1. Let
θ ∈ Irr(b0) lies under χ. Then, we have |Irr(B0|C5)| = 2 = |Irr(b0|C5)|. The application of the
relative versions of the conjectures is as follows: the center of Aχ is isomorphic to C5. Thus, for each
χ ∈ Irr(A5), MARC holds. Note that all irreducible characters in the principal 5-block B0 have
height zero. Hence, their anchor groups are abelian, and MHZC holds. As Aχ

∼= C5 is an abelian
group, the commutator Áχ = {1C5}. We have that K0(B0) = 4 < [C5 : {1C5}] = 5, and MAOC
holds.

Remark 4. If the simple group G does not satisfy the condition stated in Theorem 6, then there
is no cyclic Sylow p-subgroup of G, and it does not satisfy Lemma 6, as shown in the following
example.

For the following example, we used the Magma computational algebra system [52] to
find the Brauer irreducible characters for the group SL(3, 3).
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Example 5. Let p = 3, G = SL(3, 3) be the special linear group of order 5616. The degrees of the
irreducible characters of SL(3, 3) are

ψi ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11 ψ12

ψi(1) 1 12 13 16 16 16 16 26 26 26 27 39

Note that |Irr(SL(3, 3))| = 12, which belong in two 3-blocks. The principal 3-block B0
has defect 3 and contains 11 irreducible characters, 9 of which are of degree prime to 3 and two
of which are of degree 12 and 39, namely, ψ2 and ψ12, respectively. The defect group D of B0
is the extraspecial 3-group (C3 × C3 : C3) of order 27, which is a Sylow 3-subgroup P of G.
Thus, from Lemma 1, the anchor group of each irreducible character with degree prime to 3 is
a Sylow 3-subgroup. It remains to calculate the anchor groups of ψ2 and ψ12. We have that
N := NG(P) = (C3 × C3 : C3) : (C2 × C2) is the normalizer of P in G, which is the group of
order 108. We can see that ResG

N(ψ2) = 2φ1 + φ6 + φ8 + φ11, where φ1, φ6, φ8, φ11 ∈ Irr(N),
as follows:

1a 3a 2a 6a 3b 3c 3d 2b 2c 6b 6c
ResG

N(ψ2) 12 3 4 1 3 3 0 4 4 1 1
φ1 1 1 1 1 1 1 1 1 1 1 1
φ6 2 −1 2 −1 2 2 −1 0 0 0 0
φ8 2 2 0 0 2 −1 −1 0 2 0 −1
φ11 6 0 0 0 −3 0 0 2 0 −1 0

The notation in the first row above is as provided in the Atlas of Finite Groups [53]. Let L be the
indecomposableRG-lattice affording ψ2. Let M1, M6, M8, and M11 be theRN-lattices that afford
φ1, φ6, φ8, and φ11, respectively. Hence, ResG

N(L) = M1 ⊕M6 ⊕M8 ⊕M11. We can see that M1
is the direct summand of ResG

N(L). Then, per the Green correspondence Theorem 3, the two lattices
M1 and L have the same vertex. We have that the reduction M1 is the trivial FG-module. Then,
per ([54], Corollary 1), M1 has a Sylow 3-subgroup of N as a vertex. Thus, the Sylow 3-subgroup
of N is a vertex of the indecomposableRN-lattice M1 per ([2], Chapter 11, Exercise 21). It follows
that the Sylow 3-subgroup of N is a vertex of L. We know that the Sylow 3-subgroup of N is equal
to the Sylow 3-subgroup P of G in this example. Per Theorem 1(2), the vertex of L is contained in
an anchor group of ψ2. Therefore, the anchor group of ψ2 is a Sylow 3-subgroup P of G. To calculate
the anchor group of ψ12, we use the fact that ψ3 ∈ Irr(G) is of degree 13. Suppose Ĺ, ´́L are the
indecomposableRG-lattices that afford ψ12, ψ3, respectively. Consider θ ∈ Irr(N) to be of degree
1, such that IndG

N(θ) = ψ12 + ψ3, as follows:

1a 3a 2a 6a 3b 3c 3d 2b 2c 6b 6c
θ 1 1 1 1 1 1 1 −1 −1 −1 −1

1a 3a 3b 13a 13b 13c 13d 2a 6a 8a 8b 4b
IndG

N(θ) 52 7 1 0 0 0 0 −4 −1 0 0 0
ψ3 13 4 1 0 0 0 0 −3 0 −1 −1 1
ψ12 39 3 0 0 0 0 0 −1 −1 1 1 −1

Suppose M is the indecomposableRN-lattice that affords θ. Hence, IndG
N(M) = Ĺ⊕, ´́L and

the two lattices M and Ĺ correspond to each other. Per the Green correspondence theorem, they have
the same vertex. As the reduction M of M has dimension prime to 3, the vertex of M is a Sylow
p-subgroup of N. As shown in the case of ψ2, we conclude that the anchor group of ψ12 is a Sylow p-
subgroup P of G. There is only one 3-block b0 of N. Note that 1 = |Irr(B0|P)| 6= |Irr(b0|P)| = 4,
which does not satisfy Lemma 6. The application of the relative versions of the conjectures is
as follows: the center of the extraspecial 3-group is isomorphic to C3, a cyclic group of order
3. Thus, for any χ ∈ Irr(SL(3, 3)), MARC holds. Note that the defect group of B0 is non-
abelian group and there exist ψ2, ψ12 ∈ Irr(B0), which are not of height zero. Thus, MHZC
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holds. The commutator subgroup of the extraspecial 3-group P is isomorphic to C3. We have that
K0(B0) = 9 = [(C3 × C3 : C3) : C3], and MAOC holds.

5. Discussion

In this paper, we consider the application of RC, BHZC, and OC to a direct product of
finite groups. We use classical and standard theories for the direct product of finite groups,
block theory, and character theory to accomplish these results. In fact, Propositions 2.3 and
2.6 in [48] are crucial in block theory for a direct product of finite groups. We also discuss
the restriction of these conjectures to anchor groups of irreducible characters instead of
defect groups. As the anchor group of an irreducible character ψ of a finite group G is a
defect group of the primitive G-interiorR-algebraRGeψ, the previous conclusion is logical.
We give suitable examples of this reduction.

The review of these conjectures in Sections 1.1–1.3 can be compared to our results in a
simple finite group. Our discussion revolves around the anchor groups of the irreducible
character with degree p, where p is an odd prime. In [50], J. A. Green proved the Green
correspondence theorem. In this work, we introduce the relative version of the Green
correspondence theorem in a simple finite group G that contains the irreducible character
ψ of degree p, where p is an odd prime. To achieve this result, we use Theorem 1 (5):
if ψ ∈ Irr(G) such that ψ0 ∈ IBr(G) with anchor group Aψ, then there is a unique (up
to isomorphism) RG-lattice L affording ψ and Aψ is a vertex of L. The outcomes of this
paper are important for the modular representation theory of a direct product of finite
groups, including an attempt to develop reductions of the RC, BHZC, and OC to the
algebraic concept “anchor group of irreducible characters”, as well as a relative version
of the Green correspondence theorem. We plan to study more conjectures regarding the
modular representation of a direct product of finite groups, including an assessment of
how reductions can be formed for these conjectures in an attempt to solve them.

6. Conclusions

This work focuses on BHZC [10], RC [21], and OC [26] (see Sections 1.1–1.3). We prove
that the direct product H1 × H2 of two finite groups H1 and H2 satisfies these conjectures if
and only if H1 and H2 both satisfy these conjectures. We provide relative versions of RC
(MARC), BHZC (MHZC), and OC (MAOC) with respect to the algebraic concept of “the
anchor group of an irreducible character.” We prove the relative version of RC (MARC)
in the case of the center of the anchor group of χ, Aχ with order |Z(Aχ)| = p and for
ψ ∈ Irr(G) with some conditions. Consider G to be a simple finite group. We prove that the
anchor group of the irreducible character with degree p is the trivial group, where p is an
odd prime. Finally, we present suitable examples of these conjectures and theories in simple
finite groups. Many questions and conjectures remain in modular representation theory.
We will study more conjectures related to the modular representation of a direct product of
finite groups and attempt to develop reductions for these conjectures to solve them.
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