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Abstract: Partial differential equations (PDEs) usually apply for modeling complex physical phe-
nomena in the real world, and the corresponding solution is the key to interpreting these problems.
Generally, traditional solving methods suffer from inefficiency and time consumption. At the same
time, the current rise in machine learning algorithms, represented by the Deep Operator Network
(DeepONet), could compensate for these shortcomings and effectively predict the solutions of PDEs
by learning the operators from the data. The current deep learning-based methods focus on solving
one-dimensional PDEs, but the research on higher-dimensional problems is still in development.
Therefore, this paper proposes an efficient scheme to predict the solution of two-dimensional PDEs
with improved DeepONet. In order to construct the data needed for training, the functions are
sampled from a classical function space and produce the corresponding two-dimensional data. The
difference method is used to obtain the numerical solutions of the PDEs and form a point-value data
set. For training the network, the matrix representing two-dimensional functions is processed to
form vectors and adapt the DeepONet model perfectly. In addition, we theoretically prove that the
discrete point division of the data ensures that the model loss is guaranteed to be in a small range.
This method is verified for predicting the two-dimensional Poisson equation and heat conduction
equation solutions through experiments. Compared with other methods, the proposed scheme is
simple and effective.

Keywords: partial differential equations; deep operator network; predicting the solution; machine
learning

MSC: 68T07; 35Q68

1. Introduction

A partial differential equation (PDE) is a kind of equation that deals with the deriva-
tives of unknown variables to time and space variables. These equations can describe
natural phenomena (e.g., hydrodynamics [1] and electromagnetism [2]). In addition, it also
describes practical applications (e.g., solving population problems [3] and urban traffic
problems [4]). People often pay more attention to the analysis and solution of complex
PDE models. In recent decades, the research of numerical methods for solving PDEs has
never been interrupted. There are finite difference methods [5], finite element methods [6],
spectral methods [7], boundary element methods [8], finite volume methods [9], Monte
Carlo methods [10], and adaptive mesh refinement. With the development of the research,
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many new numerical methods appear (e.g., the fast curvilinear finite difference method [11],
multiscale RBF collocation method [12], Haar wavelet collocation method [13], and sinc-
collocation method [14]). However, we often need to analyze and design PDE solution
algorithms via numerical methods. The calculation cost and resource consumption will
increase as PDEs become more and more complex. Meanwhile, we can simplify PDEs
by using the variational method, separation of variables method, Green function method,
transformation method, and deep learning method. These make it possible to solve PDEs
quickly and accurately.

With the rapid development of artificial intelligence technology, people pay more
and more attention to using deep learning methods to analyze complex problems. A
mesh-free algorithm called the deep Galerkin method [15] is proposed to approximate
high-dimensional PDEs. In [16], the authors propose a scheme that embeds constraints
in the Physics-informed neural networks of loss functions to predict PDEs with specific
conditions. In addition, some PDE models have successfully solved practical application
problems. For instance, Physics-informed neural networks [16,17] are used to predict the
fluid flow in porous media [18] and simulate heat transfer [19]. Although these methods
have successfully solved various problems, they are time-consuming, laborious, and not
universal. When changing conditions, these strategy models need to be retrained.

The latest application of deep learning in PDEs comes from the universal approxima-
tion theory that shows that a neural network can accurately approximate any continuous
nonlinear function or operator [20]. Based on this theory, Lu et al. [21] recently proposed
a new neural network architecture called the Deep Operator Network (DeepONet). The
architecture is composed of branch and trunk networks, which solve a class of partial differ-
ential equations through learning operators (maps between infinite-dimensional function
spaces). To demonstrate the capability and effectiveness of DeepONet, some researchers
have also analyzed the error and convergence and proved theoretically it can overcome the
disaster of dimension [22]. Recent theories suggest that DeepONet has successfully solved
various problems. In [23], it is used as a learning operator to predict the multiscale bubble
dynamics. In [24], DeepONet is used to predict the linear unstable waves in the high-speed
boundary layer according to the data provided in advance. In addition, DeepM&Mnet
predicts a two-dimensional electric pair flow field [25] and predicts the coupled flow and
finite rate chemical reaction after impacting normal [26] by integrating multiple parallel
DeepONets. We consider that the high-dimensional problems most widely exist in a real
scenario. Therefore, we focus on solving two-dimensional PDEs by using DeepONet.

For the original model, the branch network receives a function, which is a vector
consisting of m discrete points, and the trunk network input is the information of spatial
and time variables. However, when we use it to solve the two-dimensional PDEs, the input
function is expressed as a matrix, and the spatial variables increase to two. At this time,
the input function cannot be the branch network input, and the variable information of
the trunk network input also increases. To cope with these challenges, Cai et al. [25] use a
fully connected network and a pre-trained DeepONet to predict the 2D electroconvection
problem by minimizing the total loss. In [22,27], the input function can be regarded as
an image and the branch network can be replaced by a convolutional neural network
(CNN) [28] to learn the mapping between two variables. However, these methods increase
the complexity of the model and lack complete theoretical support.

To deal with model redundancy, we designed an efficient framework to solve two-
dimensional PDEs based on DeepONet. First, starting with the input function, the input
matrix is reshaped into a vector. The input function can be regarded as the input of
the branch network. Second, because the two-dimensional PDEs contain more location
and time information, we add spatial and time variable information as the input of the
trunk network. Finally, according to the data form of the branch and trunk networks,
we expand the data set required by DeepONet to approximate the solutions of PDEs.
Firstly, the reduced dimension input function and the added spatial and temporal variable
information form a binary. This part represents the input information of DeepONet. Then,
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the numerical solution of the corresponding variable is obtained according to the numerical
solver, and these three parts together form a data set. In addition, we also designed a
method to randomly select the location information from the corresponding time variables
to consist of the data set. The proposed method can predict the solution of PDEs efficiently
and accurately without increasing the complexity of the model. Moreover, it can solve a
class of PDEs when only the input function is changed, so it is universal. All told, the main
contributions of this paper are as follows.

1. To obtain enough two-dimensional PDE data for training, we design a method to
construct binary functions in the classical function space and obtain the corresponding
PDE solutions through the difference method to form point-value data sets. To prove
the DeepONet output is closer to the actual value, we analyze the constructed function
theoretically that can be applied for model training.

2. To solve the challenge of the form of the input data, we rely on DeepONet to design a
new data dimensionality reduction algorithm. This method flattens the matrix data
representing the function into vectors for inputting the branch network and randomly
selects the location and time information as the trunk network input.

3. The proposed strategy is performed on the two-dimensional Poisson equation and the
heat conduction equation experiments. Compared with other methods, we verify that
it is accurate and efficient in predicting two-dimensional PDEs.

This paper is organized as follows. The proposed method, data set, and training
scheme are introduced in Section 2. Next, we formalize the problem and theoretically prove
the relationship between the discrete points and model accuracy. The fourth part shows
the experimental results of the proposed method on two-dimensional Poisson equations
and heat conduction equations. Finally, we summarize this paper.

2. Methodology

In this section, we first review the work on deep operator networks and present a
method for solving two-dimensional PDEs based on it. Next, we explain the source of the
data set and the proposed training strategies.

2.1. Deep Operator Network Architecture

Here, we introduce the background of DeepONet. It is a simple neural network
architecture that consists of two subnetworks. One is a branch network, which encodes
the discrete points of the input function. The other one is a trunk network, which encodes
the coordinate position of the output function. Each subnetwork is a feed-forward neural
network (FNN). This network predicts PDE solutions by learning nonlinear operators
from input to output. Generally, we define many points [x1, x2, . . . , xm] in domain f .
[ f (x1), f (x2), . . . , f (xm)] represent the function f and the branch network inputs. The trunk
network inputs are the time and space variables x, t, and two network outputs must be the
same dimensional vectors (Figure 1) to conduct a dot-product operation. If Ψ is an operator
that maps from input to solution, the final output Ψ( f )(x, t) is the solution of the PDEs.

When solving a one-dimensional partial differential equation, the input function is
input into a branch network as a finite number of equidistant discrete points. The trunk
network inputs are spatial variables and time variable information. However, when we
solve two-dimensional PDEs, the input function is expressed as a matrix that cannot be the
branch network inputs. Therefore, we propose a scheme to overcome this problem. For the
branch network input, we convert the matrix representing the two-dimensional function
into a vector (Figure 2). For the trunk network input, we extend it to two spatial variables
and the time variable information. The proposed approach also uses a bias term for the
output. Algorithm 1 represents the dimensionality reduction process of the input function.
It means taking out each row of the matrix and appending it to the end of the previous row.
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Figure 1. DeepONet architecture.

Figure 2. The proposed method.

Algorithm 1 Function dimensionality reduction

input function f (x, y)
output discrete points vector F represents the function f (x, y)

1: using matrix F to represent function f (x, y)
2: for each row of the matrix do
3: append to the previous line
4: end for
5: thus, matrix F becomes vector F

2.2. The Data Set and Training Scheme

The data set consists of two parts: input and output. Due to input functions being
essential for model training, we designed a random sampling input functions method. It is
divided into two steps. In step one, we obtain univariate functions in the Gaussian random
field (GRF).

R ∼ Q(0, kl(x1, x2)) (1)

Y ∼ Q(0, kl(x1, x2)) (2)

where R, Y are different input signals, k is the radial-basis function (RBF) kernel, l > 0 is a
length-scale parameter, and kl(x1, x2) = exp(−||x1 − x2||2/2l2). If l is larger, the function
R and Y is smoother. In step two, we randomly choose two univariate functions for a linear
combination. c1, c2 are constants.

F = c1R + c2Y (3)
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The variable information of the trunk network is location points randomly selected
according to the range of independent variables. In addition, the most important is to obtain
PDE solutions to train the model. Because it is difficult to gain the analytical solution, we
consider using finite difference methods to obtain the numerical solution. A training point
is a triple (F, (x, y, t), Ψ(F)(x, y, t)). It may correspond to multiple training data points at
different positions for specific input. For example, if the training data points are 36,000
and the number of functions is 200, each input function includes 180 training data points
at different locations. Because the data points are randomly selected, they have different
positions in various inputs. Then, we consider two methods of combining the data sets.
In one, we randomly form triplets with two spatial variables and a time variable x, y, t;
the input function F; and the result value Ψ(F)(x, y, t). In the other, we randomly sample
points in each period and form triples (F, (x, y, t), Ψ(F)(x, y, t)). Algorithms 2 and 3 display
the two training methods.

Algorithm 2 Training strategy one

input input function F, independent variable x, y, t
output triples (F, (x, y, t), Ψ(F)(x, y, t))

1: A random combination of x, y, t
2: set xj = [x1, . . . , xm], yi = [y1, . . . , ym], tk = [t1, . . . , tn]. j, i = 1, 2, . . . , m. k = 1, 2, . . . , n.
3: for training points do
4: randomly select xj
5: randomly select yi
6: randomly select tk
7: end for
8: form the matrix (xj, yi, tk) and change into (x, y, t)
9: Processing of PDE solution

10: obtain PDE solutions through solvers
11: transform into the matrix Ψ(F)(x, y, t)
12: combine with matrix (x, y, t) and get two tuples ((x, y, t), Ψ(F)(x, y, t))
13: add F and get triples (F, (x, y, t), Ψ(F)(x, y, t))

Algorithm 3 Training strategy two

input input function F, independent variable x, y, t
output triples (F, (x, y, t), Ψ(F)(x, y, t))

1: Processing of time period
2: set tk = [t1, . . . , tn], k = 1, 2, . . . , n.
3: A random combination of x, y, t
4: set xj = [x1, . . . , xm], yi = [y1, . . . , ym]. j, i = 1, 2, . . . , m.
5: for n times do
6: for training points do
7: randomly select xj
8: randomly select yi
9: end for

10: end for
11: combine tk to form the matrix (xj, yi, tk) and change into (x, y, t)
12: Processing of PDE solution
13: obtain PDE solutions through solvers
14: transform into the matrix Ψ(F)(x, y, t)
15: combine with (x, y, t) and get two tuples ((x, y, t), Ψ(F)(x, y, t))
16: add F and get triples (F, (x, y, t), Ψ(F)(x, y, t))

3. Problem Formulation

In this part, we demonstrate an influence on model accuracy with the number of
discrete points. We keep the two-dimensional input function sampling space from the GRF
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and design a method to sample it. Because the sampling space remains unchanged and the
input function is a two-dimensional function, it is necessary to extend the proof. Suppose
that the two-dimensional heat conduction problem with the source term is described
as follows: 

∂s
∂t = g[s(x, y, t), f (x, y), (x, y)]
IC : s(x, y, 0) = s0
BC : 0

(4)

f (x, y) = f1(x) + f2(y) ∈ V (compact set of Banach space), and the domain of s is [n, k]×
[n, k]→ Rk. Ψ is an operator that is from f to s, (Ψ f (x, y, t) = s). Ψ f satisfies

Ψ f (x, y, t) = s0 +
∫∫∫

g[Ψ f (l, p, h), f (l, p), (l, p)]dldpdh

and choose (m + 1)× (m + 1) points in the domain.

xj = n +
j(k− n)

m
, j = 1, 2, . . . , m.

yi = n +
i(k− n)

m
, i = 1, 2, . . . , m.

where xj, yi ∈ [n, k]. Define the function fm(x, y) = fm(x) + fm(y).

fm(x) = f (xj) +
f (xj+1)− f (xj)

xj+1 + xj
(x− xj)

fm(y) = f (yi) +
f (yi+1)− f (yi)

yi+1 + yi
(y− yi)

fm(x, y) = f (xj) +
f (xj+1)− f (xj)

xj+1 + xj
(x− xj) + f (yi) +

f (yi+1)− f (yi)

yi+1 + yi
(y− yi)

Υ is an operator that is from f (x, y) to fm(x, y). Pm = Υm( f )| f ∈ V, V is a compact set of
the Banach space; V is compact and Υ is also compact. Hence, Zm := V ∩ Pm also remain
compact. According to Lemma 1, Z :=

⋃∞
i=1 Zi is also compact. Ψ is a continuous implicit

operator, and Ψ(Z) is a compact set. Suppose g(s, f , (x, y)) satisfies the Lipschitz condition,
s, f ∈ Ψ(Z)× Z, there exists a constant c such that

||g(s1, f , (x, y))− g(s2, f , (x, y))||2 6 c||s1 − s2||2

||g(s, f1, (x, y))− g(s, f2, (x, y))||2 6 c|| f1 − f2||

To achieve this condition, g is differentiable about f and s on Ψ(Z)× Z. For f ∈ V, fm ∈ Pm,
c1, c2 and s(m, V) are constant such that

Max
x,y∈[n,k]

| f (x, y)− fm(x, y)| 6 (c1 + c2)s(m, V) (5)

(c1 + c2)s(m, V)→ 0 when m→ ∞ According to Theorem 1, we have s ∼ 1
m2l2 . Based on

the above deduction, we obtain Theorem 2.

Lemma 1. Z :=
⋃∞

i=1 Zi is compact.

Proof. For any ε > 0, by (5), there exists an m0, such that:

|| f − Υm( f )||c <
ε

4
, ∀ f ∈ V, ∀m > m0

Zm0 is a compact set, and there exists a δ > 0 such that:
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|(x1, y1)− (x2, y1)| < δ =⇒ | f (x1, y1)− f (x2, y1)| <
ε

2

|(x1, y1)− (x1, y2)| < δ =⇒ | f (x1, y1)− f (x1, y2)| <
ε

2

∀ f ∈ Zm0 , ∀x1, x2, y1, y2 ∈ [n, k]. All the variables satisfy the above conditions and f ∈ Z. If
f ∈ Zm0 , we have

| f (x1, y1)− f (x2, y1)| <
ε

2
< ε

| f (x1, y1)− f (x1, y2)| <
ε

2
< ε

otherwise, f ∈ ⋃∞
i=m0+1 Pi; suppose f = Υm(k), m > m0, k ∈ V,

| f (x1, y1)− f (x2, y1)| = |s(x1, y1)− k(x1, y1) + k(x1, y1)− k(x2, y1) + k(x2, y1)− s(x2, y1)|

≤ |Υm(k)(x1, y1)− k(x1, y1)|+ |k(x1, y1)− k(x2, y1)|+ |Υm(k)(x2, y1)− k(x2, y1)|

≤ 2|Υm(k)− k|c + |k(x1, y1)− k(x2, y1)| ≤ 2× ε

4
+

ε

2
= ε.

Similarly, | f (x1, y1) − f (x1, y2)| ≤ ε. Z is uniformly bounded and successive, so
it is pre-compact through the Arzelà–Ascoli theorem. Define {zi}∞

i=1 ⊂ Z, which is a
sequence that converges to z0 ∈ c[n, k]. If an m exists such that {zi} ⊂ Zm, we have
z0 ∈ Zm ∈ Z. Otherwise, we have a subsequence {Yin(vin)} of {zi}, such that vin ⊂ V,
when n→ ∞, in → ∞, and we have

||vin − z0||c = ||vin − Υin(vin) + Υin(vin)− z0||c

≤ ||vin − Υin(vin)||c + ||Υin(vin)− z0||c
≤ κ(in, V) + ||Υin(vin)− z0||c.

It means z0 = lim
n→∞

vin ∈ V ⊂ Z. Hence, Z is closed.

Theorem 1. R(s), Y(c) ∼ Q(0, kl(x1, x2)), using a piecewise linear interpolation of R(s), Y(c)
with m points will convergence with order O( 2

(ml)2 ).

Proof. Suppose that R(s), Y(c) are functions that sample in the Gaussian random field.

R(s) =
√

2(π)
1
4 (

∫
R+

√
lcos(ks)e−

l2k2
8 dW(k)−

√
lsin(ks)e−

l2k2
8 dB(k))

Y(c) =
√

2(π)
1
4 (

∫
R+

√
lcos(kc)e−

l2k2
8 dW(k)−

√
lsin(kc)e−

l2k2
8 dB(k))

W, B are independent standard Brownian motions [29]. Setting T = lk and applying linear
interpolations Π1, Π2 in [si, si+1], [ci, ci+1] :

H[(R(s)−Π1R(x))2] = 2(π)
1
2 [(

∫
((I −Π1)cos(

T
l

s))2 +
∫
((I −Π1)sin(

T
l

s))2)e−
T2
l dT]

≤ (π)
1
2 (Si+1 − Si)

4
∫
(

T
l
)4e−

T2
l dT = 24π(

Si+1 − Si
l

)4.

Similarly, H[(Y(c)−Π1Y(c))2] ≤ 24π(
Si+1−Si

l )4. By the linear interpolation error, we have:

|(I −Π1)g(s)| = (b− a)2| f ′′(ε1)|
2
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|(I −Π2)g(s)| = (b− a)2| f ′′(ε2)|
2

Applying the Borel–Cantelli lemma, we have

|R(s)−Π1R(s) + Y(c)−Π2Y(c)| ≤ k[(Si+1 − Si)
2−ε + (Ci+1 − Ci)

2−ε]

l2

k is a positive number of a Gaussian random variable with finite variance. Applying the
piecewise linear interpolation of R(s) and Y(c) with m points, we can obtain convergence
with order O( 2

(ml)2 ).

Theorem 2. Suppose that m is a positive integer, making c(k− n)(c1 + c2)s(m, V)ec(k−n) < ε, for
d, e ∈ [n, k], function f ∈ V, there exists W1 ∈ Rn×(m+1), b1 ∈ R(m+1), W2 ∈ Rk×n, such that:

||(Ψ)(d, e)− (W2 · σ(W1 · [ f (x1, y1), . . . , f (xm, ym)]
T + b1) + b2)||2 < ε.

Proof. For f ∈ V, fm ∈ Pm, by (5) and the Lipschitz condition, such that:

||(Ψ f )(d, e)− (Ψ fm)(d, e)||2 ≤ c
∫∫
|(Ψ f )(x, y)− (Ψ fm)(x, y)|dxdy

+c
∫∫
| f (x, y)− fm(x, y)|dxdy ≤ c

∫∫
|(Ψ f )(x, y)− (Ψ fm)(x, y)|dxdy

+c(k− n)2(c1 + c2)s(m, V)

According to the Gronwall inequality, we obtain

||(Ψ f )(d, e)− (Ψ fm)(d, e)||2 ≤ c(k− n)2(c1 + c2)s(m, V)e
∫∫

1dxdy

≤ c(k− n)2(c1 + c2)s(m, V)ec(k−n)2

Define Lm = ( f (x1, y1), f (x1, y2), . . . , f (xm, ym)) ∈ Rm+1, f ∈ V, and Lm is a compact set.
There is a mapping relationship between Lm and Pm. We define a vector-valued function
on Lm, such that:

ρ( f (x1, y1), f (x1, y2), . . . , f (xm, ym)) = (Ψ fm)(d, e)

For any ε > 0, when m→ ∞, c(k− n)2(c1 + c2)s(m, V)ec(k−n)2
< ε. Applying the universal

approximation theorem of a neural network for high-dimensional functions:

||ρ( f (x1, y1), f (x1, y2), . . . , f (xm, ym))− (W2 · σ(W1 · [ f (x1, y1), . . . , f (xm, ym)]
T + b1) + b2)||2

≤ ε− c(k− n)2(c1 + c2)s(m, V)ec(k−n)2
)

Thus, we have:

||(Ψ f )(d, e)− (W2 · σ(W1 · [ f (x1, y1), . . . , f (xm, ym)]
T

+b1) + b2)||2 ≤ ||(Ψ f )(d, e)− (Ψ fm)(d, e)||2 + ||(Ψ f )(d, e)

−(W2 · σ(W1 · [ f (x1, y1), . . . , f (xm, ym)]
T + b1) + b2)||2

≤ c(k− n)2(c1 + c2)s(m, V)ec(k−n)2
) + ε

−c(k− n)2(c1 + c2)s(m, V)ec(k−n)2
) = ε
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The number of discrete points only affects the smoothness of the PDE curve. The
more discrete points, the smoother the curve. With the increase in discrete points, the mesh
segmentation becomes finer. The amount of data required by the model will continue to
increase, but it has no impact on the accuracy. We can always make the model achieve a
better effect.

4. Experimental Results

In this section, we conduct experiments using the proposed method. For the data sets,
we obtain functions and solutions through the GRF and the numerical solver of the PDEs.
In the prediction aspect, we exhibit the prediction ability of the proposed method based on
the two-dimensional Poisson and heat conduction equation. In addition, we analyze the
experimental results by the losses and compare the predictions with numerical solutions.
The loss function is the mean square error (MSE). As shown in the following,

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2

n is the number of data, Ŷi is the predicted value, and Y is the true value. This indicator
can directly show the prediction effect.

4.1. Experimental Setup

The underlying framework for implementing DeepONet is TensorFlow. We train
DeepONet using the Windows 10 operating system, with a 32 G memory, an NVIDIA
GeForce RTX 3080 Ti graphics card, and Python as the programming language. In addition,
the hyperparameters are set as follows. The learning rate is 0.001, the epoch is 20,000, the
activation function is ReLU, and the optimizer is Adam. The width and depth of the branch
and the trunk network are 40 and 2.

4.2. Poisson Equation

The two-dimensional Poisson equation is described as:

(
∂2s
∂x2 +

∂2s
∂y2 ) = f (x, y), x, y ∈ [0, 1]

with zero boundary conditions and a fixed f . We aim to predict s(x, y) over the domain
[0, 1] for any f (x, y). The objective is to learn an operator from function f to s. The selected
function space is the GRF, the number of discrete points is 20 × 20, the number of training
and test functions is 200/40, and the number of training data points of each function is
120. They are the solutions of the PDEs, which can be obtained by the five-point difference
method, as shown in Figure 3.

Figure 3. Training points in Poisson equation.
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The training result is shown in Figure 4. The loss will decrease with the iterations’ increase
and fluctuate in a small range until stable. The best test loss is 8.04× 10−6. Next, we use the

trained model to predict the PDE. We choose the input function f = −5e
[(x− 1

4 )
2+(y− 1

4 )
2 ]

4 , and
the numerical solution and the prediction of DeepONet are shown in Figures 3 and 5.

Figure 4. Training and test losses.

Figure 5. Prediction result.

Compared with Figure 3, the prediction result of DeepONet is almost the same as the
numerical result. Moreover, the models also show good generalization. When the input
functions are f1 = xsin(πx) + ysin(πy) and f2 = −xsin(πx)− ycos(πy), the numerical
solution and the prediction are shown in Figure 6. The prediction effects are excellent when
the functions are in the same function space.

Figure 6a,b are the DeepONet prediction results, and Figure 6c,d are the PDE numerical
solutions. The results indicate that DeepONet can accurately predict the two-dimensional
Poisson equation. Compared with the traditional numerical solution methods, the Deep-
ONet framework is flexible because it is a pre-trained model. As long as the corresponding
input functions are set, DeepONet can predict this kind of PDE.
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(a) (b)

(c) (d)

Figure 6. The predictions and numerical solutions. (a,b) represent the DeepONet prediction of s1, s2,
and (c,d) represent the true value of s1, s2.

4.3. Heat Conduction Equation

The two-dimensional heat conduction PDE with the source term f (x, y) is described
by

∂s
∂t

= a2(
∂2s
∂x2 +

∂2s
∂y2 ) + f (x, y), x, y, t ∈ [0, 1]

with a zero boundary condition, and the initial condition is

s0 = e−10[(x− 1
2 )

2+(y− 1
2 )

2]

where a = 1 is a constant. We will train DeepONet to learn the implicit operator that is
a mapping from f (x, y) to s(x, y, t). According to the dimension reduction algorithm of
the input function and the model training method under a multivariable, we show six
different experimental results for DeepONet. These experiments include the number of
input functions, the number of training points, increasing discrete points, different function
spaces, different training methods, and different models. We analyze the experimental
results by comparing the prediction and numerical solution. The purpose is to find the best
model and accurately predict the two-dimensional heat conduction equation.

4.3.1. Number of Input Functions

The data set size is expressed as the product of the input function and the training
data points. One of the factors affecting it is the number of input functions. To maintain the
unity of other variables, we set them in Table 1.
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Table 1. The number of input functions is different, and other parameters are unchanged.

Case Training Data Points Functions Discrete Points Space MSE

1 180 50/10 20 × 20 GRF 7.64 × 10−4

2 180 60/12 20 × 20 GRF 4.43 × 10−4

3 180 80/16 20 × 20 GRF 2.87 × 10−4

4 180 110/22 20 × 20 GRF 1.59 × 10−4

5 180 150/30 20 × 20 GRF 3.28 × 10−5

6 180 200/40 20 × 20 GRF 2.53 × 10−5

7 180 300/60 20 × 20 GRF 1.46 × 10−5

To control the variables, we only change the number of functions. After obtaining the
results through the numerical solver, 180 data points are randomly selected. These points
are part of the numerical solutions. Each function randomly selects data points at different
locations, as shown in Figure 7.

Figure 7. Training points in heat conduction equation.

For the different numbers of functions, the training results are different. The losses of
the models are shown in Figure 8.

Figure 8. Model training and test losses in different input functions.
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The dotted lines represent the test loss, and the solid lines represent the training loss.
The different colors represent the model training status corresponding to the number of
input functions. When the number of input functions is small, the model will be under-
fitted, and the test loss is far greater than the training loss. With the increase in the
number of input functions, the gap between the test and training loss becomes smaller and
smaller, and the test loss of the model becomes lower until the number of functions reaches
convergence at 300/60. At this time, the optimal loss of the trained model is 1.46× 10−5.
Generally, we evaluate the model generalization ability on the test set. When the test loss
is low, the model generalization ability is strong. Therefore, the number of functions we
choose is 300/60.

We set function f (x, y) = e−
[(x− 1

4 )
2+(y− 1

4 )
2 ]

4 , and DeepONet predicts the best results,
which are shown in Figure 9. Figure 9a–f show the solution of the two-dimensional heat
conduction equation predicted by DeepONet and the process of the PDE changing with
time. For comparison, we show the corresponding numerical solution in Figure 10.

(a) (b) (c)

(d) (e) (f)

Figure 9. Prediction results for six time periods. (a–f) represent the prediction results from t1 to t6

time periods, respectively

(a) (b) (c)

Figure 10. Cont.
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(d) (e) (f)

Figure 10. Numerical results for six time periods. (a–f) represent the numerical results from t1 to t6

time periods, respectively

For seven cases, the MSE is shown in Table 1. It shows that the larger the number of
functions, the smaller the MSE, and the better the model training, but the training time is
longer and longer. When the number of functions reaches 200/40, the model loss is ∼10−5

and does not decrease. At this time, the model has reached convergence.

4.3.2. Number of Training Data Points

Training data points are a significant part of the data sets, and their number also
determines the size of the data sets. To improve the model training efficiency, we will find
appropriate data points. We randomly select 20, 40, 70, 110, 160, 220, and 300 training data
points in each corresponding input function. Similarly, we designed Table 2 to show the
control variables.

According to the number of input functions, periods, and training data points, we can
calculate the training times of each data point in the grid. When choosing 40 as the number
of training data points, the training time of each data point in the grid is 200 × 40/400 × 6,
which is about 3. The specific experimental results are shown in Figure 11. It shows the
model loss under different data points, and the colors represent the distinction of the
training data points. With the increase in the iterations, the loss change also shows the
same trend. When the number of training data points is less than 110, there exists a big gap.

Table 2. The number of training data points is different, and the other parameters are unchanged.

Periods Training Data Points Functions Discrete Points Space MSE

6 20 200/40 20 × 20 GRF 1.17 × 10−3

6 40 200/40 20 × 20 GRF 1.24 × 10−4

6 70 200/40 20 × 20 GRF 5.36 × 10−5

6 110 200/40 20 × 20 GRF 2.43 × 10−5

6 160 200/40 20 × 20 GRF 1.81 × 10−5

6 220 200/40 20 × 20 GRF 1.59 × 10−5

6 300 200/40 20 × 20 GRF 1.84 × 10−5

When the number of training data points is more than 110, the test loss gradually
reaches the fitting state. It is 10−5. As more and more training data points are selected, the
test loss is gradually consistent with the training loss. Especially, the number of iterations
exceeds 20,000. When the number of training data points is 220, the test loss is almost the
same as the training loss, and the model generalization is the strongest. The best test loss in
the different training data points is shown in Table 2.

In Table 2, the test losses become smaller with the increase in the training points. After
70 training points, the best test loss remains at ∼10−5. We select around 220 training points,
the 20 × 20 grid size, and the 200× 220/400× 6 ≈ 18 training times. The model training
effect is best when each point is trained about 18 times.
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Figure 11. Model training and test losses in different training data points.

4.3.3. Different Function Spaces

In the previous parts, we mentioned the method of the sampling function. Firstly, we
randomly sample univariate functions in the GRF and then a random linear combination
between two univariate functions. However, according to the work of [21], the classical
function space can also select a Chebyshev polynomial. Therefore, in this part, we also
consider sampling the function in this space as the data sets and training the model.
According to the comparison of the GRF, we explore which function space is more suitable
for sampling two-dimensional functions.

The numbers of the functions and data points are set to 200 and 220. The input function
from the Chebyshev polynomial space is as follows: let k > 0, and Fi are Chebyshev
polynomials of the first kind. We define the orthogonal polynomials of degree N as:

Vp =
N−1

∑
i=0

aiFi(x) : |ai| 6 k

We obtain the input functions from Vp by randomly sampling ai from [−k, k]. The
model training loss corresponding to the two function spaces is shown in Figure 12. When
the sampling space comes from the GRF or Chebyshev polynomials, the blue and red lines
in Figure 12 represent the corresponding training and test losses. By comparing the loss
changes in the model, we find that the model loss represented by red is slightly greater
than that of blue. The experimental results show that under the state of the other same
parameters, the generalization error of the model training is small in the GRF.

Figure 12. Model training and test losses in different function spaces.
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The prediction results with the same f are shown in Figure 13. It shows that when
the function space is Chebyshev polynomials, DeepONet cannot predict the solutions well.
Although the generalization abilities of the model are poor in this state, they can improve
in the GRF.

(a) (b) (c)

(d) (e) (f)

Figure 13. Prediction results when function space is Chebyshev polynomials. (a–f) represent the
prediction results from t1 to t6 time periods, respectively

4.3.4. Discrete Points

According to the theoretical analysis in part 3, the more discrete points, the more able
to represent the input function. We send the discrete input function as a branch network
input to DeepONet. As long as the loss of the model is less than ε, DeepONet can accurately
predict the solution of the two-dimensional partial differential equation. However, when
the number of m gains, the mesh and function image become denser and smoother. If the
data set of the same size is maintained, the larger m is, there will be fewer training times
of each data point, which may lead to a bad result for the model training, as shown in
Figure 14a.

Blue, red, and green are the changes in the model training loss when m = 50, 45, and
25. When the same data set is maintained, the model loss will increase to the expansion of
several m. However, if the number of m increases, we can improve the number of training
data points or input functions (expand the training times of each data point) to reduce
the model loss. The results are shown in Figure 14b. While keeping the other parameters
unchanged and increasing the training data points, the green line in Figure 14b shows
the loss change during the model training. The training and test losses decrease to the
best state with the iterations’ increase. Then, it tends to be stable. When increasing the
number of input functions, the loss change is shown by the red line in Figure 14b. The test
and training losses keep a similar trend, and the optimal test loss is smaller than the blue
line. Therefore, we can increase the number of input functions (expand the data set) while
increasing the training data points, and it can ensure that the model training is better, as
shown in Figure 15.
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(a) (b)

Figure 14. Model training and test losses. The loss will be reduced if the input functions and training
points are increased.

Figure 15. Model training and test losses after enlarging data set.

The blue line indicates the change in the loss when the discrete points increase to
40 × 40. The green line represents the change in the model loss after the data set increases.
In comparison, the best loss of the blue lines is greater than that of the green. According
to the records in Table 3, for different discrete points, the optimal loss of the model will
eventually reach 10−5. It shows that when the discrete points gradually increase, the model
will always ensure that the optimal MSE is small enough to make the prediction results
accurately.

Table 3. The MSE of different discrete points.

m Data Points Functions MSE

20 220 200/40 1.48 × 10−5

25 320 300/60 1.61 × 10−5

40 600 400/80 5.79 × 10−5

50 600 400/80 6.76 × 10−5
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4.3.5. Different Training Method

In part two, we give two training methods. The first is to extend the training method
to a two-dimensional PDE according to the work of [21] in Algorithm 2. The second is to
divide the period into n equal parts into blocks and randomly select training points in each
block for training in Algorithm 3. In this part, we reproduce the two training methods and
illustrate that these methods are effective according to the change in the model training
loss. We obtain the solution of the PDE corresponding to six time periods and use these
two methods to train the model. The results are shown in Figure 16a.

In Figure 16a, red and green represent the change in the model training loss corre-
sponding to the origin and our algorithms. From the figure, we can see that no matter
the training or test loss, they almost maintain the same change trajectory, and the loss
gradually decreases and tends to fit with the increase in the iterations. Finally, the best test
loss remains at 10−5. However, we speculate that the reason may be that there are too few
periods to see the advantages. Therefore, we will select ten discrete-time variable training
periods, and the change in the model loss is shown in Figure 16b. The experimental results
show that the two training algorithms can train the model well. Both can minimize the loss
of the model.

(a) Six time periods (b) Ten time periods

Figure 16. Model training and test losses in different periods.

4.3.6. Different Models

By the work of [21], we considered two models, FNN and Residual Networks (ResNet),
because the input has no specific structure. In this part, we still regard these two models
as comparative models. We apply the improved data set to train the two models, and the
experimental results are shown in Figure 17.

The red lines indicate the training result of FNN. With the increase in iterations, the
training loss decreases continuously. However, the test loss will not change when it reaches
a certain extent. The green lines represent the training results of ResNet. We can see that
the training and test loss changes are very tortuous and unstable. The training results of
the two models are much worse than DeepONet.

The best training error of DeepONet is 1.28 × 10−5, and the best test error is 3.56 × 10−5.
The best training error of FNN is 6.29 × 10−5, and the best test error is 1.27 × 10−4. The
best training error of ResNet is 8.98 × 10−5, and the test error is 3.01 × 10−4. Through the
training of FNN and ResNet, we found that whether the FNN or ResNet model are used,
their training results are worse than DeepONet.
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Figure 17. Compared with FNN and ResNet.

In addition, DeepM&Met indicates that a two-dimensional PDE can also be predicted
by using a fully connected network and the pre-trained DeepONet. This method mainly
solves multi-physical and multiscale problems, but adding an FNN is redundant for a
two-dimensional PDE with simple prediction. In addition, the model complexity and
prediction time will increase when the branch network is replaced by a convolution neural
network. As shown in Figure 18, the prediction accuracy of the method using a CNN to
replace the branch network is consistent with our proposed method. However, in terms of
the training time and prediction time, our method shows absolute advantages, as shown in
Table 4.

Figure 18. Compared with CNN.

Table 4. Comparison with CNN.

Metrics Our Method CNN

Loss 5.34 × 10−5 5.63 × 10−5

Training time 75 s 348 s
Prediction time 0.009 s 0.03 s
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The above experiments indicate that our proposed method has a strong operator learn-
ing ability. When dealing with a two-dimensional PDE, it can predict the corresponding
solution by learning the implicit operator. We also analyze various factors affecting the
training of the DeepONet model and select the optimal parameters. Although the predic-
tion accuracy is lower than that of the numerical solver and close to the methods based on
a CNN, our proposed method saves time and labor in solving two-dimensional PDEs.

5. Conclusions

This paper presents an efficient method based on DeepONet for solving two-dimensional
PDEs and takes the two-dimensional Poisson and heat conduction equation as research
problems. Moreover, we theoretically analyze the influence of the number of discrete
points corresponding to the two-dimensional functions on the model accuracy and verify
it through experiments. In addition, many experimental results show that the proposed
method can accurately predict two-dimensional PDEs. Compared with the numerical solu-
tion, the mean square error of the prediction solution can reach 10−5. Compared with other
methods, it is efficient. However, our approach considers many simple nonlinear input func-
tions and ignores some complex function forms. In the future, we would like to improve
the algorithm and expand the model to solve more complex partial differential equations.
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