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1. Introduction
1.1. Motivation of This Manuscript

Let us consider an individual that defines her/his preferences on a nonempty set X.
To start with, let us assume that those preferences are crisp binary relations on X, so that
given two elements x, y ∈ X and a binary relationR either x is related to y throughR or it
is not. In other words, understanding R as a subset of the Cartesian product X × X, we
have that either (x, y) ∈ R or else (x, y) /∈ R. In that crisp setting,R is then a crisp subset
of X× X; that is, the characteristic function χR that definesR can only take the values 0
or 1. Thus, χR(x, y) = 1 means that x is related to y by means ofR, whereas χR(x, y) = 0
means that x is not related to y throughR.

In the crisp approach, a preference on X is usually understood as a binary relation that
is transitive and complete. (A complete binary relation is also known in the literature as
a total binary relation. We also remark that a complete binary relation is also reflexive.)
This is also known as a total preorder. We will use the notation %. In association with it,
we may consider also two binary relations, namely � and ∼, called, respectively, the strict
preference and the indifference. x � y if and only if it is not true that y % x, and x ∼ y if and
only if both x % y and y % x are true (x, y ∈ X). With this definition, the total preorder %
decomposes as � ∪ ∼, and this decomposition is unique (see Section 2).

Unlike the crisp approach, in the fuzzy setting a fuzzy binary relation R on a nonempty
set X is now understood as a fuzzy set of the Cartesian product X × X, so that now the
indicator (also know as the membership function) of R is a map χR : X × X → [0, 1]. It
may take any possible value from 0 (no relationship at all, absolute negation) to 1 (total
relationship, total evidence). Intermediate values give us, then, an idea of uncertainty.
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To now start working in the fuzzy setting, some rather important facts should be
pointed out:

1. There are many nonequivalent extensions of the notions of completeness and/or
transitivity, so that many possible definitions of the concept of a fuzzy total preorder
could appear (see Section 2).

2. Once a particular definition of a fuzzy total preorder, say R, has been chosen, we may
try to decompose it by means of two fuzzy binary relations P and I, so that, in a way,
the triplet (R, P, I) behaves as the decomposition (%,�,∼) of a crisp total preorder
%. However, the definitions of what we mean by a fuzzy decomposition are neither
unique nor equivalent (see Section 3).

3. Again, even if we have chosen some particular definition of a fuzzy decomposition, it
may happen that a given fuzzy preorder could still have more than one possible de-
composition of that kind. In other words, now the decompositions are not necessarily
unique (see Sections 4 and 5).

1.2. A Revision of the Literature on Decompositions of Fuzzy Binary Relations

The problem of choosing definitions when generalizing crisp concepts is widespread
in the fuzzy literature [1–5]. The study of preference structures is not an exception. For
example, some authors study decompositions into two fuzzy binary relations P and I [5–8],
whereas others study them in three relations: P, I and an additional one representing the
idea of incomparability [9–13].

Our study on decompositions was first motivated by the need for a solid framework
for fuzzy Arrovian models (see a complete survey in [3] (Chapter 4)). These models are a
fuzzy extension of the well-known model introduced by Arrow in 1951, in the crisp setting,
studying ranking aggregation [14]. In these fuzzy models, the decomposition of a preference
plays an essential role, and it can be decisive in determining when it is possible to aggregate
preferences. (We can illustrate the importance of decompositions comparing the models
studied in [15] (Proposition 3.14) and [16] (Proposition 3.1). Their definition only differs in
the chosen decomposition rule. In the former case, it is possible to aggregate preferences, but
it is not possible in the second case.) In most of the literature, decompositions are defined
using triangular norms and conorms (in the sequel, we will write t-norms (triangular
norms) and t-conorms (triangular conorms) for short) (as generalizations of the crisp
intersection and crisp union). Although in the earliest models decompositions were defined
using a t-norm and a t-conorm playing the roles of the intersection and the union [15], in
subsequent works the requirements for decompositions were weakened: the authors only
used a single t-conorm in addition to a condition to assure that the fuzzy decomposition
was a generalization of the dichotomic one with values in {0, 1} [3,5,6,17]. One of our goals
in our study is understanding the differences between both types of decomposition (strong
and weak decompositions) and the reason behind this change.

The main difference in preference modeling in these Arrovian models and some of
the works cited above [8–13] is the definition of asymmetry for the strict preference P as
well as the nonexistence of an incomparability relation. The second one seems reasonable
since the preferences are complete in Arrow’s original model. That is, two alternatives are
always comparable. However, the choice of the asymmetry on fuzzy relations requires
a deeper justification. Despite the fact that the most intuitive generalization requires
T(P(x, y), P(y, x)) = 0 for some t-norm T (see [8]), most of the researchers in this area
have stood for strict preferences without both conjugated pairs with a positive degree (i.e.,
P(x, y), P(y, x) > 0), and, as Dutta explained in one of the earliest articles [15], it is the most
restrictive conception of asymmetry.

The reasons behind both choices make sense when we take into account the historical
perspective. The introduction of fuzzy preferences in the Arrovian model was motivated
by escaping from Arrow’s impossibility theorem [14]. As we have explained before, when
fuzziness is introduced, many possible extensions of the concepts and definitions (unique
in the original model) arise. These new definitions must make sense in the problems social
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scientists are studying. We look for models allowing preference aggregation rules, but in
many cases, they need to remain as close as possible to a dichotomic interpretation. For
instance, Duddy and Piggins studied aggregation rules where individual preferences were
rankings and social preferences were fuzzy [18]. Billot also argues that any transitivity
defined by t-norms will contradict the independence of irrelevant alternatives principle and
they should be avoided (the independence of irrelevant alternatives is an (more philosophic
than mathematical) assumption that states that if you take as input a set of alternatives
and their characteristics, the input should not depend on extra-group characteristics) [1]
(Section 1.1.2). In the same spirit, Dutta recognizes he chose the most restrictive form of
asymmetry [15] because his study was looking for the minimum fuzzification needed to
obtain aggregation rules. Moreover, his assumption has not been the object of remarkable
criticism in subsequent studies (e.g., [3,5,6,16]).

For example, consider the case in which R(x, y) = 0.9 and R(y, x) = 0.05. Here, x
is clearly preferred over y, so under the assumption made by Dutta and others, it makes
sense to state that P(y, x) = 0. Moreover, compared with the situation R′(x, y) = 1 and
R′(y, x) = 0, it makes sense that P′(x, y) > P(x, y) because of the differences in intensities
between R and R′. Then, we could argue that P must be a fuzzy relation satisfying the most
restrictive asymmetry when an alternative is clearly preferred over the other. However,
this argument does not lack criticism: consider the case in which R(x, y) = 0.65 and
R(y, x) = 0.64. Can we state that x is clearly preferred over y? In this case, saying that
P(x, y) > 0 and P(y, x) = 0 lacks real meaning, and it should not be taken into account by
practitioners. Nevertheless, cases such as the first example have prevailed over the second,
and the restrictive notion of asymmetry is imposed. One of its reasons is, probably, that
the Pareto condition loses its importance if other types of asymmetries are accepted. (The
Pareto condition states that if all agents strictly prefer an alternative over another, the social
preference must do it (see, e.g., [3]). The Pareto condition is the most accepted condition in
the Arrovian model and is the backbone of the aggregation functions structure.)

It is worth mentioning that not all social scientists share the same opinion. Llamazares,
in his study of decompositions [8], justifies his choice of asymmetry by quoting Blin [19]
and Barret and Pattanai [20]: «[the vagueness] arises through the multiplicity of dimensions
underlying preferences», and for that reason P(x, y) > 0 and P(y, x) > 0 can coexist. However,
we have to mention that most of the works of Barret and Pattanaik in fuzzy preferences
aggregation only work with strict preferences, and they do not have to deal with the
decomposition problem nor the differences between weak and strict preferences [21,22].

1.3. Aim and Objectives

Our main objective is to generalize to the fuzzy context the classical decomposition
of a preference or complete preorder, typical of the crisp case. Since uniqueness no longer
occurs in fuzzy decompositions, we need to search for the decompositions that are closest
or most similar to those used in the crisp setting, keeping in mind the Arrow models in
classic Social Choice (crisp) and their possible generalizations to the fuzzy context.

It is also our intention to establish general definitions, inherent to this fuzzy Arrovian
context. We wish the new ones that we will introduce to be considered “normative”, in the
sense that they could encompass those that have already been introduced in the specialized
literature on this matter.

1.4. Contents of This Manuscript

Having in mind the previous discussion, the scheme of this manuscript is as follows:
After the introduction, a section of preliminaries furnishes the basic definitions that

will be used along the whole paper. We pay attention there to classical concepts in fuzzy
set theory. Section 3 introduces then the key concept of a decomposition of a fuzzy binary
relation. Among the main families of decompositions, we will consider the so-called strong
and weak ones, respectively, analyzed in Sections 4 and 5. In Section 6, we apply the
results of the previous sections on the decomposition of preferences in the context of fuzzy
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Arrovian models. Finally, in Appendix A, we will give some geometrical ideas about
the existence of decompositions when spaces of fuzzy binary relations are restricted by
transitivity or completeness conditions. And we close this paper in Appendix B, applying
our results to some of the most known t-norms and t-conorms.

2. Preliminaries

In this article, X will always denote a nonempty set.

Definition 1. A binary relation R on X is a subset of the Cartesian product X × X. Given two
elements x, y ∈ X, we will use the standard notation xRy to express that the pair (x, y) belongs
toR.

In association with a binary relation R on X, we consider its negation (respectively, its
transpose) as the binary relationRc (respectively,Rt) on X given by (x, y) ∈ Rc ⇔ (x, y) /∈ R
for every x, y ∈ X (respectively, given by (x, y) ∈ Rt ⇔ (y, x) ∈ R, for every x, y ∈ X). We also
define the adjointRa of the given relationR, asRa = (Rt)c.

A binary relationR defined on a set X is called the following terms:

(i) Reflexive if xRx holds for every x ∈ X;
(ii) Irreflexive if ¬(xRx) holds for every x ∈ X;
(iii) Symmetric ifR andRt coincide;
(iv) Antisymmetric ifR∩Rt ⊆ {(x, x) : x ∈ X};
(v) Asymmetric ifR∩Rt = ∅;
(vi) Complete ifR∪Rt = X× X;
(vii) Transitive if xRy ∧ yRz⇒ xRz for every x, y, z ∈ X.

In the particular case of a set X where some kind of ordering has been defined, the
standard notation is different.

Definition 2. A preorder % on X is a binary relation on X that is reflexive and transitive. An
antisymmetric preorder is said to be an order. A total preorder % on a set X is a preorder such
that if x, y ∈ X then (x % y) ∨ (y % x) holds. If % is a preorder on X, then as usual we denote
the associated asymmetric relation by � and the associated equivalence relation by ∼ and these are
defined by x � y⇔ (x % y) ∧ ¬(y % x) and x ∼ y⇔ (x % y) ∧ (y % x).

A total preorder % defined on X is usually called a (crisp) preference on X.

Definition 3. LetR be a binary relation on X. We say thatR decomposes into a symmetric binary
relation (denoted byRs) and an asymmetric binary relation (denoted byRa) ifR = Ra ∪Rs and
Ra ∩Rs = ∅.

Proposition 1. Let % be a preorder on a set X. It decomposes into � and ∼. It is the unique
decomposition of % into asymmetric and symmetric relations.

Proof. See the proof in [23] (Theorem 1).

Definition 4. A fuzzy subset H of X is defined as a function µH : X → [0, 1]. The function µH is
called the membership function of H. In the particular case when µH is dichotomic and takes values
in {0, 1}, the corresponding subset defined by means of µH is a subset of X in the classical crisp
sense (the term crisp is usually understood in these contexts as meaning nonfuzzy).

Definition 5. A fuzzy binary relation on X is a function R : X × X → [0, 1]. We say that R
is symmetric if R(x, y) = R(y, x) for every x, y ∈ X, and we say that R is asymmetric if, for
every x, y ∈ X, R(x, y) > 0 implies that R(y, x) = 0 holds. Moreover, R is said to be reflexive if
R(x, x) = 1 for any x ∈ X.

Definition 6. A triangular norm (t-norm for short) is a function T : [0, 1]× [0, 1] −→ [0, 1]
satisfying the following properties:
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(i) Boundary conditions: T(x, 0) = T(0, x) = 0, and T(x, 1) = T(1, x) = x, for every
x ∈ [0, 1].

(ii) Monotonicity: T is nondecreasing with respect to each variable; that is if x1 ≤ x2 and y1 ≤ y2,
then T(x1, y1) ≤ T(x2, y2) holds true.

(iii) T is commutative: T(x, y) = T(y, x) holds for every x, y ∈ [0, 1].
(iv) T is associative: T(x, T(y, z)) = T(T(x, y), z) holds for any x, y, z ∈ [0, 1].

Definition 7. A triangular conorm (t-conorm for short) is a function S : [0, 1]× [0, 1] −→ [0, 1]
satisfying the following properties:

(i) Boundary conditions: S(x, 0) = S(0, x) = x, and S(x, 1) = S(1, x) = 1, for every x ∈ [0, 1].
(ii) Monotonicity: S is nondecreasing with respect to each variable; that is, if x1 ≤ x2 and y1 ≤ y2,

then S(x1, y1) ≤ S(x2, y2) holds true.
(iii) S is commutative: S(x, y) = S(y, x) holds for every x, y ∈ [0, 1].
(iv) S is associative: S(x, S(y, z)) = S(S(x, y), z) holds for any x, y, z ∈ [0, 1].

Henceforth, the symbol T will denote a t-norm whereas the symbol S will stand for a
t-conorm.

Remark 1.

(i) In this article, we will use t-norms and t-conorms to define the decomposition of a fuzzy
binary relation. However, in the proofs below, we will only use properties i and ii of
Definitions 6 and 7. This fact shows that we could define a decomposition with respect to a more
general category of operators (for example preaggregation functions [24], copulas [25], fusion
functions [26], mixture functions [27], overlap functions [28], penalty functions [29], etc.).

(ii) We have decided to use t-norms and t-conorms because they are the fuzzy generalizations of
the classic intersection and union operators and, more importantly, because we want to be
coherent with the pre-existing literature that analyzes, studies and uses decompositions in
practice [3,5,6].

(iii) In addition, in the search of an even more general setting than the one considered here with
t-norms and t-conorms, we should also make a choice (e.g., copulas) and update to the current
year the existing literature. However, as far as we know, the most recent literature on these
more general categories of operators seems to use decompositions only in particular cases and
regarding some very concrete and particular question or application in practice, mainly related
to algorithms (see [30]) or computer science (see [31]).

(iv) Notice, in addition, that those new references do not work, a priori, with the intention of
constructing a normative theory that could encompass other previously issued decompositions,
as we intend to construct here for t-norms and t-conorms. Instead, as already said, they just
work with quite particular and concrete aspects of practice (see, e.g., [30]).

(v) Other totally different kinds of decompositions of fuzzy relations, paying attention to algebraical
aspects of matrix theory, may be seen in [32]. However, they seem to be unrelated to the scope
of the present manuscript.

Let R1, R2 and R3 be fuzzy binary relations on X. Then, the notation R1 = T(R2, R3)
will mean from now on that, for every x, y ∈ X, R1(x, y) = T(R2(x, y), R3(x, y)) holds.
Obviously, we use a similar convention for a t-conorm S.

Definition 8. Let T and S, respectively, be a t-norm and a t-conorm. An element a ∈ (0, 1) is
said to be a 0-divisor of T if there exists some b ∈ (0, 1) such that T(a, b) = 0. Also, an element
a ∈ (0, 1) is called a 1-divisor of S if there exists some b ∈ (0, 1) such that S(a, b) = 1.

Definition 9. A t-norm T (respectively, a t-conorm S) is called strict if it is strictly increasing on
each variable on (0, 1]2 (respectively, [0, 1)2). In other words, for all x, y, z ∈ [0, 1] with x < y,
T(z, x) < T(z, y) if 0 < z (respectively, S(z, x) < S(z, y) if z < 1).
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3. Decompositions of Fuzzy Binary Relations

In the present manuscript, we study decompositions based on t-norms and t-conorms,
respectively, playing the crisp intersection and union roles. This approach motivates the
following definition used by Dutta [15] in his first article studying the fuzzy Arrovian model.
Recently, it has been rescued by Subramanian [33] in his study of the Arrovian model.

Definition 10. Let R, P and I be fuzzy binary relations on X (with P an asymmetric fuzzy binary
relation and I a symmetric binary relation). Let T (respectively, S) stand for a triangular norm
(respectively, conorm). We say that R strongly decomposes, with respect to (T, S), into (P, I), if
R = S(P, I) and T(P, I) = 0.

Even if the decomposition defined above is the natural generalization of the usual
crisp decomposition, it is not widespread in the literature. Indeed, many authors use
some weaker versions [3,5,6,15,16]. The following definition follows the same spirit but
disregards the role that any t-norm could play:

Definition 11. Let R be a fuzzy binary relation on a set X. Let S be a t-conorm. We say that R
weakly decomposes into (P, I) (with P an asymmetric fuzzy binary relation and I a symmetric
binary relation) if R = S(P, I) and if for every x, y ∈ X it holds true that if I(x, y) = 1, then
P(x, y) = 0.

We have two comments about the definitions above. First, notice that the weak
decomposition is more general than the stronger one. Moreover, they are not equivalent.
The following example proves it:

Example 1. Let X = {x, y} and let R be a fuzzy binary relation defined on X as follows: R(x, y) =
R(x, x) = R(y, y) = 1 and R(y, x) = 0.5. We define the symmetric relation I as I(x, y) = 0.5
and I(x, x) = I(y, y) = 1. If we define P as P(x, y) = 1 and 0 on the remaining cases, we can
check that R weakly decomposes into (P, I) with respect the t-conorm maximum Smax. However, R
does not strongly decomposes into (P, I) with respect to the conorm Smax and any t-norm T because
T(1, 0.5) = 0.5 6= 0.

The second observation is about the second condition in Definition 11. It has been
introduced after removing the t-norm from Definition 10 because we need decompositions
to be generalizations of the crisp one (Definition 3). It implies that crisp relations must
decompose into two crisp relations (P, I) and these must be unique. But, without this con-
dition, if X = {x, y} and a fuzzy binary relation R on X is defined as R(x, y) = R(y, x) =
R(x, x) = R(y, y) = 1, it decomposes to (P, I) with I(x, y) = I(x, x) = I(y, y) = 1 and
P(x, y) = 0.5 and 0 otherwise.

Finally, in a previous paper [23] the authors proved some necessary conditions for
these kinds of decompositions. We will include them here for the sake of completeness.

Proposition 2. Let S be a t-conorm. Let R be a fuzzy binary relation defined on X. Assume that R
can be expressed as R = S(P, I) (where I (respectively, P) is a symmetric (respectively, asymmetric)
fuzzy binary relation). Then, for every x, y ∈ X it holds that I(x, y) = min{R(x, y), R(y, x)}.

Proof. See the proof in [23] (Proposition 2).

Proposition 3. Let S be a t-conorm. Every fuzzy relation R on X can be expressed as R = S(P, I)
(where I (respectively, P) is a symmetric (respectively, asymmetric) fuzzy binary relation) if and
only if S is continuous in the first coordinate (with respect to the Euclidean topology on the unit
interval [0, 1]).
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Proof. It is straightforward to notice that the proof is in everything similar to that of [23]
(Proposition 3). That is why we omit it here.

The proof of Proposition3 in [23] gave us a method to obtain a candidate for the
asymmetric component P computed from R. In other words, if R decomposes, one of its
decompositions is the pair (P, I) provided by this method.

As Proposition 2 states, the I component is a minimum, whereas the candidate for the
P component is defined as P(x, y) = inf{t ∈ [0, 1] : S(t, I(x, y)) ≥ R(x, y)}.

To abbreviate that, in the sequel we use the notation P(x, y) = I(x, y)↘S R(x, y).

Remark 2. Notice that since S is commutative, continuity on one of its coordinates implies
continuity on both coordinates (considered separately). However, it does not imply the continuity for
a general symmetric real function. However, since S is nondecreasing, both conditions are equivalent
(see, e.g., [34] (Proposition 1)). Then, in Proposition 3, S being continuous in the first coordinate is
equivalent to S being continuous.

In spite of this fact, in this article we will specify over which component S must be continuous.
We proceed this way because the same results could be useful for the noncommutative operators we
have listed in Remark 1.

In the literature, there are similar results to that stated in Proposition 2 (see [3,5,6]). In
fact, even Fono and Andjiga [6] use a similar strategy to the one we use in Proposition 3.
However, the definitions of decompositions used in these works are more general than the
weak decomposition defined in the present manuscript. Their definition is so general that
they have to impose additional constraints. They end up studying regular decompositions,
and these are actually less general than Definition 11.

In addition, in contrast to the work of Fono and Andjiga [6], here we do not assume
a priori any continuity condition on S. Although they assume upper continuity in the
definition of its decomposition, we have seen using Proposition 3 above that the continuity
on the first component is a necessary condition for the existence of our decompositions. So,
the continuity condition over S is a consequence of S admitting decompositions, and it is
not imposed a priori.

In Section 4, we will characterize the existence and the uniqueness of strong decompo-
sitions, whereas in Section 5 we characterize them for weak decompositions.

Given a fuzzy binary relation R, we could study the conditions that should satisfy R in
order to decompose. However, in the Social Choice models [3,5,15,16] we usually impose
that all of the binary relations of a suitable set must admit a decomposition. For that reason,
we will start studying under which conditions all elements in BRX (the set of fuzzy binary
relations on X) decompose. Next, in Appendix A we will explore the decomposition on
subsets of BRX, mainly the subsets obtained by imposing some kind of transitivity and
connectedness to fuzzy binary relations.

4. Analysis and Structure of Strong Decompositions of Fuzzy Binary Relations

This section contains two main results. We characterize the existence and the unique-
ness of strong decompositions based upon the divisors of a t-norm T and a t-conorm S.
First, we start with some more specific (and preparatory) results, which will motivate the
general theorems to be proved next.

First, we focus on the case in which the used t-norm is the drastic t-norm TD (see its
definition in Example A1 in Appendix B). The following results prove that being decom-
posable with respect TD is a necessary condition for being decomposable with respect to
any other t-norm.

Proposition 4. Let R be a fuzzy binary relation on X. Let S be a t-conorm and T a t-norm. If
R strongly decomposes into (P, I) (with respect to S and T), then R decomposes into (P, I) with
respect to S and TD.
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Proof. It is straightforward if we use the following fact: every t-norm is bounded below by
the drastic t-norm.

Considering the result above, we characterize as a first step the existence of decompo-
sitions with respect TD.

Proposition 5. Let S be a t-conorm continuous in the first component. Any R ∈ BRX is strongly
decomposable with respect to S and TD if and only if every t ∈ (0, 1) is a 1-divisor (with respect
to S).

Proof. To prove the direct implication, let t ∈ (0, 1) and consider a fuzzy binary relation
R such that, for a pair of values x, y ∈ X, R(x, y) = 1 and R(y, x) = t. By hypothesis,
there exist P and I such that 1 = R(x, y) = S(P(x, y), I(x, y)) and P(x, y) 6= 1 because
TD(P(x, y), I(x, y)) = 0. Hence, t = I(x, y) is a 1-divisor.

To prove the converse implication, it is enough to see that the weak decomposi-
tion (P, I) proposed in the proof of Proposition 3 satisfies, for every x, y ∈ X, that
TD(P(x, y), I(x, y)) = 0. If we assume that TD(P(x, y), I(x, y)) 6= 0, then P(x, y) > 0,
I(x, y) > 0, and I(x, y) = 1 or P(x, y) = 1. If I(x, y) = 1, then R(x, y) = 1 and P(x, y) =
inf{t ∈ [0, 1] : S(t, 1) ≥ 1} = 0, but this contradicts the fact that P(x, y) > 0. Moreover,
if P(x, y) = 1 (and I(x, y) 6= 1), we state that R(x, y) = S(P(x, y), I(x, y)) = 1 and, since
I(x, y) ∈ (0, 1), I(x, y) is a 1-divisor. So, there is an s0 ∈ (0, 1) with S(s0, I(x, y)) = 1.
However, by the definition of P, we have that 1 = P(x, y) = inf{s ∈ [0, 1] : S(s, I(x, y) ≥
1} ≤ s0 < 1, and this is a contradiction.

The above proposition makes us think that the relation between the 0-divisors (re-
spectively, 1-divisors) of a t-norm T (respectively, of a t-conorm S) is the keystone in the
existence of strong decompositions.
The argument in the proof is based upon avoiding TD(P, I) being positive. Since I could
achieve any value (see Proposition 2), any of these values must have a 0-divisor.

The next step is the generalization of Proposition 5 to any t-norm. For that reason, we
state the following definition.

Definition 12. Let S (respectively, T) be a triangular conorm (respectively, a t-norm). Given any
w ∈ [0, 1], we define the 1-interval associated with w as D1

S(w) = {t ∈ [0, 1] : S(t, w) = 1}. (It is
straightforward to check that D1

S(w) and D0
T(w) are intervals because of the monotonicity of S and

T. Moreover, 1 ∈ D1
S(w) and 0 ∈ D0

T(w) are always satisfied.) Similarly, the 0-interval associated
with w is defined by D0

T(w) = {t ∈ [0, 1] : T(t, w) = 0}.

Proposition 6. Let S and T, respectively, be a t-conorm and a t-norm, and let X be a set. Every
fuzzy binary relation on X is strongly decomposable with respect to S and T if and only if for all
w ∈ [0, 1] it holds true that D1

S(w) ∩ D0
T(w) 6= ∅, and the triangular conorm S is continuous on

the first coordinate.

Proof. To prove the direct implication, for every w ∈ [0, 1] consider a fuzzy binary relation
R with R(x, y) = 1 and R(y, x) = w. By hypothesis, R strongly decomposes into a pair
(P, I). We have that 1 = R(x, y) = S(P(x, y), I(x, y)) and 0 = T(P(x, y), I(x, y)), and now
using that w = I(x, y) (Proposition 2), we obtain that P(x, y) ∈ D1

S(w) ∩ D0
T(w).

To prove the converse implication, we only need to see that the decomposition (P, I) ob-
tained in the proof of Proposition 3 satisfies T(P(x, y), I(x, y)) = 0 for all x, y ∈ X. To do so,
we can assume without loss of generality that I(x, y), P(x, y) > 0. First, when R(x, y) = 1,
we have that P(x, y) = inf{t ∈ [0, 1] : S(t, I(x, y)) ≥ 1} = inf D1

S(I(x, y)). In this situation,
we claim that P(x, y) = min D1

S(I(x, y)) because S is continuous on the first component.
Moreover, since P(x, y) is the minimum of D1

S(I(x, y)), and D1
S(I(x, y)) ∩ D0

T(I(x, y)) 6= ∅,
we conclude that P(x, y) ∈ D0

T(I(x, y)) and we see that T(P(x, y), I(x, y)) = 0. In addi-
tion, when R(x, y) < 1, we define R̄ as the fuzzy binary relation that coincides with R
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everywhere except on the pair (x, y), for which we define R̄(x, y) = 1. R̄ decomposes
into (P̄, I). It can be checked, using the definition, that P(x, y) ≤ P̄(x, y). Finally, notice
that we are now in the previous situation already analyzed, because R̄(x, y) = 1, and
0 = T(P̄(x, y), I(x, y)) ≥ T(P(x, y), I(x, y)).

Taking into account the previous proof, the condition of uniqueness is quite natural.
The set D1

S(I(x, y)) ∩ D0
T(I(x, y)) contains all the possible values for the asymmetric part

P(x, y). Hence, in order to achieve uniqueness, it is enough to request this set to have just a
single element.

Proposition 7. Every binary fuzzy relation on X is strongly decomposable with respect to S and
T, in a unique way, if and only if the t-conorm S is continuous in the first component and for all
w ∈ [0, 1] it holds true that |D1

S(w) ∩ D0
T(w)| = 1.

Proof. Suppose that there are w, s, t ∈ [0, 1] with s < t and such that s, t ∈ D1
S(w) ∩ D0

T(w).
We fix now a pair x, y ∈ X and define a binary relation R ∈ BX as R(y, x) = w and
R(a, b) = 1 if (a, b) 6= (y, x). Additionally, we define three binary relations I, P, P′ ∈ BX for
every a, b ∈ X as follows: I(a, b) = min{R(a, b), R(b, a)}, P(a, b) = P′(a, b) = R(a, b) ↘
I(a, b) if (a, b) 6= (x, y), P(x, y) = s and P′(x, y) = t. It remains to prove that R strongly
decomposes in (P, I) as well as (P′, I), and therefore the decomposition is not unique.

Using the arguments in the proof of Proposition 6 we only need to check that R(x, y) =
S(P(x, y), I(x, y)) = S(P′(x, y), I(x, y)) and 0 = T(P(x, y), I(x, y)) = T(P′(x, y), I(x, y)).
But these assertions are indeed true because 1 = S(s, w) = S(t, w) and 0 = T(t, w) =
T(t, w) by hypothesis.

Suppose that R strongly decomposes into (P, I) and (P′, I′). Proposition 2 guarantees
that I = I′, so there are x, y ∈ X such that P(x, y) 6= P′(x, y). Now, we define s = P(x, y),
t = P′(x, y) and w = I(x, y). To conclude, by the definition of a strong decomposition we
can guarantee now that s, t ∈ D1

S(w) ∩ D0
T(w).

The main problem that we face when dealing with strong decompositions is that the
conditions for their existence and uniqueness are too restrictive. In Appendix B, we can see
some examples for the most usual t-norms and t-conorms. For that reason, we will study
now a weaker version of a decomposition defined by only using a t-conorm.

Furthermore, another reason to proceed in that way is that the main literature, as far as
we know, uses this second type of decomposition, namely the so-called weak decomposition.

5. Weak Decompositions of Fuzzy Binary Relations

We can encounter, in the specialized literature, some pioneer introductions of decom-
positions similar to the weak ones considered here, as isolated proposals to derive two
binary relations from a single one generalizing the crisp decompositions. However, no
general framework discussing decompositions was proposed in those studies [1,4,15,16,35].
Richardson in [36] proposed a general framework, and it has been adopted by other authors,
such as Fono and Andjiga in [6] or Gibilisco et al. in [3]. The general framework introduced
by Richardson is a priori more general than Definition 11. However, in order to obtain
results, they request that all their decompositions satisfy a property that they call simplicity,
and then, because of having asked this extra property, our Definition 11 becomes more
general than theirs with that condition of “simplicity” added.

Proposition 8. Let S be a t-conorm and X a set. Every fuzzy relation R on X admits a weak
decomposition if and only if S is continuous in the first coordinate (with respect to the Euclidean
topology on the unit interval [0, 1]).

Proof. Notice that Proposition 3 guarantees the direct implication. For the converse im-
plication, we also use the decomposition (P, I) defined from R proposed in the proof of
Proposition 3. It only remains to show that such a pair is a weak decomposition. But
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this is indeed the case because, if I(x, y) = 1 (with x, y ∈ X), then R(x, y) = 1 and
P(x, y) = inf{t ∈ [0, 1] : S(t, I(x, y)) ≥ R(x, y)} = 0.

In the following example, we compute some weak decompositions for the main
t-conorms, using the formula from Proposition 3, namely PS = I ↘S R.

Example 2. Let R be a fuzzy binary relation on X. Let S be a t-conorm. Using the proof of
Proposition 3, we can compute a decomposition (PS, I) of R with respect to several well-known
t-conorms (Example A1 contains their definitions).

Pmax(x, y) =

{
R(x, y) if R(x, y) > R(y, x),
0 otherwise.

(1)

PSŁ(x, y) =

{
R(x, y)− R(y, x) if R(x, y) > R(y, x),
0 otherwise.

(2)

PSP(x, y) =

{ R(x,y)−R(y,x)
1−R(y,x) if R(x, y) > R(y, x),

0 otherwise.
(3)

and I(x, y) = min{R(x, y), R(y, x)} (for every x, y ∈ X). We point out that these decompositions
already appeared as suitable expressions in the previous literature, in this setting. For instance,
PSmax was considered in [15,35], PSŁ in [4,15] and PSP in [3].

The last proposition in this section characterizes the uniqueness of weak decomposi-
tions (provided that they exist).

Proposition 9. Let S be a t-conorm that is continuous in the first coordinate. Let R be a fuzzy
binary relation on X. R has a unique weak decomposition in terms of S if and only if S is strictly
increasing in the first coordinate. (Here, being strictly increasing has to be interpreted in the sense
of Definition 9. No t-conorm is strictly increasing on the whole domain [0, 1]2.)

Proof. Suppose that R decomposes into two distinct weak decompositions (P, I) and
(P′, I). We can suppose without a loss of generality that there exist x, y ∈ X such that
P(x, y) > P′(x, y). Also, I(x, y) 6= 1 because P(x, y) > 0. Hence, using the condition
of strict increasingness, we see that R(x, y) = S(P(x, y), I(x, y)) > S(P′(x, y), I(x, y)) =
R(x, y). Thus, we have obtained a contradiction, and, consequently, the decomposition
is unique.

If S is not strict, there are s, t, w ∈ (0, 1) with S(s, w) = S(t, w) and s 6= t. We can define
a binary relation R as R(x, y) = S(s, w), R(y, x) = w for some x, y ∈ X and R(a, b) = 1 at
any other pair (a, b). It can be checked that R weakly decompose into (P, I) and (P′, I)
defined as I(a, b) = min{R(a, b), R(b, a)} (for every a, b ∈ X) and P(x, y) = s, whereas
P′(x, y) = t and P′(a, b) = 0 at any other pair (a, b).

In the Appendix B, Table A1 furnishes information about decomposability, analyzing
which ones among the main t-conorms can decompose all fuzzy binary relations.

6. Applications of Decompositions of Fuzzy Binary Relations into Preference
Modeling under Uncertainty

In this section, we will apply the results of the previous sections about the decomposi-
tion of fuzzy binary relations to fuzzy Arrovian models.

In the literature, it is required to obtain a strict preference P and an indifference
preference I from a weak preference R. However, the most common tendency is to first
define a rule to obtain P and I and then study their properties [3,16,35]. Moreover, most
of the authors in the Arrovian literature have used the type of decompositions studied
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in Sections 4 and 5 to define such rules [3,5,6,15,37]. For instance, the probabilistic t-
conorm induces a unique decomposition (see Equation (3) in Example 2 and Table A1).
In the following pages, we will see that the decomposition generated by the probabilistic
t-conorm satisfies the desired properties in fuzzy Social Choice. However, other conorms
behave differently. Consider the following example:

Example 3. Consider the following t-conorm S defined as the ordinal sum of a Łukasiewicz t-
conorm (see [38] (Definition 3.68)).

S(x, y) =

{
min{0.5, x + y} if x, y ≤ 0.5,
max{x, y} otherwise.

Any fuzzy binary relation weakly decomposes with respect to S because it is continuous (see
Proposition 8). However, consider the binary relation R on X = {x, y}, defined as R(x, y) =
R(y, x) = 0.5 and R(x, x) = R(y, y) = 1. It decomposes into (P, I), where I(x, x) = I(y, y) = 1,
P(x, y) = I(x, y) = 0.5 and P(y, x) = 0. How could it be that, despite x and y playing the same
role in R, x is strictly preferred over y? This is one of the situations that are avoided implicitly in
fuzzy Arrovian models [3].

Therefore, we will first define what we expect (as Social Choice practitioners) from R, P,
I and the relationship among them and, straightaway, how strong and weak decompositions
can be used to obtain suitable decomposition rules.

With that purpose in mind, we use the concept of the preference structure (see, e.g., [39,40])
because its definition does not rely upon any concept related to decomposition rules. A
preference structure is a triplet (R, P, I) of fuzzy binary relations satisfying the properties
of Definition 13 below.

Definition 13 ([41] (Definition 2.15)). Given a set X, a fuzzy preference on X is a triplet (R, P, I)
of fuzzy binary relations on X that satisfies the following conditions:

(FP1) P(x, y) > 0 implies P(y, x) = 0, for all x, y ∈ X (P is asymmetric);
(FP2) I(x, y) = I(y, x), for all x, y ∈ X (I is symmetric);
(FP3) P(x, y) ≤ R(x, y) for every x, y ∈ X;
(FP4) R(x, y) > R(y, x) if and only if P(x, y) > 0, for every x, y ∈ X;
(FP5) If P(x, y) = 0, then R(x, y) = I(x, y), for all x, y ∈ X;
(FP6) If I(x, y) ≤ I(z, w) and P(x, y) ≤ P(z, w), then R(x, y) ≤ R(z, w) holds true for every

x, y, z, w ∈ X.

We call R the weak preference component, P the strict preference component and I the indifference
component.

Using this definition, we state a framework to study the decomposition rules. It is
equivalent to the standard definitions in several fuzzy Arrovian models [3,6,15]. Now, we
can use this framework to apply the decompositions studied in the previous sections to
decomposition rules. First, we need to define what we understand as a decomposition rule:

Definition 14. Let B be a family of fuzzy binary relations on a set X. A decomposition rule
on B is a map φ : B → BRX × BRX, such that for every R ∈ B, if φ(R) = (PR, IR), then
ΛR = (R, PR, IR) is a fuzzy preference in the sense of Definition 13.

Our goal in this section will be to study when the decompositions already introduced
through Sections 4 and 5 induce or are compatible with a decomposition rule, in the
following sense of the next Definition 15.

Definition 15. Let T be a t-norm, S a t-conorm and φ a decomposition rule on B ⊆ BRX :
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(i) We say that φ is (T, S)-strong (resp. S-weak) compatible if, for every R ∈ B, it holds true that
φ(R) is a strong (resp. weak) decomposition of R with respect to T and S (resp. S).

(ii) We say that φ is induced by (T, S) (resp S) if φ is (T, S)-strong (resp. S-weak) compatible
and for every R ∈ B it holds, in addition, that φ(R) is the unique decomposition of R, which
induces a preference. That is, if (P, I) is a decomposition of R and (R, P, I) is a preference,
then φ(R) = (P, I). In that case, we denote by φT,S (resp. φS) the induced decomposition rule.

Example 4. The decomposition rule φ1(R) = (P1
R, IR) defined in B = BRX as IR(x, y) =

min{R(x, y), R(y, x)} and P1
R(x, y) = min{0, 1

2 (R(x, y) − R(y, x))} is neither (T, S)-strong
nor S-weak compatible for any T and S: if R(x, y) = 1 and R(y, x) = 0, then R(x, y) 6=
S(P1

R(x, y), IR(x, y)).
Moreover, consider the decomposition rules φ2 = (PSŁ , IR) (see Example 2) and φ3 = (P′SŁ

, IR)

defined as P′SŁ R
(x, y) = 1 if 1 = R(x, y) > R(y, x) and P′SŁ

(x, y) = PSŁ(x, y) otherwise. They
are both SŁ-weak compatible, so neither of them are induced by SŁ. Finally, Proposition 11 proves
that φSmax is induced by Smax.

First, we will focus on the case (i) in the Definition 15 above. We will study which
t-norms and t-conorms admit decomposition rules compatible with them. Next, we will
focus on the t-norms and t-conorms that induce decomposition rules (case (ii)).

As in the previous sections, we will restrict our study to the case B = BRX, since
other domains could lead to different results.

Proposition 10. Let R be a fuzzy binary relation on X. Let S be a t-conorm and let T be a t-norm.
If (P, I) is a strong or a weak decomposition of R with respect to T and S or respect to S, then
the properties FP1, FP2, FP3, FP5 and FP6 and the direct implication in the statement FP4 of
Definition 13 hold true.

Moreover, the converse of FP4 is satisfied if for every t ∈ [0, 1) there exists a neighborhood of
0 in which S(·, t) is strictly increasing.

Proof. Conditions FP1 and FP2 are obtained from the definition of a decomposition. To
prove FP3, notice that R(x, y) = S(P(x, y), I(x, y)) ≥ S(P(x, y), 0) = P(x, y).

To prove FP5 notice that if P(x, y) = 0, then R(x, y) = S(P(x, y), I(x, y)) = S(0, I(x, y))
= I(x, y).

Property FP6 is a direct consequence of the monotonicity of S.
Finally, to prove the direct implication of FP4, observe that if R(x, y) > R(y, x), by

property FP6 it follows now that [I(x, y) > I(y, x)] ∨ [P(x, y) > P(y, x)] holds true. But,
since I is symmetric, so that I(x, y) = I(y, x), we obtain P(x, y) > P(y, x) ≥ 0.

Additionally, suppose that S satisfies the last property. If P(x, y) > 0, then P(y, x) =
0. Hence, we may now conclude that R(y, x) = S(0, I(y, x)) < S(P(x, y), I(x, y)) =
R(x, y).

In the following example, we can see a decomposition that satisfies all the properties
above but with the converse implication in FP4 and, consequently, does not give rise to a
fuzzy preference.

Example 5. Let R be a fuzzy binary relation defined on a set X. Consider the fuzzy binary relations
P and I on X defined as follows:

P(x, y) =


R(x, y) if R(x, y) > R(y, x),
R(x, y) if 1 > R(x, y) = R(y, x),
0 otherwise.

and I(x, y) = min{R(x, y), R(y, x)}. Notice that R weakly decomposes into (P, I) with respect to
Smax and this decomposition is not the same as the one arising in Example 2.
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The case of a weak decomposition with respect to Smax is paradigmatic in the literature,
and we will use it to motivate the main result in this section.

The decomposition (1) shown in Example 2 actually appeared early in the specialized
literature [35], usually as a suitable decomposition rule in several contexts. The example
above shows that it is not the unique weak decomposition with respect to Smax. However,
the following proposition proves that it is the unique decomposition that defines a fuzzy
preference. That is, Smax induces a decomposition rule.

Proposition 11. Let R be a fuzzy binary relation on a set X. There exists a unique decomposition
(P, I) of R with respect to the t-conorm Smax satisfying that (R, P, I) is a fuzzy preference.

Proof. Consider a fuzzy binary relation R. The maximum is a continuous t-conorm. By
Proposition 3, R is decomposable. Suppose that there are two different decompositions
(P, I) and (P′, I′) of R such that both (R, P, I) and (R, P′, I′) are fuzzy preferences. First, by
Proposition 2, I = I′ holds. If P 6= P′, we can assume, without a loss of generality, that
there are x, y ∈ X with P(x, y) > P′(x, y).

From the equality R(x, y) = max{P(x, y), I(x, y)} = max{P′(x, y), I(x, y)}, we obtain
that R(x, y) = I(x, y). Using that I(x, y) = min{R(x, y), R(y, x)} (Proposition 2), we
conclude that R(x, y) ≤ R(y, x). We have finally arrived at a contradiction because, using
FP4, we obtain that P(x, y) = 0.

Remark 3. In Proposition 10, we have proved that the property of S “for every t, having a
neighbourhood of 0 such that S(t, ·) is strictly increasing” implies FP4.

If we could find a property of S equivalent to FP4, then the characterization of decompositions
that are a preference would be completed. Unfortunately, Example 5 makes us think that such a
property does not exist.

Assuming the existence of such a property q, Smax may or may not satisfy q. If Smax satisfied it,
then all weak decompositions (with respect to Smax) should define a preference, but the decomposition
in Example 5 does not define a preference. Conversely, if case Smax satisfied q, then no weak
decomposition should define a preference, but, according to Proposition 11, this is not true.

Then, such a property q should not exist. We conclude that an equivalence to FP4 relies on
something more than some properties of t-conorms.

The following proposition generalizes the previous example to any t-conorm that may
be used in weak decompositions.

Proposition 12. Let S be a t-conorm continuous in the first coordinate. S induces a weak decompo-
sition rule if, and only if, for every w, t, s ∈ [0, 1] with t 6= s it holds true that, if S(t, w) = S(s, w),
then S(t, w) = w.

Proof. To prove the direct implication, suppose that there are w, s, t ∈ [0, 1] such that
S(t, w) = S(s, w) > w, and we will prove that there is an R ∈ BRX , which has at least two
decompositions that induce fuzzy preferences.

To see that, given a pair a, b ∈ X, define a fuzzy binary relation R satisfying R(a, b) =
S(t, w); R(b, a) = w and R(c, d) = 1 if (c, d) 6= (a, b) and also (c, d) 6= (b, a). Consider
now the three fuzzy binary relations I(x, y) = min{R(x, y), R(y, x)} for all x, y ∈ X,
P(x, y) = P′(x, y) = 0 if (x, y) 6= (a, b), P(a, b) = t and P′(a, b) = s.

Now, we can assert that (P, I) and (P′, I) are weak decompositions of R. Moreover,
(R, P, I) and (R, P′, I) are preferences because they are defined by means of a decomposition
and it is immediate to check that they indeed satisfy FP4. Therefore, S can not induce any
decomposition rule.

Concerning the converse implication, we may notice that the unique property of the
maximum used in the proof of Proposition 11 is just our hypothesis here. We could tran-
script the same proof after interchanging “From the equality R(x, y) = max{P(x, y), I(x, y)} =
max{P′(x, y), I(x, y)} we obtain that R(x, y) = I(x, y)” with “From the equality R(x, y) =
S(P(x, y), I(x, y)) = S(P′(x, y), I(x, y)) we obtain that R(x, y) = I(x, y)”.
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Remark 4. Notice that if S is strictly increasing in the first coordinate, S satisfies the hypothesis
of the Proposition 12, because if S(t, w) = S(s, w), then w = 1. This fact is consistent with
the combination of Propositions 9 and 10, which also guarantees the existence of the induced
decomposition rule φS.

7. Conclusions

We are faced with variable forms of uncertainty and indeterminacy in many areas of
life, which require reliable and effective treatment from the point of view of practice. All
of this raises active control technical problems, within which the use of fuzzy controllers
is now a natural possibility. Having in mind possible future research in order to cope
with these problems, first of all it is necessary to state a solid theoretical background. In
the present paper, we have intended to do so, around the notion of a fuzzy preference.
This concept, defined as a triplet that reminds us of the usual weak preference, strict
preference and indifference arising in the crisp setting, has been analyzed from the point
of view of the existence of decompositions in which the fuzzy weak preference generates,
in a way, the associated strict fuzzy preference as well as the fuzzy indifference. In the
crisp setting, the decompositions are always unique, whereas this is no longer true in the
fuzzy setting. Consequently, we have also analyzed questions related to the existence and
uniqueness of decompositions of fuzzy preferences, as shown in the main sections of the
present manuscript: Propositions 6–9 provide a novel characterization of the existence and
uniqueness of strong and weak decompositions, whereas Proposition 12 characterizes the
uniqueness of (weak) decomposition rules.

As already commented in Remark 1, in the present paper we have only used t-norms
and t-conorms to define the decomposition of a fuzzy binary relation. However, in the
proofs of some results achieved then, we did not use all of their properties. Therefore,
thinking of future lines for research, we could also consider, and consequently define, a
decomposition with respect to a more general category of operators. As we explained,
the decision of using here only t-norms and t-conorms is due to the fact that they are the
fuzzy generalizations of the classic intersection and union operators and, more importantly,
because we wanted to be coherent with the pre-existing literature that analyzes, studies
and uses decompositions in practice, paying special attention to the setting of Arrovian-like
models in fuzzy Social Choice. Needless to say, in forthcoming works we could address the
study of decompositions based upon other disparate operators.

We have been looking for a normative theoretical definition of a decomposition (at least
for the case of t-norms and t-conorms). In this sense, we have compared our approach and
the definitions we have launched with other ones encountered in the literature, showing
that ours are more general. In our opinion, this is a relevant achievement at this stage:
namely, with the definitions of a fuzzy decomposition that we have introduced, we provide
the researcher with a generalized theoretical framework that systematically includes, as
we have been discussing throughout the work, the (somewhat more restrictive) definitions
that had already been introduced in this literature. At least, this applies, in our opinion, to
decompositions associated with Arrovian-like models in the fuzzy setting.

Last but not least, in the introduction of the present article, we have exposed that,
in Social Choice, the sets of suitable preferences used to be restricted by transitivity and
connectedness properties. In future work, we plan to extend our study to the sets of
preferences restricted by these properties instead of BRX. The appendices contain a
preliminary analysis of these sets where we expose a possible resolution of the problem
by means of some figures. Based on our exploration, we hypothesize that when some
connectedness condition is imposed, the possibility of the existence of decomposition
rules increases.
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Appendix A. Decompositions in Restricted Domains

As we have discussed in the Introduction, in most problems related to preferences,
we require R to satisfy additional properties. Usually, they are some kind of transitivity
and connectedness.

So, instead of studying the existence of decompositions on BRX, we could study
them on the subsets defined by those transitivities and connectedness assumptions. In
this section, we will give some geometric ideas about the conditions of existence for the
decomposition in such domains, but we will not furnish any formal proof.

Consider BRX
T′ (resp. BRX

S′ ) the set of all T′-transitive (resp. S′-connected) binary
relations of BRX. (A fuzzy binary relation R is said T′-transitive if for every x, y, z ∈ X
the inequality R(x, z) ≥ T′(R(x, y), R(y, z) is satified. Moreover, it is said S′-connected if
for every x, y ∈ X S′(R(x, y), R(y, x)) = 1. See [3] (Chapter 3) or [23] for a more extended
exposition.) Notice that, a priori, the t-norm and the t-conorm defining the transitivity and
the connectedness and the ones defining the decomposition may or may not coincide. For
that reason, we use T′ and S′ to denote the ones corresponding to the transitivity and the
connectedness and T and S for the ones defining the decomposition.

First, if φ is a decomposition rule on BRX , then its restriction to one of these sets will
also be a decomposition rule.

However, could it be the case that, for example, there is no decomposition rule φ

(T, S)-strong compatible on BRX but there are such rules on BRX
T′ or on BRX

S′? (We can
make analogous suggestions about S-compatibility and decomposition rules induced by
(T, S) or S.)

Before we go further on the possible answer to these questions, we need to introduce
some terminology. First, as we have noticed before, the existence of decompositions and
their uniqueness of a binary relation R depend only on the comparison between the values
of R(x, y) and R(y, x) for every x, y ∈ X. We can illustrate this idea using the sets DS and
DT,S defined below (see some examples in Figure A1):

DS = {(a, b) ∈ [0, 1]2 :[a ≥ b⇒ ∃x ∈ [0, 1] a = S(x, b) and b = 1⇒ x = 0]

and [b ≥ a⇒ ∃x ∈ [0, 1] b = S(x, a) and a = 1⇒ x = 0]}

DT,S = {(a, b) ∈ [0, 1]2 :[a ≥ b⇒ ∃x ∈ [0, 1]; a = S(x, b) and 0 = T(x, b)]
and [b ≥ a⇒ ∃x ∈ [0, 1]; b = S(x, a) and 0 = T(x, a)]}

The points a, b ∈ [0, 1]2 are the combinations of the values for R(x, y) and R(y, x) in
which a decomposition is possible. So, we can state that a binary relation R is strongly
decomposable with respect to T and S (resp. weakly decomposable with respect to S)
if and only if, for every x, y ∈ X (R(x, y), R(y, x)) ∈ DT,S (resp. DS). Moreover, since
BRX imposes no restrictions over the values, we can conclude that all binary relations are
strongly (resp. weakly) decomposable if DT,S = [0, 1]2 (resp. if DS = [0, 1]2).

Now, we can state that in BRT′
X and apply the same results we have obtained for BRX .

First, T′-transitivity does not impose restrictions on the possible relations between R(x, y)
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and R(y, x). In other words, given (a, b) ∈ [0, 1]2, there is a T′-transitive binary relation
R with R(x, y) = a and R(y, x) = b. So, we can conclude that all binary relations in BRX

decompose if, and only if, all binary relations in BRX
T′ decompose.

1

1

R(x, y)

R(y, x)

DSD

1

1

R(x, y)

R(y, x)

DTP ,SŁ

11
2

3
4

1

1
2

3
4

g
R(x, y)

R(y, x)

DTŁ,SP

Figure A1. Representations of DSD , DTP ,SŁ and DTŁ,SP . Since none of these sets is the unit square
[0, 1]2, these combinations of t-norms and t-conorms do not allow decompositions (compare with
Table A1).

However, the restrictions imposed by connectedness are different. In this case, S′-
completeness imposes that S′(R(x, y), R(y, x)) = 1. Since now some combinations of
values will not be feasible, we conclude that all binary relations on BRX

S′ will decompose
if, and only if, {(a, b) ∈ [0, 1]2 : S′(a, b) = 1} ⊆ DS (resp. if, and only if, {(a, b) ∈ [0, 1]2 :
S′(a, b) = 1} ⊆ DT,S). We can see an example in Figure A2.

1

1

R(x, y)

R(y, x)

DSD

{(a, b) ∈ [0, 1]2 : Smax(a, b) = 1}

Figure A2. All binary relations in BRX
Smax weakly decompose with respect to SD because {(a, b) ∈

[0, 1]2 : Smax(a, b) = 1} ⊆ DSD . However, not every binary relation in BRX weakly decomposes with
respect to SD.

Appendix B. Some Examples Using the Main t-Norms and t-Conorms

In this section, we have included the definitions of the most used t-norms and t-
conorms [38]. We have also included in some tables which combinations allow decomposi-
tions and which ones are compatible and induce decomposition rules.

Example A1. Here, we give a brief account of the most widespread t-norms and their respective
dual t-conorms:

The minimum Tmin and the maximum Smax are as follows:

Tmin(x, y) = min{x, y}, Smax(x, y) = max{x, y}.

The product TP and the probabilistic sum SP are as follows:

TP(x, y) = xy, SP(x, y) = x + y− xy.

The Łukasiewicz t-norm TŁ and the Łukasiewicz t-conorm SŁ are as follows:

TŁ(x, y) = max{0, x + y− 1}, SŁ(x, y) = min{1, x + y}.

The drastic product TD and drastic sum SD are as follows:

TD(x, y) =


x if y = 1,
y if x = 1,
0 otherwise.

SD(x, y) =


x if y = 0,
y if x = 0,
1 otherwise.
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And the associated divisor intervals are as follows:

D1
SD
(w) =


{1} if w = 0,
(0, 1] if w /∈ {0, 1},
[0, 1] if w = 1.

D0
TD
(w) =


{0} if w = 1,
[0, 1) if w /∈ {0, 1},
[0, 1] if w = 0.

D1
max(w) = D1

SP
(w) =

{
{1} if w 6= 1,
[0, 1] if w = 1.

D0
min(w) = D0

TP
(w) =

{
{0} if w 6= 0,
[0, 1] if w = 0.

D1
SŁ
(w) = [1− w, 1], D0

TŁ
(w) = [0, 1− w].

Example A2. The family (TSS
λ )λ∈[−∞,∞] of Schweizer–Sklar t-norms is defined as follows:

TSS
λ (x, y) =


min{x, y} if λ = −∞,
TP(x, y) if λ = 0,
TD(x, y) if λ = ∞,

(max{xλ + yλ − 1, 0}) 1
λ otherwise.

And the respective family (SSS
λ )λ∈[−∞,∞] of t-conorms is defined as follows:

SSS
λ (x, y) =


max{x, y} if λ = −∞,
SP(x, y) if λ = 0,
SD(x, y) if λ = ∞,

1−
(
max{(1− x)λ + (1− y)λ − 1, 0}

) 1
λ otherwise.

For λ 6= −∞, 0, ∞ we have that

D0
TSS

λ
(w) =


{0} if λ < 0 and w 6= 0,
[0, 1] if λ < 0 and w = 0,

[0, (1− wλ)
1
λ ] otherwise.

D1
SSS

λ
(w) =


{1} if λ < 0 and w 6= 1,
[0, 1] if λ < 0 and w = 1,

[1− (1− (1− w)λ)
1
λ , 1] otherwise.

Example A3. The family (TH
λ )λ∈[0,∞] of Hamacher t-norms is defined as follows:

TH
λ (x, y) =


TD(x, y) if λ = ∞,
0 if λ = x = y = 0,

xy
λ+(1−λ)(x+y−xy) otherwise.

And the respective family (SH
λ )λ∈[0,∞] of t-conorms is defined as follows:

SH
λ (x, y) =


SD(x, y) if λ = ∞,
1 if λ = x = y = 0,
x+y−xy−(1−λ)xy

1−(1−λ)xy otherwise.

If λ 6= ∞, we have that D0
TH

λ

(w) = D0
min(w) and D1

SH
λ

(w) = D1
max(w).

We have depicted the existence and uniqueness of strong and weak decompositions
in BRX for these t-norms and t-conorms in Table A1. For that purpose, we have applied
Propositions 6–9.
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In Table A2, we have applied Propositions 10–12 to the same t-norms and t-conorms,
obtaining the corresponding results for decomposition rules.

Table A1. Decompositions for main t-norms and t-conorms. The symbol @ means that the corre-
sponding decomposition does not exist. ∃ means that it exists, but it is not unique, and ∃! means that
a unique decomposition exists. Moreover, the characterization of the existence and the uniqueness of
the strong decomposition of Schweizer–Skalar t-norms and t-conorms corresponds to the combination
(TSS

λ , SSS
λ ) with the same parameter λ.

T
S Drastic Maximum Łukasiewicz Probabilistic Schweizer–Sklar Hamacher

Drastic @ @ ∃ @
λ ≤ 0⇒ @

0 < λ < +∞⇒ ∃
λ = +∞⇒ @

@

Minimum @ @ @ @ @ @

Łukasievicz @ @ ∃! @

λ ≤ 0⇒ @
0 < λ < 1⇒ ∃

λ = 1⇒ ∃!
λ > 1⇒ @

@

Product @ @ @ @ @ @

Schweizer–Sklar @ @ λ < 1⇒ @
λ = 1⇒ ∃!
λ > 1⇒ ∃

@

λ < 1⇒ @
λ = 1⇒ ∃!
λ > 1⇒ ∃

λ = +∞⇒ @

@

Hamacher @ @ @ @ @ @

Weak
decomposition @ ∃ ∃ ∃!

λ = −∞⇒ ∃
−∞ < λ ≤ 0⇒ ∃!
0 < λ < +∞⇒ ∃

λ = +∞⇒ @

λ < +∞⇒ ∃!
λ = +∞⇒ @

Table A2. A representation of the relation between decomposition rules and decompositions. The
symbol @ means that there is no decomposition rule compatible with such a decomposition. ∃CR
means that there is a compatible decomposition rule with such decompositions. IDR means that the
decomposition induces a decomposition rule. Finally, ? means that the results in this article do not
shed some light on the case.

T
S Drastic Maximum Łukasiewicz Probabilistic Schweizer–Sklar Hamacher

Drastic @ @ ∃CR @
λ ≤ 0⇒ @

0 < λ < +∞⇒ ?
λ = +∞⇒ @

@

Minimum @ @ @ @ @ @

Łukasievicz @ @ IDR @

λ ≤ 0⇒ @
0 < λ < 1⇒ ?

λ = 1⇒ ?
λ > 1⇒ ?

@

Product @ @ @ @ @ @

Schweizer–Sklar @ @ λ < 1⇒ @
λ = 1⇒ IRD
λ > 1⇒ ∃CR

@

λ < 1⇒ @
λ = 1⇒ ?
λ > 1⇒ ?

λ = +∞⇒ @

@

Hamacher @ @ @ @ @ @

Weak
decomposition @ IDR ∃CR IDR

λ = −∞⇒ IDR
−∞ < λ ≤ 0⇒ @
0 < λ < +∞⇒ ?

λ = +∞⇒ @

λ < +∞⇒ IRD
λ = +∞⇒ @
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