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and uniqueness returns for semilinear fractional differential inclusions and equations for multiterm
problems by using some notions and properties on set-valued maps and give some examples to
explain our main results. We explore and use in this paper the fundamental properties of set-valued
maps, which are needed for the study of differential inclusions. It began only in the mid-1900s, when
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1. Introduction

Modern mathematical theories are devoted to the search for new tools for studying
various real processes. On the one hand, this is caused by the sufficient completeness
and completeness of the study of known mathematical models and, on the other hand,
by new tasks and new capabilities of information technologies. The theory of fractional
calculus, which has been actively developing in recent decades, has made it possible to
discover new properties of systems that describe complex physical processes: processes
with memory, processes in fractal environments, and many more. Many works are devoted
to the use of fractional calculus for various applications (see [1–3] and the references therein).
Theoretical aspects of fractional integrodifferential calculus were studied in the articles [4–6].
Fractional calculus is considered one of the most important areas of mathematics, which
plays an important role in applications in many fields of science such as physics, biology,
engineering, and others. Using different mathematical analysis techniques, many research
papers were published on integral differential equations, as well as fractional differential
equations (see [7–14]). For more explanations and notions related to the definitions and
various issues of fractional integrals and derivatives, please see [15–17].

The study of functional differential inclusions dates back to the works of [18], in which
conditions for the existence of solutions were found for various classes of initial and boundary
value problems for inclusions of retarded types of integer and fractional orders of derivatives.

Inclusions and fractional differential equations generalize inclusions and ordinary
differential equations to non-integer random orders. It always appears in various fields such
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as physics, chemistry, biophysics, biology, engineering, control theory, and others. Recently,
many works have been published on inclusions and fractional differential equations by
applying the fixed-point theorem to prove some existence and singularity properties. Many
articles have been published in this direction (see, for instance, [19–26]). In [27], the authors
proposed a nonlinear fractional differential equation of the type

cDvw(t) = f (t, w(t), cDηw(t)), for a.e. 0 ≤ t ≤ T,

αw(0)− βw′(0) =
∫ T

0 g(r, w)dr,
γw(T)− δw′(T) =

∫ T
0 h(r, w)dr,

(1)

The existence and uniqueness results were discussed with Caputo fractional deriva-
tives by using appropriate standard fixed-point theorems. For fractional differential in-
clusions, we mention the work by [28], where a boundary value problem of fractional
differential inclusions with fractional separated boundary conditions is given

cDvw(t) ∈ F (t, w(t)), for a.e. 0 ≤ t ≤ 1, 1 < v < 2,

α1w(0) + βc
1Dκw(0) = γ1,

α2w(1) + βc
2Dκw(1) = γ2.

(2)

Owing to the standard contraction mapping theory, the question of existence and
uniqueness are obtained. Next, it is improved by Cernea [29], where a multipoint boundary
value problem for a fractional-order differential inclusion with the standard Riemann–
Liouville fractional derivative

Dvw(t) ∈ F (t, w(t), w′(t)), for a.e. 0 ≤ t ≤ 1, 1 < v < 3,

w(0) = w′(0) = 0,

w(1)−
m
∑

i=1
aiw(yi) = γ.

(3)

was studied, and the existence of a unique solution was obtained. Motivated by the papers
cited above and other related papers, in this paper, we extend all previous results and
consider a multiterm fractional boundary value problem with the generalized Riemann–
Liouville fractional derivative. To begin with, we consider the existence and uniqueness of
a solution for the following problem:

Dv
0+w(t) ∈ F (t, w(t)), for a.e. 0 ≤ t ≤ 1, 1 < v < 2,

w(0) = 0,
w(1) = pIµ1

0+h1(ξ, w(ξ)) + qIµ2
0+h2(η, w(η)).

(4)

Moreover, we will dispute the resolution of some results of existence to the following
semilinear fractional differential equations for the boundary value problem:

Dv
0+w(t) = f (t, w(t)), 1 < v < 2, 0 ≤ t ≤ 1,

w(0) = 0,

w(1) = pIµ1
0+h1(ξ, w(ξ)) + qIµ2

0+h2(η, w(η)),

(5)

where 1 < v < 2, p, q ≥ 0, µ1, µ2 ≥ 1, 0 < ξ, η ≤ 1, f , hj : [0, 1]×R→ R is a continuous
function for 1 ≤ j ≤ 2, and F : [0, 1]×R→ P(R) is a multivalued function.
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Conditions for the existence of solutions to Problem (4) are indicated in Theorem 1
in Section 3.1. In Section 3.2, the question of the existence of solutions for (5) is studied
and stated in Theorem 3. We also introduce and give relevance ti our subject in Section 1
and then state preliminary results and definition in Section 2. This paper is finished with a
discussion and conclusion where textual explanations are clear enough.

2. Notions and Preliminaries

We recall here useful tools and materials that will be used later. Let v > 0 and
l ∈ L1([0, 1];R). The integral

Iv
0+ l(t) =

1
Γ(v)

∫ t

0
(t− ζ)v−1l(ζ)dζ,

is the Riemann–Liouville integral of order v.
If n− 1 ≤ v < n, then the derivative of Riemann–Liouville to a function l : [0, 1]→ R is

Dv
0+ l(t) =

1
Γ(n−v)

( d
dt

)n ∫ t

0
(t− ζ)n−v−1l(ζ)dζ,

=
( d

dt

)n
In−v
0+ l(t).

If n = [v] + 1, [v] denotes the greatest integer number less than v.

Lemma 1 ([15]). Let u ∈ L1(0, 1), δ > v > 0. We have,

(i) Iδ
0+ Iv

0+w(t) = Iδ+v
0+ w(t),

(ii) Dv
0+ Iδ

0+w(t) = Iδ−v
0+ w(t),

(iii) Dδ
0+ Iδ

0+w(t) = w(t).

Lemma 2 ([15]). Let v > 0 and ν > 0, then

(i) Dv
0+ tν−1 =

{ Γ(ν)
Γ(ν−v)

tν−v−1,

0, i f ν−v ∈ Z−

(ii) Iv
0+ tν = Γ(ν+1)

Γ(ν+v+1) tν+v.

Lemma 3. Let λ > 0, n = [λ] + 1. We have

Dλ
0+ ϕ(t) = 0,

equivalent to

ϕ(t) =
n

∑
j=1

ajtλ−j.

Remark 1. For each l ∈ L1([0, 1],R) the solution of

Dv
0+φ(t) = l(t),

is given by

φ(t) = Iv
0+ l(t) +

n

∑
j=1

cjtv−j,

where n = [v] + 1.
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We define some initial symbols and concepts that will be used in this research. Let
(X, ‖.‖) be a normed space. We note by

P(X) = {Y ⊆ X : Y 6= ∅}

Pb(X) = {Y ∈ P(X) : Y , bounded }

Pcl(X) = {Y ∈ P(X) : Y closed }

Pcp,c(X) = {Y ∈ P(X) : Y compact, convex}

Pcp(X) = {Y ∈ P(X) : Y compact }.

Let A, B ∈ Pcl(X). The Pompieu–Hausdorff distance of A, B is defined as

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}.

A multivalued
F : X→ P(X),

is convex (closed) valued if F (x) is convex (closed) for all x ∈ X. F is called upper
semicontinuous on X if, for every open set O of X containing F (x0), there exists an open
neighborhood U0 of x0 such that F (U0) ⊆ O. Equivalently, F is upper semicontinuous if
the set

{x ∈ X : F(x) ⊆ O},

is open for any open set O of X.
A set-valued map

f : [0, 1]→ P(X),

is measurable if, for every x ∈ X, the function

t 7→ d(x, f (t)) = inf{d(x, y) : y ∈ f (t)},

is a measurable function.
Let X,Y be two normed spaces and l : X → Y a set-valued upper semicontinuous.

Then, for all y0 ∈ X, ε > 0, there are δ > 0 with

l(y) ⊆ l(y0) + B(0, ε) for each y ∈ B(y0, δ).

Definition 1 ([30]). A set-valued map

F : [0, 1]×R→ P(R),

is Carathéodory if

(1) t 7→ F (t, x) is measurable for each x ∈ R.
(2) x → F (t, x) is upper semicontinuous for a.e. 0 ≤ t ≤ 1.

Let X, Y be two normed spaces and L : X → Y a set-valued map. The set-valued L is
Lipschitzean if there are r > 0 with

L(w) ⊆ L(v) + B(0, r‖w− v‖) for each w, v ∈ X.

If the constant r < 1, we say that the set-valued L is contraction.

Proposition 1 ([30]). Let W ⊂ L1([0, 1],R) such that

(i) W(t) are relatively compact for a.e 0 ≤ t ≤ 1.
(ii) There exists l ∈ L1([0, 1],R) with v(t) ≤ l(t) ∀v ∈W. and 0 ≤ t ≤ 1.
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Then, W is weakly compact in L1([0, 1];R).

Proposition 2 ([30]). Let
L : [0, 1]× X → Pcp(Y),

be a Carathéodory multifunction and l : [0, 1]→ X a measurable function. So, the multifunction

ζ ∈ [0, 1] 7→ L(ζ, l(ζ)),

is measurable.

Let
F : [0, 1]×Rn → Pcp(R),

be integrable bounded if there exists ϕ ∈ L1(R); ∀v ∈ SF ,w̃, and we have

|v(t)| ≤ ϕ(t) for almost 0 ≤ t ≤ 1,

where
SG,w̃ = {w ∈ L1([0, 1],R); w(t) ∈ F (t, w̃(t)) for a.e 0 ≤ t ≤ 1}.

Let

X = {w ∈ L2([0, 1],R); Dβ
0+w ∈ L2([0, 1],R)} with 0 < β < v− 1.

The space (X, ‖.‖X) is Banach reflexive space [31], where

‖w‖X = ‖w‖2 + ‖D
β
0+w‖2.

3. Contents and Main Results
3.1. Results of Existence and Uniqueness in Sobolev Fractional Space

Definition 2. A function w is a solution of (4) if there exists a function v ∈ L1([0, 1],R); v(t) ∈
F (t, w(t)) a.e., 0 ≤ t ≤ 1 , where

Dv
0+w(t) = v(t), 1 < v < 2,

w(0) = 0,

w(1) = pIµ1
0+h1(ξ, w(ξ)) + qIµ2

0+h2(η, w(η)).

Lemma 4. For a given y ∈ L1([0, 1],R), a function w is a solution to
Dv

0+w(t) = y(t), 1 < v < 2, for a.e. 0 ≤ t ≤ 1,

w(0) = 0,
w(1) = pIµ1

0+h1(ξ, w(ξ)) + qIµ2
0+h2(η, w(η)),

(6)

if and only if

w(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1y(ζ)dζ −

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1y(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, w(ζ))dζ − (7)

q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, w(ζ))dζ

]
tv−1.



Axioms 2023, 12, 1063 6 of 17

Proof. Assuming that w satisfies (6), from Remark 1, we obtain

w(t) = Iv
0+y(t)− c1tv−1 − c2tv−2, (8)

where c1, c2 ∈ R.
We obtain from the first condition c2 = 0. Also, we obtain from the second condition

w(1) = Iv
0+y(1)− c1 = pIµ1

0+h1(ξ, w(ξ)) + qIµ2
0+h2(η, w(η)).

This means that

c1 =
1

Γ(v)

∫ 1

0
(1− ζ)v−1y(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, w(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, w(ζ))dζ. (9)

We replace the value of c1 with the value obtained in (9). We obtain the integral equation (7).
Conversely, if w satisfies (7) by Lemmas 1 and 2, we obtain Dv

0+w(t) = y(t).
By simple calculation, we obtain

w(1) = pIµ1
0+h1(ξ, w(ξ)) + qIµ2

0+h2(η, w(η)),

and by (8), we have w(0) = 0.

Now, we study the existence of the solution for (4)

Theorem 1. We assume that

(D1) F : [0, 1]×R → Pcp(R) is a Carathéodory set-valued map and integrable bounded with
φ ∈ C([0, 1],R).

(D2) There exists C1, C2 > 0 such that

|hj(t, x)− hj(t, y)| ≤ Cj|x− y|,

and
hj(t, 0) = 0,

for 0 ≤ t ≤ 1 and j ∈ {1, 2}.

(D3)
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)
< 1.

So, Problem (4) has a solution in X.

Proof. For each measurable function u, the set SF ,u is nonempty.
We use the iterative method. Let (wn) be a sequence of measurable function with

w0 ∈ X such that

wn+1(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1vn(ζ)dζ −

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1vn(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, zn(ζ))dζ (10)

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wn(ζ))dζ

]
tv−1,

with vn ∈ SF,wn for each n ∈ N.
Step 1 ( wn ∈ X).
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We prove by recurrence, since w integrable bounded, then there exists a function
φ ∈ L1([0, 1],R) with

vn(t) ≤ φ(t) a.e 0 ≤ t ≤ 1.

Then, w0 ∈ X, and if wn ∈ X, we obtain

|wn+1(t)| ≤
2‖φ‖1

Γ(v)
+

C1 pξµ1−1

Γ(µ1)

∫ ξ

0
|wn(ζ)|dζ +

C2qηµ2−1

Γ(µ2)

∫ η

0
|wn(ζ)|dζ,

hence wn+1 ∈ L2([0, 1],R) and

Dβ
0+wn+1(t) =

1
Γ(v− β)

∫ t

0
(t− ζ)v−β−1vn(ζ)dζ

− Γ(v)

Γ(v− β)

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1vn(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − τ)µ1−1h1(ζ, wn(ζ))dζ −

q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wn(ζ))dζ

]
tv−β−1,

that means

|Dβ
0+wn+1(t)| ≤

2‖vn‖1

Γ(v− β)
+

Γ(v)

Γ(v− β)

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
‖wn‖2,

hence Dβ
0+wn+1 ∈ L2([0, 1],R).

Then, for all n ∈ N the sequence (wn) belongs in the space X.
Step 2 ((wn) bounded in X).
Let n ≥ 1 and 0 ≤ t ≤ 1, then

|wn+1(t)| ≤
2

Γ(v + 1)

∫ 1

0
|vn(ζ)|dζ +

(
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
‖wn‖2,

and by simple calculation, we have

|wn+1(t)|2 ≤
(

2‖φ‖1

Γ(v + 1)

n

∑
j=0

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)j

+
(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)n+1‖w0‖2

)2

.

Finally, we obtain

‖wn+1‖2 ≤ 2‖φ‖1

Γ(v + 1)

n

∑
j=0

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)j

+
(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)n+1
‖w0‖2, (11)
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i.e., the sequence (wn) is bounded in L2([0, 1];R), and

Dβ
0+wn+1(t) =

1
Γ(v− β)

∫ t

0
(t− ζ)v−β−1vn(ζ)dζ

− Γ(v)

Γ(v− β)

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1vn(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, wn(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wn(ζ))dζ

]
tv−β−1.

So,

|Dβ
0+wn+1(t)|2 ≤

(
2‖vn‖1

Γ(v− β)
+

Γ(v)

Γ(v− β)

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
‖wn‖2

)2

.

Since (wn) is bounded in L2([0, 1];R) and F integrable bounded, it is clear that there
exists γ > 0 with

‖Dβ
0+wn‖2 ≤ γ for each n ≥ 1. (12)

From (11) and (12) we conclude that the sequence (wn) is bounded in X.
Step 3 (Passage to the limit).
Since (wn) is bounded in X and X is reflexive Banach space, then the subsequence

(wnk ) converges weakly to an element in X noted by w̄. Now, we show that w̄ is a solution
to Problem (4).

Let (vnk ) be a sequence in L1([0, 1],R) with

vnk (t) ∈ F (t, wnk (t)) a.e. 0 ≤ t ≤ 1.

By Proposition 1 the sequence (vnk ) has a subsequence converge weakly to v̄ in
L1([0, 1],R).
The sequence wnk (t) is bounded in R, and it has a subsequence noted by wnk (t) that
converges to w(t) and w(t) = w̄(t) for each 0 ≤ t ≤ 1.

The sequence (vnk (t)) is bounded in R (because φ is bounded), and it has a subse-
quence noted by vnk (t) converge to w(t) and w(t) = v̄(t).

The upper semicontinuous of F dictates that

v̄(t) ∈ F (t, w̄(t)) a.e. 0 ≤ t ≤ 1.

Passing to the limit of Equation (10), we obtain

w̄(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1v̄(ζ)dζ −

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1v̄(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, w̄(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, w̄(ζ))dζ

]
tv−1,

which means w̄ is a solution to Problem (4), and w̄ ∈ X.
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Example 1. We consider the fractional problem

D1.9
0+ w(t) ∈ F (t, w(t)),

w(0) = 0,

w(1) =
4

Γ(4)

∫ 1

0
s(1− ζ)3w(ζ)dζ,

(13)

where

F : (t, x) ∈ [0, 1]×R 7→
[
|x sin t|

2
;

t|x|
2

+ arctan t
]
∈ P(R).

In this problem, we have

(i) The set-valued F is Carathéodory set-valued, and F (t, x) is a nonempty and compact set in
R.

(ii) h1(t, x) = tx and h2(t, x) = 0.
(iii) v = 1.9, p = µ1 = 4, q = 0 and C1 = 1.

Since
C1 pξµ1−1

vΓ(µ1)
+

C2qηµ2−1

vΓ(µ2)
< 1.

Consequently, by Theorem 1, the considered (13) admits a solution.

Remark 2. If the function φ is not continuous functions, but φ is measurable and bounded on
[0, 1], then the result of Theorem 1 is still valid.

Theorem 2. Let the conditions below hold

(D1∗) F : [0, 1]×R→ Pcp(R) is integrable bounded with φ ∈ C([0, 1],R) with

– The multivalued map F (t, .) is L-Lipschitzean.
– The multivalued map F (., x) is measurable for each x ∈ R.

(D2∗) There exists C1, C2 > 0 with

|hj(t, x)− hj(t, y)| ≤ Cj|x− y|;

hj(t, 0) = 0,

for 0 ≤ t ≤ 1 and j ∈ {1, 2}.
(D3∗) 2L

Γ(v)
+ C1 pξµ1−1

Γ(µ1)
+ C2qηµ2−1

Γ(µ2)
< 1.

So, (4) has one solution in X.

Proof. From Theorem 1, (4) has a solution. We prove now it is unique.
Let w1 and w2 be two solutions for Problem (4), so ∃v1 ∈ SF ,w1 , v2 ∈ SF ,w2 with

wj(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1vj(ζ)dζ −

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1vj(ζ)dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, wj(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wj(ζ))dζ

]
tv−1,
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for 1 ≤ j ≤ 2, then

|w2(t)− w1(t)| ≤
2L

Γ(v)

∫ 1

0
|w2(ζ)− w1(ζ)|dζ

+

(
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

) ∫ 1

0
|w2(ζ)− w1(ζ)|dζ.

After that,

‖w2 − w1‖2 ≤
(

2L
Γ(v)

+
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
‖w2 − w1‖2,

while

2L
Γ(v)

+
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)
< 1,

then w1 = w2.

Example 2. Let us consider the problem

D1.9
0+ w(t) = t + 1.9 arctan(w(t))

2 ,

w(0) = 0,

w(1) =
4

Γ(4)

∫ 1

0
τ(1− τ)3w(τ)dζ,

(14)

where F (t, x) = {t + arctan(x)
2 }.

The set-valued F is 1.9
2 -Lipschitz.

In this problem, we have

(i) h1(t, x) = 1.9tx and h2(t, x) = 0.
(ii) v = 1.9, p = µ1 = 4, q = 0.
(iii) C1 = 1.9.

Since
2L

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)
≈ 0.8981 < 1.

Consequently, from Theorem, 2 the considered (14) has a unique solution.

3.2. Results of Existence for Fractional Differential Equation

Lemma 5. w is a solution to
Dv

0+w(t) = f (t, w(t)), 1 < v < 2, 0 ≤ t ≤ 1,
w(0) = 0,
w(1) = pIµ1

0+h1(ξ, w(ξ)) + qIµ2
0+h2(η, w(η)),

(15)
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if and only if

w(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1 f (ζ, w(ζ))dζ

−
[

1
Γ(v)

∫ 1

0
(1− ζ)v−1 f (ζ, w(ζ))dζ (16)

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, w(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, w(ζ))dζ

]
tv−1.

Proof. Assuming that w satisfies (15), from Remark 1, we have

w(t) = Iv
0+ f (t, w(t))− c1tv−1 − c2tv−2,

where c1, c2 ∈ R.
In the first condition, we have c2 = 0, and from the second condition, we obtain

w(1) = Iv
0+ f (1, w(1))− c1 = pIµ1

0+h1(ξ, w(ξ)) + qIµ2
0+h2(η, w(η)).

This means that

c1 =
1

Γ(v)

∫ 1

0
(1− ζ)v−1 f (ζ, w(ζ))dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, w(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − τ)µ2−1h2(ζ, w(ζ))dζ.

We replace the value of c1 with the value obtained in (17). We obtain the integral Equation (16)
Conversely, if w satisfies (16) by Lemmas 1 and 2, we obtain

Dv
0+w(t) = f (t, w(t)).

By simple calculation, we find

w(1) = pIµ1
0+h1(ξ, w(ξ)) + qIµ2

0+h2(η, w(η)),

and then w(0) = 0.

Theorem 3. Let the conditions below hold

(S1) f ∈ L2([0, 1]×R,R) with

| f (t, x)− f (t, y)| ≤ s|x− y|, s > 0.

(S2) There exists C1, C2 > 0 such that

|hj(t, x)− hj(t, y)| ≤ Cj|x− y|,

and
hj(t, 0) = 0,
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(S3)

γ = max
{

2ζ

Γ(v− β)
+

Γ(v)

Γ(v− β)

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
;

2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

}
< 1.

Then, (5) has a solution in X.

Proof. We use the iterative method. Let (wn) be a sequence of function with w0 ∈ X such that

wn+1(t) =
1

Γ(v)

∫ t

0
(t− ζ)v−1 f (ζ, wn(ζ))dζ

−
[

1
Γ(v)

∫ 1

0
(1− ζ)v−1 f (ζ, wn(ζ))dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, wn(ζ))dζ (17)

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wn(ζ))dζ

]
tv−1,

Step 1 (wn ∈ X). We use the proof by recurrence of the element w0 ∈ X, and supposing
that wn ∈ X, we will prove that wn+1 ∈ X, indeed

|wn+1(t)| ≤
1

Γ(v)

∫ t

0
(t− ζ)v−1| f (ζ, wn(ζ))|dζ

+
1

Γ(v)

∫ 1

0
(1− ζ)v−1| f (ζ, wn(ζ))|dζ

+
p

Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1|h1(ζ, wn(ζ))|dζ

+
q

Γ(µ2)

∫ η

0
(η − τ)µ2−1|h2(ζ, wn(ζ))|dζ

≤ 2‖ f ‖2

Γ(v)
+

(
C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
‖wn‖2,

then wn+1 ∈ L2([0, 1],R), and

|Dβ
0+wn+1(t)| ≤

1
Γ(v− β)

∫ t

0
(t− ζ)v−1| f (ζ, wn(ζ))|dζ

+
1

Γ(v− β)

∫ 1

0
(1− ζ)v−1| f (ζ, wn(ζ))|dζ

+
pΓ(v)

Γ(µ1)Γ(v− β)

∫ ξ

0
(ξ − ζ)µ1−1|h1(ζ, wn(ζ))|dζ

+
qΓ(v)

Γ(µ2)Γ(v− β)

∫ η

0
(η − ζ)µ2−1|h2(ζ, wn(ζ))|dζ

≤ 2‖ f ‖2

Γ(v− β)
+

(
C1 pξµ1−1Γ(v)

Γ(µ1)Γ(v− β)
+

C2qηµ2−1Γ(v)

Γ(µ2)Γ(v− β)

)
‖wn‖2,

then Dβ
0+wn+1 ∈ L2([0, 1],R), i.e., wn ∈ X for each n ∈ N.
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Step 2 (wn is a Cauchy sequence). For all n ∈ N, we find

|wn+1(t)− wn(t)|

≤ 1
Γ(v)

∫ t

0
(t− ζ)v−1| f (ζ, wn(ζ))− f (ζ, wn−1(ζ))|dζ

+
1

Γ(v)

∫ 1

0
(1− ζ)v−1| f (ζ, wn(ζ))− f (ζ, wn−1(ζ))|dζ

+
p

Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1|h1(ζ, wn(ζ))− h1(ζ, wn−1(ζ))|dζ

+
q

Γ(µ2)

∫ η

0
(η − ζ)µ2−1|h2(ζ, wn(ζ))− h2(ζ, wn−1(ζ))|dζ

≤
(

2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
|wn(t)− wn−1(t)|.

By recurrence, we write

|wn+1(t)− wn(t)| ≤
(

2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)n

|w1(t)− w0(t)|.

Let p ∈ N and n ≥ 1, then

|wn+p(t)− wn(t)|

≤
p

∑
k=1
|wn+k(t)− wn+k−1(t)|

≤
p

∑
k=1

(
2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)k−1

|wn(t)− wn−1(t)|.

≤ |wn(t)− wn−1(t)|

1− 2ζ
Γ(v)
− C1 pξµ1−1

Γ(µ1)
− C2qηµ2−1

Γ(µ2)

,

as n→ +∞, we have

|wn+p(t)− wn(t)| → 0. (18)

This means (wn(t)) is a Cauchy sequence in R for each t ∈ [0, 1], and then by (18), we have

‖wn+p − wn‖2 → 0. (19)

Dβ
0+wn+1(t) =

1
Γ(v− β)

∫ t

0
(t− ζ)v−β−1 f (ζ, wn(ζ))dζ

− Γ(v)

Γ(v− β)

[
1

Γ(v)

∫ 1

0
(1− ζ)v−1 f (ζ, wn(ζ))dζ

− p
Γ(µ1)

∫ ξ

0
(ξ − ζ)µ1−1h1(ζ, wn(ζ))dζ

− q
Γ(µ2)

∫ η

0
(η − ζ)µ2−1h2(ζ, wn(ζ))dζ

]
tv−β−1,
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then

|Dβ
0+wn+1(t)− Dβ

0+wn(t)|

≤ 1
Γ(v− β)

∫ t

0
(t− ζ)v−β−1| f (ζ, wn(ζ))− f (ζ, wn−1(ζ))|dζ

+
1

Γ(v− β)

∫ 1

0
(1− ζ)v−β−1| f (ζ, wn(ζ))− f (ζ, wn−1(ζ))|dζ

+
pΓ(v)

Γ(µ1)Γ(v− β)

∫ ξ

0
(ξ − ζ)µ1−1|h1(ζ, wn(ζ))− h1(ζ, wn−1(ζ))|dζ

+
qΓ(v)

Γ(µ2)Γ(v− β)

∫ η

0
(η − ζ)µ2−1|h2(ζ, wn(ζ))− h2(ζ, wn−1(ζ))|dζ

≤
(

2ζ

Γ(v− β)
+

C1 pξµ1−1Γ(v)

Γ(µ1)Γ(v− β)
+

C2qηµ2−1Γ(v)

Γ(µ2)Γ(v− β)

)
|wn(t)− wn−1(t)|.

By recurrence, we write

|Dβ
0+wn+1(t)− Dβ

0+wn(t)|

≤
(

2ζ

Γ(v− β)
+

C1 pξµ1−1Γ(v)

Γ(µ1)Γ(v− β)
+

C2qηµ2−1Γ(v)

Γ(µ2)Γ(v− β)

)n

|w1(t)− w0(t)|.

Let p ∈ N and n ≥ 1, then

|Dβ
0+wn+p(t)− Dβ

0+wn(t)|

≤
p

∑
k=1
|Dβ

0+wn+k(t)− Dβ
0+wn+k−1(t)|

≤
p

∑
k=1

(
2ζ

Γ(v− β)
+

C1 pξµ1−1Γ(v)

Γ(µ1)Γ(v− β)
+

C2qηµ2−1Γ(v)

Γ(µ2)Γ(v− β)

)k−1

|wn(t)− wn−1(t)|

≤ |wn(t)− wn−1(t)|

1− 2ζ
Γ(v−β)

− C1 pξµ1−1Γ(v)
Γ(µ1)Γ(v−β)

− C2qηµ2−1Γ(v)
Γ(µ2)Γ(v−β)

,

as n→ +∞, we have

|Dβ
0+wn+p(t)− Dβ

0+wn(t)| → 0,

that means (Dβ
0+wn(t)) is a Cauchy sequence in R. This is easy to see

‖Dβ
0+wn+p − Dβ

0+wn‖2 → 0. (20)

From (19) and (20), the sequence (wn) is a Cauchy sequence in X, so there exists an
element noted by w̃, which represents a limit of this sequence. For all 0 ≤ t ≤ 1, we obtain
wn(t)→ w̃(t).

Then, w̃ represents a solution for (16).

Example 3. Let us consider the following problem

D1.8
0+ w(t) = f (t, w(t)),

w(0) = 0,

w(1) =
4

Γ(4)

∫ 1

0
τ(1− τ)3w(τ)dτ,

(21)
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where

f : (t, x) ∈ [0, 1]×R 7→ (t + 1)
cos(x)

20
.

In this problem, we have

max
{

2ζ

Γ(v− β)
+

Γ(v)

Γ(v− β)

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
;

2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

}
≈ 0.9149

< 1

Then, from precedent Theorem 3 Problem (21), taking one solution in the space

X = {w ∈ L2([0, 1],R); D0.8
0+ w ∈ L2([0, 1],R)}.

Example 4. Let us consider the following problem:
D1.7

0+ w(t) = t sin x
3 ,

w(0) = 0,
w(1) = 1

6

∫ 1
0 τ(1− τ)4w(τ)dτ,

(22)

In this problem, we have

max
{

2ζ

Γ(v− β)
+

Γ(v)

Γ(v− β)

(C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

)
;

2ζ

Γ(v)
+

C1 pξµ1−1

Γ(µ1)
+

C2qηµ2−1

Γ(µ2)

}
≈ 0.9004

< 1

One can see that the function

(t; x) 7→ t sin x
3
∈ L2([0, 1]×R;R),

and
| f (t, x)| ≤ 1

3
.

If we take h1(t, x) = tx and p = 4, q = 0, µ1 = 5 and s = 1
3 . Then, from Theorem 3, Problem

(22) has a solution in

X = {w ∈ L2([0, 1],R); D0.7
0+ w ∈ L2([0, 1],R)}.

Remark 3. Here, we are interested only in the mathematical point of view, making mathematical
contributions to support a rapidly developing literature. Since the differential inclusions are usually
applied to deal with differential equations with a discontinuous right-hand side or an inaccurately
known right-hand side, this can be seen as a generalization of the notion of ordinary differential
equations. Knowing that many phenomena from physics, chemistry, mechanics, and electricity can
be modeled by ordinary and partial differential equations involving fractional derivatives gives a
clear, precise, and accurate idea about the scope of application of this model in real-life problems.
Some mathematical examples satisfying our problem with its assumptions are given to illustrate the
obtained results and help the reader and the field of applied sciences benefit from our results.
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4. Conclusions

Over the past decades, the theory of functional–differential inclusions has received
significant development, primarily the functional–differential inclusion of a multiterm
type. Scientists from different countries are conducting research in the field of the theory of
initial boundary value problems for various classes of differential, integrodifferential and
functional–differential inclusions in partial derivatives with integer and fractional orders
of derivatives. Our paper includes several new contributions:

1. This work is devoted to the multiterm fractional boundary value problem and semi-
linear fractional differential inclusions and equations, which occupy models in many
applied sciences areas.

2. Our systems inherit many properties of the classical earlier results; they are a natural
generalization.

3. Sufficient conditions for the existence and uniqueness of solutions are established
where newly developed methods of fractional integrodifferential calculus and the
theory of fixed points of multivalued mappings form the basis of this study.

It is known that the dynamics of economic, social, and environmental macrosystems is
a multivalued dynamic process and that fractional-order differential and integrodifferential
inclusions are natural models of macrosystem dynamics. Such inclusions are also used to
describe certain physical and mechanical systems.

The existence and stability (Ulam–Hyers–Rassias stability and asymptotic stability) of
solutions for such classes of systems involving the Hadamard or Hilfer fractional derivative
will be very interesting. The same equation/inclusion with the presence of delay, which may
be finite, infinite, or state-dependent, will also be a very interesting subject. Other subjects to
impulsive effect, which may be fixed or non-instantaneous are open problems in this direction.
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