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Abstract: We consider a class of nonlinear integro-differential equations that model degenerate
nonlocal diffusion. We investigate whether the strong maximum principle is valid for this nonlocal
equation. For degenerate parabolic PDEs, the strong maximum principle is not valid. In contrast,
for nonlocal diffusion, we can formulate a strong maximum principle for nonlinearities satisfying
a geometric condition related to the flux operator of the equation. In our formulation of the strong
maximum principle, we find a physical re-interpretation and generalization of the standard PDE
conclusion of the principle: we replace constant solutions with solutions of zero flux. We also
consider nonlinearities outside the scope of our principle. For highly degenerate conductivities,
we demonstrate the invalidity of the strong maximum principle. We also consider intermediate,
inconclusive examples, and provide numerical evidence that the strong maximum principle is valid.
This suggests that our geometric condition is sharp.

Keywords: nonlocal diffusion; nonlinear diffusion; integro-differential equations; maximum principle;
strong maximum principle; degenerate; partial equivalence relation
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1. Introduction

“Nonlocal” interactions take place over large distances, while “local” interactions
are defined by nearby vicinities. Nonlocal diffusion models have recently found diverse
applications in image processing [1–3], visual saliency detection [4], population models [5,6],
swarming systems [7–9], and epidemological sciences [10–12]. Nonlocal dispersive models
have also been used in the description of material properties [13–16].

In addition to quantifying new natural phenomena, nonlocal models can improve
upon existing models based on partial differential equations (PDEs). Solutions of parabolic
PDEs become smoother with time, which can be problematic for imaging applications such
as inpainting [1]. The spatial derivative ∇ in PDE models also makes it difficult to find
numerical solutions when the boundary ∂Ω of a domain Ω has corners. Replacing partial
derivatives with nonlocal operators allows for lower regularity solutions, while preserv-
ing much of the mathematical structure, such as variational principles [1,17], maximum
principles [18], and conservation laws [19].

The objective of this paper is to determine whether the strong maximum principle
works for degenerate nonlinear equations, which sheds light on which classical techniques
are available for nonlocal models. We classify the nonlinearities which do, in fact, have
strong maximum principles.

The strong maximum principle (SMP) is a fundamental qualitative estimate for
parabolic and elliptic partial differential equations (PDEs). In the parabolic case, it as-
serts that solutions strictly decay from their initial, maximal values, unless they are constant
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solutions. The SMP plays an important role in the qualitative analysis of solutions of PDEs,
allowing for subtle uniqueness, symmetry, and asymptotic behavior results not available in
other settings such as fourth order PDEs.

Degenerate parabolic PDEs do not have an SMP, in general. This can be seen from the
simplest example, ∂u/∂t = 0; there are stationary solutions which are not constants. A basic
question is whether there are non-stationary solutions of a given degenerate diffusion
equation which also violate the SMP. PDEs with degenerate diffusion, such as

∂u
∂t

= (u− 1)2 ∂2u
∂x2 or

∂u
∂t

=
∂

∂x

(
(u− 1)2 ∂u

∂x

)
(1)

have non-stationary solutions which violate the SMP; one can choose a suitable bump
function as an initial condition [20].

The situation is much different for nonlocal diffusion, as we will show in this paper.
We will exhibit large classes of degenerate diffusion equations for which the only solutions
violating the strong maximum principle are stationary. We characterize such solutions as
having zero flux, which generalizes the classical conclusion of solutions being constant.

Let Ω ⊂ RN be open and bounded. Consider a Cauchy problem for
u ∈ C1([0, ∞); L∞(Ω)):

∂u
∂t

(t, x) =
∫

Ω
k
(
u(t, x), u(t, y)

)[
u(t, y)− u(t, x)

]
J(x, y)dy, (t, x) ∈ (0, ∞)×Ω,

u(0, x) = u0(x) ∈ L∞(Ω).
(2)

Here, kernel J ∈ L∞(Ω; L1(Ω)) is boundedly integrable and has a positive lower
bound: J ≥ δ > 0, which is chosen to isolate the degeneracy of the diffusion oper-
ator to the nonlinearity. Here, t is a time variable. The conductivity k satisfies that
(u, v) 7→ k(u, v)(v− u) is locally Lipschitz continuous on R2. This is to ensure existence
and uniqueness via Banach’s theorem, see e.g., ([21], Chapter 2). We also assume k ≥ 0,
which ensures global existence via the (weak) maximum principle combined with iterating
local existence. In defining the integral over Ω and not RN , we impose a “Neumann
condition” [21], so no additional data are needed for the Cauchy problem.

Equation (2) describes degenerate nonlocal diffusion and generalizes recent models,
which use integrable kernels and nondegenerate operators. Translation invariant kernels
J(x, y) = µ(x− y) for µ ∈ L1(RN) are a common example in C(Ω; L1(Ω)). Such models
have a nonlocal divergence structure, whence (2) is a nonlocal version of Fick’s law [1,18].
If we define the two-point flux function,

F(u, v) := k(u, v)(v− u), (u, v) ∈ R2,

then the zero flux set F−1(0) of F characterizes the degeneracy of the diffusion operator. Pre-
vious works considered only the diagonal case F−1(0) = {(u, u)} of minimal degeneracy.

The integro-differential Equation (2) contains, as a special case, the nonlocal linear
diffusion equation

∂u
∂t

= J ∗ u− u

=
∫
RN

[
u(t, y)− u(t, x)

]
J(x− y)dy,

(3)

where
∫

J(z)dz = 1 represents a probability density, and u(t, x) represents a density for
some quantity, such as temperature [22] or population density [6]. The first term represents
the influx of species from a neighborhood surrounding the point x, while the second term
accounts for population dispersion from x. A more general version was considered in [23].
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Equation (2) also includes other nonlocal diffusion equations, such as the nonlocal
p-Laplace equation for p ≥ 2 covered in ([21], Chapter 6):

∂u
∂t

=
∫
RN
|u(t, y)− u(t, x)|p−2[u(t, y)− u(t, x)

]
J(x− y)dy, (4)

and the fast diffusion equation of ([21], Chapter 5):

∂u
∂t

γ(u(t, x)) =
∫
RN

[
u(t, y)− u(t, x)

]
J(x− y)dy.

Assuming γ is invertible, letting v = γ(u) recovers (2) by selecting k(a, b) = (b −
a)/(γ(b)− γ(a)).

Another physically interesting equation that can be obtained from (2) is analogous to
the porous medium equation ut = ∆|u|m/m = ∇ · (|u|m−1∇u):

∂u
∂t

=
∫
RN
|u(t, x) + u(t, y)|m−1[u(t, y)− u(t, x)

]
J(x− y)dy, (5)

where m > 1; however, to our knowledge, this equation has not been studied in the
literature. The closest that come to it are those using fractional differential operators [24], a
nonlinear diffusion PDE with a nonlocal convection term [25], and one that is considered
in [26]:

∂u
∂t

=
∫
RN

J
(

x− y
uα(t, y)

)
u1−Nα(t, y)dy− u(t, x). (6)

Equation (2) is also the nonlocal analogue of a classical nonlinear diffusion equation:

∂u
∂t

= ∇ · (k(u)∇u), (7)

where the diffusion coefficient k(u) accounts for nonlinear material properties, such as flow
through a porous medium. Equation (7) can be obtained from (2) by rescaling the kernel J
and taking the limit as a nonlocality “horizon” parameter vanishes, see [18,21]. It can also
be viewed as the first Taylor approximation to (2) [27], provided we take k(u, u) = k(u). It
is worth noting that, if the equation arises from a variational principle, such that energy
stability methods are available, then k(v, u) = k(u, v) is symmetric. Numerical convergence
was demonstrated for semi-implicit schemes of the non-local Cahn–Hilliard equation
in [28].

Our work mostly concerns the strong maximum principle, a result that provides
qualitative information about solutions as well as a tool for developing other a priori
analytic estimates. For locally defined diffusion equations, such as (7), the usual result for
classical solutions u ∈ C1([0, T]; C2(Ω)) is as follows:

If u attains a global extremum inside the parabolic cylinder [0, T]×Ω, then u and its boundary
values must be identically constant [29].

An analogous result holds the for the associated time-independent elliptic
problem [30,31]. There are also similar results for discrete parabolic operators [32], gen-
uinely nonlinear PDEs for semi-continuous functions [33,34], and time-fractional and
elliptic fractional differential equations [24,35,36].

For integro-differential equations similar to the type in (2), there are positivity princi-
ples for the linear steady-state problem for L2 functions [37] and strong maximum prin-
ciples for linear and semilinear traveling wave equations [27,38], linear and Bellman-
type-nonlinear parabolic problems [39], and degenerate parabolic and elliptic equations
for semi-continuous functions involving Lévy-Itô-type nonlocal operators [40–42]. More
recently, the maximum principle was employed in [23] for linear models to establish con-
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vergence results as the nonlocal horizon vanishes, and Lp contraction and global existence
results were considered for nonlinear equations [43].

Our work is distinguished from these by demonstrating the strong maximum principle
for degenerate nonlinearities, and a novel classification of nonlinearities which have the
strong maximum principle, including new conditions for which the principle is valid. In
particular, we identify a new geometric condition on the equation: that the zero set of the
flux F(u, v) be an equivalence relation. Under this condition, we obtain Theorem 3, the
strong maximum principle. This condition is novel, and may have wider applications, such
as to fractional equations.

In this paper, we find degenerate conductivities k(u, v), which allow for a strong
maximum principle. For general F−1(0), we are unable to show a strong maximum
principle (SMP). However, an SMP does hold when F−1(0) is diagonal. More generally, we
can establish an SMP if F−1(0) is an equivalence relation and we replace constant solutions
by the more fundamental zero flux solutions. Unlike in the classical case, our proof does
not rely on invoking Hopf’s lemma or Harnack’s inequality [29], and is very similar to the
proof of the weak maximum principle.

In Section 2, we present maximum principles for the cases F−1(0) = {(u, u)} diagonal,
and F−1(0) an equivalence relation. In Section 3, we list counterexamples and consider the
remaining cases from a numerical point of view in Section 4.

Notation
We denote PDE as partial differential equation and SMP as strong maximum principle.

We also list some common spaces and norms used in this article. Here, we let T > 0
and Ω ⊂ Rn be a bounded open subset.

1. Norms in a single variable.

(i) C(Ω): those continuous functions of x on Ω, which are continuous up to the boundary
∂Ω, with norm supΩ | f (x)|.

(ii) Lp(Ω): those Lebesgue measurable functions of x on Ω whose p-th power has a finite

Lebesgue integral, with norm
(∫

Ω | f (x)|pdx
)1/p. Here, 1 ≤ p < ∞.

(iii) L∞(Ω): those Lebesgue measurable functions of x on Ω which are bounded up to a
Lebesgue null set, with norm ess supΩ | f (x)|. Here, the essential supremum is the
infimum of those constants C ≥ 0, such that | f (x)| ≤ C almost everywhere.

2. Spacetime norms. We let C1([0, T]; L∞(Ω)) be bounded functions of space which are
continuously differentiable in time, with norm

‖ f (t, x)‖ = sup
[0,T]
‖ f (t, x)‖L∞(Ω) + sup

[0,T]
‖ ∂t f (t, x)‖L∞(Ω).

We define C1([0, T]; C(Ω)) analogously. Simple examples include dyadic products
a(t)b(x), where a ∈ C1([0, T]) and b ∈ L∞(Ω).

3. Two-point norms. We let C(Ω; C(Ω)) be continuous functions of y that continuously
vary in x, both up to the boundary, with norm

‖J(x, y)‖C(Ω;C(Ω)) = sup
x,y∈Ω

|J(x, y)|.

This is equivalent to C(Ω×Ω). We denote L∞(Ω, L1(Ω)) the set of integrable func-
tions of y which vary in x in a bounded way. They have norm

‖J(x, y)‖L∞(Ω;L1(Ω)) = ess sup
x∈Ω

∫
Ω
|J(x, y)|dy.

Examples include translation invariant kernels J(x, y) = η(x− y) for η ∈ L1(Rn), and
dyadic products J(x, y) = a(x)b(y) for a ∈ L∞(Ω) and b ∈ L1(Ω).
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2. Strong Maximum Principles for Degenerate Diffusion Operators

Provided the nonlocal interactions determined by the flux function F(u, v) are in-
variant under certain permutations, we can demonstrate the infinite propagation speed
phenomenon via the strong maximum principle.

2.1. Space-Continuous Solutions

We will first work in the continuous category for simplicity of presentation, i.e.,
continuous solutions u ∈ C1([0, ∞); C(Ω)), arising from data u0 ∈ C(Ω), J ∈ C(Ω; C(Ω)).

Theorem 1. In the continuous category, suppose F−1(0) = {(u, u)} is diagonal. If u ≤ u(T, X)
for some T > 0 and X ∈ Ω, then u ≡ u(T, X) is a constant solution.

Proof. Since at a maximum ∂u/∂t(T, X) = 0 and u(T, y) ≤ u(T, X) for all y ∈ Ω, setting
(t, x) = (T, X) in (2) implies

0 =
∂u
∂t

(T, X) =
∫

k(u(T, X), u(T, y))(u(T, y)− u(T, X))J(X, y)dy ≤ 0. (8)

This means the integrand is identically zero, whence the solution has zero flux coming
from the point x = X:

F(u(T, y), u(T, X))J(X, y) = 0, y ∈ Ω. (9)

Since F−1(0) is diagonal and J > 0, this implies u(T, y) = u(T, X) for y ∈ Ω. In other
words, u is constant at time T. By uniqueness, we conclude u ≡ u(T, X).

Remark 1. The nonlocality is relevant here: for the heat equation ut = ∆u, constancy fails for
the strong maximum principle if Ω has two connected components. Theorem 1 does not assume
connectedness of Ω.

We now weaken the hypothesis that F−1(0) be diagonal. Inspecting the proof of
Theorem 1, we see that it suffices to show that for all U ∈ R, any solution v(x) of the
one-point functional equation

F(v(x), U) = 0, x ∈ Ω (10)

is constant, or more generally stationary. That is, it also solves the two-point functional
equation

F(v(x), v(y)) = 0, x, y ∈ Ω. (11)

The following proposition characterizes this implication.

Proposition 1. Zero flux set F−1(0) is an equivalence relation if and only if for every U ∈ R, all
solutions of (10) solve (11).

Recall that an equivalence relation R ⊂ R×R is reflexive, symmetric, and transitive.
Since F−1(0) ⊃ {(u, u)}, reflexivity is automatic.

Proof. Suppose F−1(0) is an equivalence relation. Let v be a solution of (10) and x, y ∈ Ω.
Since F(v(x), U) = 0 and F(v(y), U) = 0, symmetry and transitivity imply F(v(x), v(y)) = 0.

Conversely, suppose that any solution u of (10) solves (11). We will show symmetry
and transitivity. These properties will follow from the permutation invariance of (11): if v
is a solution, then so is v ◦ φ for any bijection φ : Ω→ Ω.

1. Suppose F(U, V) = 0, and choose a solution v(x) of (10) which satisfies
v(x1) = U, v(x2) = V for some xk ∈ Ω. Since v solves (11) as well, it follows
that F(V, U) = F(v(x2), v(x1)) = 0.
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2. Suppose that F(U, V) = F(V, W) = 0. Choose a solution v(x) of (10) with
v(x1) = U, v(x2) = V, v(x3) = W. Since (11) holds for any permutation of the
xi, we deduce transitivity: F(U, W) = F(v(x1), v(x3)) = 0.

Remark 2. Unless Ω has at least three connected components, the reverse claim does not hold in
the continuous category. For example, suppose Ω is 1-connected and the flux is given by

k(u, v) = |u + v|. (12)

In this case, the non-constant solutions of (10) must map into {−c, c} for some c > 0. Since
Ω is 1-connected, all such continuous solutions are constants, so the choice of v in Step 1 of the
proof of Proposition 1 above is not valid, and we cannot deduce symmetry. Even if Ω is 2-connected,
a similar problem happens in Step 2 for transitivity.

As in Theorem 1, it follows that the strong maximum principle holds in the continuous
category if F−1(0) is an equivalence relation. The difference is, if Ω is not connected, then
solutions need not be constant between components. They must, however, have zero flux.
This is an effect of nonlocality.

Theorem 2. In the continuous category, suppose that F−1(0) is an equivalence relation. If
u ≤ u(T, X) for some T > 0 and X ∈ Ω, then the solution has zero flux F(u(t, x), u(t, y)) ≡ 0
and is stationary u(t, x) ≡ u0(x).

Proof. We repeat Theorem 1 until Equation (9). As before, we deduce the one-point
equation

F(u(T, X), u(T, y)) = 0, y ∈ Ω. (13)

Since F−1(0) is an equivalence relation, we obtain the stronger two-point equation

F(u(T, x), u(T, y)) = 0, x, y ∈ Ω. (14)

We claim that the function (t, x) 7→ u(T, x) is a stationary solution of (2). Indeed, since
stationary solutions satisfy the nonlocal elliptic equation,∫

Ω
F(v(x), v(y))J(x, y)dy = 0, x ∈ Ω, (15)

and F(u(T, x), u(T, y)) ≡ 0, the conclusion is immediate. By uniqueness, we conclude
that u(t, x) ≡ u(T, x) for all t. This means that the solution has zero flux everywhere:
F(u(t, x), u(t, y)) ≡ 0.

2.2. Merely Bounded Solutions

We now generalize Theorem 2 to time-continuous space-bounded solutions u ∈
C1([0, ∞); L∞(Ω)), arising from bounded initial data u0 ∈ L∞(Ω) and bounded-integrable
kernel J ∈ L∞(Ω; L1(Ω)). Let us note that Equation (2) is time translation invariant and
local in time, such that any C1([0, ∞); L∞(Ω)) solution restricts to a solution defined on
[0, T] in C1([0, T]; L∞(Ω)).

Theorem 3. Suppose that F−1(0) is an equivalence relation and u ∈ C1([0, T]; L∞(Ω)) solves (2)
for J ∈ L∞(Ω; L1(Ω)). If u is maximized at the final time, or

ess sup
[0,T]×Ω

u(t, x) = ess sup
Ω

u(T, x), (16)

then F(u0(x), u0(y)) ≡ 0 and u(t, x) = u0(x) for each t ∈ [0, T] (the solution has zero flux and
is stationary).
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Proof. If we integrate (2) from t < T to T, we get

u(T, x)− u(t, x) =
∫ T

t

∫
Ω

F(u(s, x), u(s, y))J(x, y)dy ds. (17)

Denote U := ess sup u|[0,T]×Ω. For all ε > 0, the approximate maximizing set

Mε :=
{

x ∈ Ω : u(T, x) > U − ε}, (18)

has positive measure |Mε|. After averaging the left side of (17) on the approximate maxi-
mizing set, we see it is approximately nonnegative:

Aε :=
1
|Mε|

∫
Mε

[
u(T, x)− u(t, x)

]
dx

≥ −ε +
1
|Mε|

∫
Mε

[
U − u(t, x)

]
dx

≥ −ε.

(19)

In contrast, the right hand side will be approximately nonpositive. We first use time
differentiability and F being locally Lipschitz to evaluate at s = T:∫ T

t

∫
Ω

F(u(s, x), u(s, y))J(x, y)dy ds = (T − t)
∫

Ω
F(u(T, x), u(T, y))J(x, y)dy

+ O(T − t)2 · L∞([0, T]×Ω).
(20)

Here, L∞([0, T]×Ω)denotes some bounded function of t, x on Ω, using J ∈ L∞(Ω; L1(Ω)).
Next, we evaluate at max points x:∫

Ω
F(u(T, x), u(T, y))J(x, y)dy =

∫
Ω

F(U, u(T, y))J(x, y)dy

+
∫

Ω
[F(u(T, x), u(T, y))− F(U, u(T, y))]J(x, y)dy.

(21)

Since F is locally Lipschitz continuous, and u is bounded, the second term is small
in Mε:

|F(u(T, x), u(T, y))− F(U, u(T, y)) ≤ C|u(T, x)−U| ≤ Cε, x ∈ Mε, (22)

for some C > 0. Upon averaging over the approximate maximum set, we obtain

−ε ≤ Aε = (T − t)
∫

Ω
F(U, u(T, y)) J̃ε(y)dy + C(T − t)ε + O(T − t)2, (23)

where, by our positivity hypothesis on J,

J̃ε(y) =
1
|Mε|

∫
Mε

J(x, y)dx ≥ δ > 0. (24)

Since F(U, uy) = k(U, uy)(uy −U) ≤ 0, the lower bound on J̃ translates to

−Cε ≤ (T − t) · δ
∫

Ω
F(U, u(T, y))dy + O(T − t)2. (25)

Setting ε = (T − t)2 and sending t↗ T, we conclude the integrand must identically
vanish:

F(U, u(T, y)) = 0, y ∈ Ω. (26)
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Because F−1(0) is an equivalence relation, we deduce from Proposition 1 that x 7→
u(T, x) has vanishing flux:

F(u(T, x), u(T, y)) = 0, x, y ∈ Ω. (27)

By uniqueness, we conclude that u(t, x) ≡ u(T, x) is a stationary solution that has
zero flux everywhere: F(u(t, x), u(t, y)) ≡ 0.

2.3. Examples of Degenerate Fluxes with Maximum Principles

There is an abundance of such conductivity k(u, v)s whose flux functions form equiv-
alence relation F−1(0)s. Graphically, such relations contain and are symmetric about the
diagonal, and as transitive relations, they can be thought of as having additional “rectangu-
lar” symmetry; see Figure 1. The most trivial degenerate example is F ≡ 0. There are at
least three nontrivial ways to construct them:

Example 1. Diagonal F−1(0) = {(u, u)}. In this case, positivity k > 0, positive definiteness
k(u, v) = 0 ↔ u = v = 0, and diagonality k(u, v) = 0 ↔ u = v all suffice. This includes the
linear case k = 1, the p-Laplace case k(u, v) = |u− v|p−2 of ([21], Chapter 6), and the fast diffusion
case k(u, v) = [γ−1(v)− γ−1(u)]/(v− u) of ([21], Chapter 5) under a monotone condition on γ.

For all these cases, solutions of zero flux are constants. This is not true for the
following examples.

Example 2. F−1(0) the union of the diagonal with the graph of an involutive function f : R→ R,
i.e., f−1 = f . One large class of examples is of the form

F(u, v) = A(u, v)
∣∣∣u− f (v)

∣∣∣ (v− u) (28)

for some positive A. For instance,

F(u, v) =
∣∣∣u + v

∣∣∣p−2
(v− u) and F(u, v) =

∣∣∣1 + uv
∣∣∣(v− u) (29)

both yield equivalence relations with involutions f (x) = −x, 1/x, respectively. More involutions
can be generated by conjugation: ϕ ◦ f ◦ ϕ−1 is an involution provided ϕ is a bijection and f is
an involution.

The reason involutions work is because if F(U, f (U)) = 0 for all U, then F( f (U), U) =
F(Z, f (Z)) = 0 for Z = f (U), which shows the symmetry of F−1(0). To verify transitivity,
if F(U, V) = F(V, W) = 0, then U = V or f (V) and W = V or f (V). In all cases,
F(U, W) = 0:

F(V, V) = 0, F(V, f (V)) = 0, F( f (V), V) = 0, F( f (V), f (V)) = 0.

We now generalize this construction to incorporate more involutions.

Example 3. F−1(0) generated by a group of involutions. As a concrete example, we study the flux

F(u, v) =
∣∣∣(u + v)(1 + uv)(1− uv)

∣∣∣(v− u). (30)

We will show that F−1(0) is an equivalence relation; see Figure 1.

There is a general reason why: the zero set is the union of graphs of involutive
functions which form a group under function composition. More specifically, F−1(0) is
the union of diagonal (u, u) with the graphs (u,−u), (u, 1/u), and (u,−1/u). If we denote
f1(x) = x, f2(x) = −x, f3(x) = 1/x, f4(x) = −1/x and put f3(0), f4(0) := 0 for simplicity,
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then the set of these functions { f1, f2, f3, f4} is the Klein four-group ([44], pg 13) with
function composition as the group operation:

f2 ◦ f3 = f4, f3 ◦ f4 = f2, f4 ◦ f2 = f3,

and each composition is commutative: fi ◦ f j = f j ◦ fi. Let us now verify the properties for
an equivalence relation.

Symmetry: if F(U, V) = 0, then V = fi(U) for one such i. Since fi is an involution, we
know U = fi(V), so F(V, U) = F(V, fi(V)) = 0.

Transitivity: if F(U, V) = 0 and F(V, W) = 0, then U = fi(V) and W = f j(V) for
some i, j. This means F(U, W) = F( fi(V), f j(V)). It suffices to show that f j(V) = fk( fi(V))
for some k. Since fi is an involution,

f j(V) = f j( fi( fi(V))) = fk( fi(V)),

where the existence of k follows from the group closure property of composition. Thus,
F(U, W) = 0.

−2 −1 0 1 2
−2

−1

0

1

2

u

v

F−1(0)

Figure 1. The zero set, F−1(0), for (30).

3. Counterexamples to the Strong Maximum Principle

Physically, the maximum principle is a consequence of the averaging effects of diffu-
sion. If the diffusivity vanishes at a point x = p, it follows that the maximum principle
should be violated at x = p. In our nonlocal framework, the diffusivity is proportional to
the flux F(u, v) (and is precisely k(u, v)), so the following result is sensible. We work in the
continuous category for simplicity of presentation.

Proposition 2. Suppose that there exists U ∈ R such that F(u, v) = |u − U|φ(u, v), where
φ(u, v)/(v− u) is locally Lipschitz continuous. Then in the continuous category, there exists a
solution u and p ∈ Ω for which u(t, p) = supΩ u0 for all t > 0.

If φ−1(0) is also diagonal, then we can choose u(t, x) to satisfy ∂u/∂t 6≡ 0.

Observe in the latter case that F−1(0) = {(U, x) : x ∈ R} ∪ {(x, x) : x ∈ R} is
the union of a vertical line with the diagonal, which is not symmetric and hence not an
equivalence relation.

Proof. Choose a bump function u0 so that u0(x) = U in the open ball B(p, r) of radius
r > 0 is centered at the point p, but decreases radially to the value u0(x) = U − 1 as |x− p|
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increases from r to 2r. To verify that u(t, p) ≡ U, we need only observe that the |u−U|
portion factors out:

∂u
∂t

(t, p) = |u(t, p)−U|Φ(t, p), (31)

where
Φ(t, p) =

∫
Ω

φ(u(t, p), u(t, y))J(p, y)dy (32)

is continuous in time. This defines a Lipschitz ODE for the function t 7→ U(t) =: u(t, p)
with initial condition U(0) = U. Since U(t) ≡ U is clearly a solution, uniqueness implies
that u(t, p) ≡ U for all t.

Let us now suppose that φ−1(0) is diagonal. Suppose that q ∈ Ω \ B(p, r) is distance
r + ε from p. Then we can write Φ as a small positive part plus a negative part:

Φ(0, q) =
(∫

B(p,r+ε)
+
∫

Ω\B(p,r+ε)

)
φ(u0(q), u0(y))J(q, y)dy

=: P + N.
(33)

Indeed, since φ(x, y) = k(x, y)(y− x)/|x −U| is continuous, the first integrand be-
haves like U − u0(q) ≥ 0, while the second behaves like (U − 1) − u0(q) < 0. Since
u0(q)→ U is ε→ 0, we can choose an ε > 0 that is sufficiently small so that P < |N|, i.e.,
Φ(0, q) < 0. This verifies

∂u
∂t

(0, q) < 0 (34)

for all q ∈ Ω \ B(p, r) sufficiently close to B(p, r).

To see this also holds in the L∞ category, let us consider the degenerate conductivity
k(u, v) = (1− u)2, with initial data and a positive kernel given on [−1, 1]

u0(x) =

{
1, |x| < 0.5,
0, otherwise,

J(x, y) = e−
|x−y|2

2 , x, y ∈ [−1, 1].

(35)

We solve (2) numerically, and plot the time evolution of the solution in Figure 2. The
spatial domain [−1, 1] is discretized using the convergent Trapezoidal rule [45] with a
distance ∆x = 10−2 between adjacent nodes of a uniform spatial mesh. A forward Euler
time stepper is used to numerically integrate over the time interval [0, 1] with a numerical
timestep of ∆t = 10−2. This value is significantly lower than ∆t = 0.5, which is the largest
numerical time step value for which the forward Euler timestepper will be stable on the
related nonlocal linear problem, as discussed in Appendix A. Other works have studied
the stability of the numerical time stepping of related equations, e.g., [28]. An interesting
further direction of research would be to provide a more in depth analysis regarding the
numerical scheme than that we have provided here. The numerical results were generated
by making using of the programming language Python. We see in Figure 2 that, although
the minimum value infΩ u(t, .) increases with time, the maximum value remains constant,
supΩ u(t, .) = 1.
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Figure 2. Maximum value and spacetime evolution of (2) with (highly) degenerate conductivity
k(u, v) = (1− u)2 and data given in (35).

4. The Inconclusive Cases

The following problem remains an open issue: if F−1(0) is neither an equivalence
relation nor highly degenerate as in Proposition 2, does a version of the strong maximum
principle hold? More precisely, can we conclude that u is a zero flux stationary solution,
F(u, u) ≡ 0 and ∂u/∂t ≡ 0, if we know that u ≤ u(T, X) for some T > 0, X ∈ Ω?

We conjecture the affirmative. Consider the inconclusive example k(u, v) = (v− u2)2,
whose associated flux function F(u, v) does not have an equivalence relation for F−1(0).
Let us choose initial data and positive kernels of the form

u0(x) = (1− x2)2, x ∈ [−1, 1],

J(x, y) = e−
|x−y|2

2 , x, y ∈ [−1, 1].
(36)

Since k(u0(0), u0(0)) = 0, or more generally {(u0(x), u0(y))} ∩ k−1(0) is nonempty,
this example exhibits (mild) degeneracy. However, as shown in Figure 3, which depicts
the time evolution of a numerical solution, the supremum supΩ u(t, .) visibly decreases
over time.

The numerical result shown in Figure 3 is reasonable to the authors because of the
following. Suppose that u0 is nonnegative and contains a finite number of discontinuities.
Further assume that u0 attains its supremum and, for each x ∈ Ω, the cardinality of
u−1

0 (u0(x)) ⊂ Ω is finite, which guarantees that u0(Ω) has a nonzero measure with respect
to the Lebesgue measure on R. For any χ ∈ Ω, such that u0(χ) = supΩ u0, we have

∂u
∂t

(0, χ) = −
∫

Ω
k(u0(χ), u0(y))|u0(y)− u0(χ)|J(χ, y)dy. (37)

Given the hypothesis, there is a set W ⊂ Ω of nonzero measures such that
k(u0(χ), u0(y))|u0(y) − u0(χ)|J(χ, y) > 0 for each y ∈ W. This demonstrates immedi-
ate supremum decay

∂u
∂t

(0, χ) < 0. (38)

Because the diffusion is nonlocal, the initial data’s oscillation (sup− inf)Ωu0 con-
tributes to diffusion even at points of (mild) degeneracy. We note that the assumptions of
the argument just presented could be weakened, such as the assumption that u0 attains its
supremum, and arrive at the same conclusion.
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Figure 3. Maximum value and spacetime evolution of (2) with (mildly) degenerate conductivity
k(u, v) = (v− u2)2 and data given in (36).

5. Conclusions

We considered whether the strong maximum principle is valid for integro-differential
equations of the type (2), namely a nonlocal parabolic equation with integrable kernel and
degenerate two-point nonlinear conductivity. We showed that, under a certain geometric
assumption about the nonlinearity, the strong maximum principle is valid; see Theorem 3.
However, the conclusion must be reformulated: instead of solutions being constants, we
show that they have zero flux, and are therefore stationary. We have therefore concluded
that no non-stationary solutions violate the strong maximum principle. This is in contrast to
parabolic PDES with degenerate conductivity, which have non-stationary solutions which
propagate the initial maximum value through time [20].

In Proposition 2, we have also considered solutions of Equation (2) with more degen-
erate conductivities. Such solutions are non-stationary and violate the strong maximum
principle. Therefore, in some sense, our geometric conditions in Theorem 3 were necessary
for the strong maximum principle to work.

For future directions, it would be interesting to ask the question of whether we can find
sharp geometric conditions on the degenerate nonlinearity that allow a strong maximum
principle. In Section 4, we give some evidence that the geometric condition in Theorem 3 is
sharp.
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Appendix A

In [28], a comprehensive numerical and convergence analysis is conducted for the
nonlocal Cahn–Hilliard equation. Here, we provide an analysis of the spectrum of the
Jacobian of the discretized integral term in a nonlocal linear equation,

∂u
∂t

(t, x) = k
∫

Ω

[
u(t, y)− u(t, x)

]
J(x, y)dy, (t, x) ∈ (0, ∞)×Ω,

u(0, x) = u0(x) ∈ L∞(Ω),
(A1)
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which is obtained from Equation (2) by taking k(u, v) to be equal to the constant k. The
purpose of said analysis is to provide insight into how the numerical time step ∆t, in an
explicit time stepping scheme such as forward Euler, should be chosen to obtain linearly
stable discrete time steps. Here, we let Ω be a bounded open subset of R, e.g., (−1, 1) as in
the numerical examples presented in Section 3. We work in the continuous category so that
Equation (A1) also holds for x ∈ ∂Ω. Upon discretizing in space on a mesh with n nodes
x1, x2, . . . , xn ∈ Ω and associated values of the numerical solution at said nodes u(t) ∈ Rn,
wherein [u(t)]i = ui(t) ≈ u(t, xi), and integrating by quadrature with quadrature weight
wk is associated to the node xk as

du
dt

(t) = g(u(t)), u(0) = u0

gi(u) = k
n

∑
`=1

[u` − ui]J(xi, x`)w`,

where u0 ∈ Rn is such that [u0]i = u0(xi). The Jacobian of g(u) with respect to u is relevant
in the context of explicit numerical time stepping, e.g., forward Euler, as its eigenvalues
define which values of the time step provide for a numerical method that is linearly stable.
We next compute said Jacobian:

∂gi
∂uj

= k
n

∑
`=1

[
δ`,j − δi,j

]
J(xi, x`)w`,

= k (J(xi, xj)wj − δi,j

n

∑
`=1

J(xi, x`)w`).

We then invoke the Gershgorin circle theorem [46], which in this context informs us
that all eigenvalues of the Jacobian ∂g/∂u are contained in (∪n

i=1D(ai,i, Ri)) ⊂ C, where
D(ai,i, Ri) = {x ∈ C such that |x − ai,i| ≤ Ri} is the ith Gershgorin disc with center
ai,i = ∂gi/∂ui and radius Ri = ∑j 6=i ∂gi/∂uj. For the linear nonlocal problem (A1), there
is a relatively simple relationship between the center ai,i and radius Ri of the Gershgorin
disc, namely

ai,i = −k
n

∑
`=1

J(xi, x`)w`,

Ri = −ai,i.

Since ai,i = −Ri < 0, we can conclude that the eigenvalues of the Jacobian have a
nonpositive real part. We can also conclude that an arbitrary eigenvalue λ of said Jacobian
satisfies the bound |λ| ≤ 2 max1≤i≤n Ri and, further, that

|λ| ≤ 2 k ‖J(x, y)‖C(Ω;C(Ω))

n

∑
`=1

w`.

For the Trapezoid rule and other quadrature schemes, we have ∑n
`=1 w` = |Ω|. Having

determined the eigenvalues of the Jacobian ∂g/∂u, we can then determine which numerical
time steps ∆t > 0 will be linearly stable if we use the forward Euler numerical time
integrator, that is, those time steps which satisfy

∆t <
1

k |Ω|‖J(x, y)‖C(Ω;C(Ω))

. (A2)
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