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Abstract: The Zhang–Zhang polynomial of a benzenoid system is a well-known counting polynomial
that was introduced in 1996. It was designed to enumerate Clar covers, which are spanning subgraphs
with only hexagons and edges as connected components. In 2018, the generalized Zhang–Zhang
polynomial of two variables was defined such that it also takes into account 10-cycles of a benzenoid
system. The aim of this paper is to introduce and study a new variation of the Zhang–Zhang
polynomial for phenylenes, which are important molecular graphs composed of 6-membered and
4-membered rings. In our case, Clar covers can contain 4-cycles, 6-cycles, 8-cycles, and edges. Since
this new polynomial has three variables, we call it the multivariable Zhang–Zhang (MZZ) polynomial.
In the main part of the paper, some recursive formulas for calculating the MZZ polynomial from
subgraphs of a given phenylene are developed and an algorithm for phenylene chains is deduced.
Interestingly, computing the MZZ polynomial of a phenylene chain requires some techniques that are
different to those used to calculate the (generalized) Zhang–Zhang polynomial of benzenoid chains.
Finally, we prove a result that enables us to find the MZZ polynomial of a phenylene with branched
hexagons.
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1. Introduction

Kekulé structures are often employed to provide an insight into the π-electron struc-
ture of polycyclic conjugated molecules (note that a Kekulé structure of a polycyclic con-
jugated hydrocarbon is represented by a structural formula with double bonds between
certain pairs of carbon atoms, such that each carbon atom is adjacent to exactly one double
bond). When a molecule is modelled by the molecular graph, Kekulé structures are in
one-to-one correspondence with the perfect matchings of the obtained graph [1,2]. Since
Kekulé structures can be used to predict various properties and chemical behaviour of
molecules [2,3], the investigation and enumeration of these structures is a classical topic in
theoretical and mathematical chemistry.

A theory closely related to the concept of Kekulé structures is the Clar’s aromatic
sextet theory [4]. In accordance with this theory, H. Zhang and F. Zhang introduced the
concept of Clar covers [5]. Note that a Clar cover of a benzenoid system (i.e., a benzenoid
graph that can be embedded into the regular hexagonal lattice) consists of some hexagons
(which represent the aromatic sextets) and of double bonds such that all vertices of the
graph are covered. The maximum possible number of hexagons among all Clar covers in a
given benzenoid graph is known as the Clar number. By Clar’s theory, the most important
Kekulé structures are those in which the number of aromatic sextets equals the Clar number.
Some well-investigated concepts that are closely related to Clar covers are resonant sets,
alternating sets, and the Fries number (for some research on these topics see [6–9]).
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In [5], the authors also introduced the so called Clar covering polynomial that was
later named the Zhang–Zhang polynomial. For a benzenoid system G, this polynomial is
defined as

ZZ(G; x) = ∑
p≥0

z(G; p) xp,

where z(G; p) is the number of Clar covers of G with exactly p hexagons. It is interesting
that the Clar number, the number of Kekulé structures, and the first Herndon number can
be easily calculated by using this polynomial. For some recent papers on the Zhang–Zhang
polynomial, see [10–12].

Another topic closely related to the above-mentioned concepts is the study of res-
onance graphs. These graphs are used to model interactions among different Kekulé
structures; see [13] for a survey on this topic. It is worth mentioning that the relation
between the Zhang–Zhang polynomial of a molecular graph and the cube polynomial of
its resonance graph was considered for different families of graphs [12,14]. Some recent
research on resonance graphs can be found, for example, in [15].

In [16], the generalized Zhang–Zhang polynomial (GZZ polynomial) was introduced
in order to increase the sensibility of the standard Zhang–Zhang polynomial. This poly-
nomial contains two variables and counts so-called generalized Clar covers, which can
contain edges, hexagons, and also 10-cycles (representing two adjacent hexagons). There-
fore, the GZZ polynomial gives explicit information on π-electron cyclic conjugation within
10-membered rings. It was shown in the same paper that for some families of molecular
graphs, the GZZ polynomial of a given graph is equal to the generalized cube polynomial
of the corresponding resonance graph. Later, several recursive formulas for calculating the
GZZ polynomial of benzenoid systems were derived and numerical results were obtained
in order to test the relation between the GZZ polynomial and three energy-based quanti-
ties [17]. Furthermore, it was shown that the molecular vibrational energies can be related
to Clar-structure-based parameters by using the GZZ polynomial [18].

The aim of this paper is to introduce another variant of the Zhang–Zhang polynomial
for phenylenes. Note that phenylenes are conjugated systems composed of 6-membered
rings and 4-membered rings and, therefore, the π-electron properties of these molecules are
of great interest for theoretical chemistry. For some results related to the Kekulé structures of
phenylenes, see [19–21], and more information on the chemistry of phenylenes can be found
in the references stated in [20]. In order to take into account 4-membered rings, 6-membered
rings, and also combinations of these rings, the corresponding Clar covers should not
contain only 6-cycles (hexagons) and edges, but also 4-cycles (quadrilaterals) and 8-cycles.
Hence, our new polynomial has three variables; therefore, we call it the multivariable
Zhang–Zhang polynomial (in short, the MZZ polynomial). It is clear that this polynomial
provides some information on the distribution of π-electrons in phenylenes. Moreover, as
we already mentioned, such approach could have interesting chemical applications [17,18].

In the next section, we state some basic definitions and formally introduce the MZZ
polynomial. Next, in Section 3, we prove several recursive formulas that enable use
to calculate the MZZ polynomial of a phenylene by using the MZZ polynomials of its
subgraphs. An efficient algorithm for computing the MZZ polynomial of any phenylene
chain is then deduced in Section 4. Finally, in Section 5 we discuss how to calculate the
MZZ polynomial of a phenylene with branched hexagons.

2. Preliminaries

In this paper, we consider only finite and simple graphs. For a graph G, we denote by
V(G) the set of vertices and by E(G) the set of edges of G. The degree of a vertex v ∈ V(G)
is the number of vertices adjacent to v. If k ≥ 3, then a cycle of length k in G, denoted as Ck,
will be called a k-cycle of G.

Let G be a plane graph. Two distinct faces of G are adjacent if they share a common
edge. We denote the set of edges lying on some face f of G by E( f ). Also, the subgraph
induced by the edges in E( f ) is the boundary of f . An inner face of G whose boundary is a
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6-cycle C6 is called a hexagon of G. Similarly, an inner face of G whose boundary is a 4-cycle
C4 is called a quadrilateral of G. Furthermore, the vertices of G that belong to the outer face
are known as boundary vertices and all the other vertices of G are interior vertices. Similarly,
the edges lying on the outer face will be called boundary edges. An outerplane graph is a
plane graph in which all vertices are boundary vertices.

A benzenoid graph is a bipartite 2-connected plane graph in which all interior vertices
have degree 3, all boundary vertices have degree 2 or 3, and all inner faces are hexagons. It
is worth mentioning that these graphs are sometimes referred to as fusenes [22]. Note also
that by our definition, a benzenoid graph is not always a subgraph of the regular hexagonal
lattice. Moreover, a benzenoid graph which does not contain any interior vertices (i.e., an
outerplane benzenoid graph) is called a catacondensed benzenoid graph.

Let B be a catacondensed benzenoid graph. If we add a quadrilateral between any
two adjacent hexagons of B, then the obtained graph is called a phenylene. In Figure 1, we
can see a catacondensed benzenoid graph B and the corresponding phenylene G.

Figure 1. A benzenoid graph B and the corresponding phenylene G.

To deduce our main results of the paper, we need to consider a wider family of graphs
and not just phenylenes. Therefore, throughout the paper a generalized phenylene will be an
outerplane bipartite graph in which no two distinct quadrilaterals are adjacent. It is easy
to check that in such a graph every 4-cycle is the boundary of some quadrilateral, every
6-cycle is the boundary of some hexagon, and in the interior of every 8-cycle there is either
one inner face or one quadrilateral and one hexagon (with the common edge).

Let h be a hexagon of a generalized phenylene G such that h contains exactly two
vertices of degree 2, which will be denoted as x and y. We say that h is angular if xy is an
edge of G, and on the other hand, h is linear if x and y are not adjacent in G. Moreover,
if G is a phenylene, then a hexagon of G is called branched if it is adjacent to exactly
three quadrilaterals of G. It is easy to see that phenylene G from Figure 1 contains two
angular hexagons, one linear hexagon, and no branched hexagons. On the other hand,
a phenylene from Figure 2 contains one angular hexagon, two linear hexagons, and one
branched hexagon.

Figure 2. A (4,6,8)-Clar cover of a phenylene.

Let G be a phenylene. If every hexagon of G is adjacent to at most two quadrilaterals,
we say that G is a phenylene chain. In addition, a linear phenylene chain is a phenylene chain
that does not contain any angular hexagons. Obviously, phenylene G from Figure 1 is a
phenylene chain, but G is not a linear phenylene chain.
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A subset of edges M of a graph G is called a perfect matching of G if every vertex of
G is an end vertex of exactly one edge from M. It is well known that in chemistry, perfect
matchings are usually referred to as Kekulé structures.

A spanning subgraph C of a generalized phenylene G is a (4,6,8)-Clar cover of G if every
connected component of C is a 4-cycle C4 (a quadrilateral), a 6-cycle C6 (a hexagon), an
8-cycle C8, or an edge K2. Figure 2 shows a phenylene with a (4,6,8)-Clar cover composed
of one 8-cycle, two hexagons, two quadrilaterals, and seven edges (the bold edges in the
figure represent connected components of this (4,6,8)-Clar cover).

Finally, we introduce the multivariable Zhang–Zhang polynomial (or shortly MZZ polyno-
mial) MZZ(G; x, y, z) of a generalized phenylene G by setting

MZZ(G; x, y, z) = ∑
p,q,r≥0

mz(G; p, q, r) xpyqzr,

where mz(G; p, q, r) represents the number of (4,6,8)-Clar covers of G that contain exactly
p quadrilaterals, q hexagons, and r 8-cycles. Moreover, if G has no vertices, we consider the
set ∅ as the unique (4,6,8)-Clar cover of G, so in this case we define MZZ(G; x, y, z) = 1.
Furthermore, the MZZ polynomial of G will be often denoted simply as MZZ(G), i.e.,
MZZ(G) := MZZ(G; x, y, z).

Some simple observations about the MZZ polynomial of a generalized phenylene G
can now be stated:

(i) The number of perfect matchings of G is exactly mz(G; 0, 0, 0), which is equal to
MZZ(G; 0, 0, 0). Therefore, the number of perfect matchings can be obtained by taking
x = y = z = 0 into the MZZ polynomial.

(ii) If G does not have any perfect matching, then the set of all (4,6,8)-Clar covers of G is
empty, so MZZ(G) = 0.

(iii) If G has only one perfect matching, then G has exactly one (4,6,8)-Clar cover which
contains only edges from the unique perfect matching, so MZZ(G) = 1.

(iv) It can be observed that if G is a phenylene, then the set of all hexagons of G is always
a (4,6,8)-Clar cover of G (which contains only hexagons as connected components).
Therefore, the MZZ polynomial of a phenylene with h(G) hexagons always contains
the term yh(G).

Suppose that G is a generalized phenylene and let CC(G) be the set of all (4,6,8)-Clar
covers of G. In addition, for any C ∈ CC(G) let q(C) be the number of quadrilaterals of
C, h(C) the number of hexagons of C, and o(C) as the number of 8-cycles of C. It is not
difficult to see that we can express the MZZ polynomial in the following way.

Proposition 1. If G is a generalized phenylene, then

MZZ(G) = ∑
C∈CC(G)

xq(C)yh(C)zo(C).

Note that if CC(G) = ∅ in the above proposition, then the index set of the corresponding
sum is empty, so MZZ(G) = 0.

We finish this section with one additional notation. If G is a generalized phenylene, C
a (4,6,8)-Clar cover of G, and H a quadrilateral, a hexagon, an 8-cycle, or an edge of G, then
by writing H ∈ C we mean that H is a connected component of C.

3. Computing the MZZ Polynomial from Smaller Graphs

In this section, we provide several results that enable us to calculate the MZZ poly-
nomial of a generalized phenylene by using the MZZ polynomials of subgraphs of the
original graph. We should mention that the results stated in this section are analogous to
those from [5,17], but several additional insights are needed in our case.

The following notation will be used for any generalized phenylene G:
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• If e = uv is an edge of G, then G− e = G− uv denotes the graph obtain from G by
deleting edge e;

• If e = uv is an edge of G, then G− u− v denotes the graph obtain from G by deleting
vertices u and v, together with all the edges incident to u or v;

• If f is an inner face of G, then G− f denotes the graph obtain from G by deleting all
the vertices of f , together with all the edges incident to the vertices of f ;

• If f and f ′ are two adjacent inner faces of G, then G− f − f ′ denotes the graph obtain
from G by deleting all the vertices of f and all the vertices of f ′, together with all the
edges incident to these vertices;

• If f is a hexagon of G and f ′ a quadrilateral of G such that f and f ′ are adjacent, then
f f ′ denotes the unique 8-cycle of G induced by f and f ′.

In the first theorem we show that the MZZ polynomial of a generalized phenylene G
is equal to the product of MZZ polynomials of connected components of G.

Theorem 1. Let G be a generalized phenylene with connected components G1, G2, . . . , Gp. Then
it holds

MZZ(G) =
p

∏
j=1

MZZ(Gj).

Proof. If CC(G) = ∅, the result is obvious. Otherwise, we can write the set CC(Gj) as
CC(Gj) = {C|Gj : C ∈ CC(G)}, where C|Gj denotes the restriction of C to Gj for any
j ∈ {1, . . . , p}. Therefore, one can obtain

MZZ(G) = ∑
C∈CC(G)

xq(C)yh(C)zo(C) = ∑
C∈CC(G)

p

∏
j=1

x
q(C|Gj

)
y

h(C|Gj
)
z

o(C|Gj
)

= ∑
C1∈CC(G1)

∑
C2∈CC(G2)

· · · ∑
Cp∈CC(Gp)

p

∏
j=1

xq(Cj)yh(Cj)zo(Cj)

=
p

∏
j=1

∑
Cj∈CC(Gj)

xq(Cj)yh(Cj)zo(Cj) =
p

∏
j=1

MZZ(Gj),

which is the desired result.

The next theorem can be applied when one has a generalized phenylene composed of
several generalized phenylenes joined by edges.

Theorem 2. If G is a generalized phenylene and e = uv is an edge of G not belonging to any
quadrilateral, hexagon or 8-cycle of G, then it holds

MZZ(G) = MZZ(G− u− v) + MZZ(G− e).

Proof. If CC(G) = ∅, the result obviously follows. Therefore, we can suppose CC(G) 6= ∅.
Let CC1 = {C ∈ CC(G) : e ∈ C} and CC2 = {C ∈ CC(G) : e /∈ C}. Therefore, we obtain

MZZ(G) = ∑
C∈CC(G)

xq(C)yh(C)zo(C)

= ∑
C∈CC1

xq(C)yh(C)zo(C) + ∑
C∈CC2

xq(C)yh(C)zo(C)

= ∑
C∈CC1

xq(C−e)yh(C−e)zo(C−e) + ∑
C∈CC2

xq(C)yh(C)zo(C).
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We can easily see that

∑
C∈CC1

xq(C−e)yh(C−e)zo(C−e) = ∑
C∈CC(G−u−v)

xq(C)yh(C)zo(C).

On the other hand, we know that e does not belong to any quadrilateral, hexagon or 8-cycle
of G, which implies

∑
C∈CC2

xq(C)yh(C)zo(C) = ∑
C∈CC(G−e)

xq(C)yh(C)zo(C).

Therefore, we obtain

MZZ(G) = ∑
C∈CC(G−u−v)

xq(C)yh(C)zo(C) + ∑
C∈CC(G−e)

xq(C)yh(C)zo(C)

= MZZ(G− u− v) + MZZ(G− e),

which completes the proof.

The following theorem will be essentially used in the proofs of some other results.

Theorem 3. Suppose that G is a generalized phenylene. Let e = uv be a boundary edge of G
such that e also lies on some hexagon f of G (see Figure 3). Also, let p ≤ 5 denotes the number of
quadrilaterals adjacent to f . If p = 0, then

MZZ(G) = yMZZ(G− f ) + MZZ(G− u− v) + MZZ(G− e).

If p 6= 0, let f1, . . . , fp be the quadrilaterals adjacent to f . Then

MZZ(G) = yMZZ(G− f ) + MZZ(G− u− v)

+ z
p

∑
j=1

MZZ(G− f − f j) + MZZ(G− e).

Figure 3. Generalized phenylene G in Theorem 3.

Proof. If CC(G) = ∅, the result obviously follows. Therefore, assume CC(G) 6= ∅. Note
that the details of the proof will be stated only for p 6= 0, since the case p = 0 is easier.
Firstly, we introduce the following sets:

CC1 = {C ∈ CC(G) : f ∈ C},
CC2 = {C ∈ CC(G) : e ∈ C},
CC3j = {C ∈ CC(G) : f f j ∈ C} for j ∈ {1, . . . , p},

CC4 = CC(G)−CC1 −CC2 −
p⋃

j=1

CC3j.

Since the sets stated above are pairwise disjoint, we obtain
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MZZ(G) = ∑
C∈CC(G)

xq(C)yh(C)zo(C)

=
2

∑
j=1

∑
C∈CCj

xq(C)yh(C)zo(C) +
p

∑
j=1

∑
C∈CC3j

xq(C)yh(C)zo(C)

+ ∑
C∈CC4

xq(C)yh(C)zo(C)

= ∑
C∈CC1

xq(C− f )yh(C− f )+1zo(C− f ) + ∑
C∈CC2

xq(C−e)yh(C−e)zo(C−e)

+
p

∑
j=1

∑
C∈CC3j

xq(C− f f j)yh(C− f f j)zo(C− f f j)+1 + ∑
C∈CC4

xq(C)yh(C)zo(C)

= y ∑
C∈CC(G− f )

xq(C)yh(C)zo(C) + ∑
C∈CC(G−u−v)

xq(C)yh(C)zo(C)

+ z
p

∑
j=1

∑
C∈CC(G− f− f j)

xq(C)yh(C)zo(C) + ∑
C∈CC(G−e)

xq(C)yh(C)zo(C)

= yMZZ(G− f ) + MZZ(G− u− v)

+ z
p

∑
j=1

MZZ(G− f − f j) + MZZ(G− e),

which means we are done.

A statement similar to that in Theorem 3 can be obtained if f is a quadrilateral.

Theorem 4. Suppose that G is a generalized phenylene. Let e = uv be a boundary edge of G
such that e also lies on some quadrilateral f of G. Also, let p ≤ 3 denotes the number of hexagons
adjacent to f . If p = 0, then

MZZ(G) = xMZZ(G− f ) + MZZ(G− u− v) + MZZ(G− e).

If p 6= 0, let f1, . . . , fp be the hexagons adjacent to f . Then

MZZ(G) = xMZZ(G− f ) + MZZ(G− u− v)

+ z
p

∑
j=1

MZZ(G− f − f j) + MZZ(G− e).

Proof. The proof is very similar to the proof of Theorem 3. Therefore, we skip the de-
tails.

The following proposition will be needed in several parts of the paper.

Proposition 2. Suppose G is a generalized phenylene and e = uv is an edge of G. If e does not
belong to any perfect matching of G, then

MZZ(G) = MZZ(G− e).

On the other hand, if e belongs to all perfect matchings of G (or if G does not have a perfect
matching), then

MZZ(G) = MZZ(G− u− v).
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Proof. It is easy to see that both formulas hold if G does not have a perfect matching (in
such a case MZZ(G) = MZZ(G− e) = MZZ(G− u− v) = 0). Therefore, suppose that G
has a perfect matching.

If e does not belong to any perfect matching or if it belongs to all perfect matchings,
then obviously e can not be an edge of a 4-cycle, a 6-cycle, or an 8-cycle that is contained
in some (4,6,8)-Clar cover of G. If e does not belong to any perfect matching, then the set
CC(G) is the same as the set CC(G − e). On the other hand, if e belongs to all perfect
matchings of G, we can find a bijection between the set CC(G) and the set CC(G− u− v),
which preserves the number of 4-cycles, 6-cycles, and 8-cycles in corresponding (4,6,8)-Clar
covers. The result now follows directly from the definition of the MZZ polynomial.

To state the next theorem, we need the following assumption and some additional no-
tation.

Assumption 1. Let G1 be a generalized phenylene with a perfect matching and let e1 = u1v1 be a
boundary edge of G1 with both end vertices of degree 2 such that e1 also lies on some hexagon f1
of G1. Similarly, let G2 be a generalized phenylene with a perfect matching and let e2 = u2v2 be a
boundary edge of G2 such that e2 also lies on some quadrilateral f2 of G2.

By identifying edges e1 and e2 of graphs G1 and G2 satisfying Assumption 1, we obtain
another generalized phenylene which will be denoted as G1 ·G2, see Figure 4. Moreover, by
e = uv we denote the new edge obtained by the identification of edges e1 and e2 (sometimes
we also write e instead of e1 or e2). In addition, for i ∈ {1, 2}, denote by G′i the graph
Gi − ui − vi and by G′′i the graph Gi − fi.

Figure 4. Graph G1 · G2 in Theorem 5.

In the following theorem, we prove a formula for computing the MZZ polynomial of
G1 · G2.

Theorem 5. If G1 and G2 are two generalized phenylenes satisfying Assumption 1, then the MZZ
polynomial of G1 · G2 can be computed as

MZZ(G1 · G2) = MZZ(G1)MZZ(G′2) + MZZ(G′1)MZZ(G2)

+ zMZZ(G′′1 )MZZ(G′′2 )−MZZ(G′1)MZZ(G′2).

Proof. Let s1, . . . , sp, p ≤ 3, be the quadrilaterals of G1 adjacent to f1. We can assume that
p ≥ 1 (otherwise the proof is immediate). Let all the notation be as in Figure 4. Firstly, we
apply Theorem 3 to edge uu′ of G1 · G2. Therefore,

MZZ(G1 · G2) = yMZZ(G1 · G2 − f1) + MZZ(G1 · G2 − u− u′)

+ z
p

∑
j=1

MZZ(G1 · G2 − f1 − sj) + zMZZ(G1 · G2 − f1 − f2)

+ MZZ(G1 · G2 − uu′).

By Theorem 1, we have

MZZ(G1 · G2 − f1) = MZZ(G1 − f1)MZZ(G′2),
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MZZ(G1 · G2 − f1 − f2) = MZZ(G′′1 )MZZ(G′′2 ),

and
MZZ(G1 · G2 − f1 − sj) = MZZ(G1 − f1 − sj)MZZ(G′2)

for j ∈ {1, . . . , p}.
It is easy to see that the edge vv′ does not belong to any perfect matching of G1 · G2 −

uu′. This is obvious if G1 · G2 − uu′ does not have a perfect matching. Otherwise, suppose
that vv′ belongs to some perfect matching of G1 · G2 − uu′. Then it follows that the graph
G2 − v has a perfect matching, which is a contradiction because G2 has a perfect matching.
Consequently, by Proposition 2 and Theorem 1 we obtain

MZZ(G1 · G2 − uu′) = MZZ(G′1)MZZ(G2).

In a similar way we can see that if G1 · G2 − u− u′ has a perfect matching, then the edge
vv′ belongs to any perfect matching of G1 · G2 − u− u′ (otherwise G2 − u has a perfect
matching) and therefore, by Proposition 2 and Theorem 1 we obtain

MZZ(G1 · G2 − u− u′) = MZZ(G′1 − u′ − v′)MZZ(G′2).

Hence, it follows

MZZ(G1 · G2) = MZZ(G′1)MZZ(G2) + zMZZ(G′′1 )MZZ(G′′2 )

+ MZZ(G′2)
(

yMZZ(G1 − f1) + MZZ(G′1 − u′ − v′)

+ z
p

∑
j=1

MZZ(G1 − f1 − sj)
)

.

Next, we apply Theorem 3 to edge e = uv (or e1 = u1v1) of G1. Consequently,

MZZ(G1) = yMZZ(G1 − f1) + MZZ(G1 − u− v)

+ z
p

∑
j=1

MZZ(G1 − f1 − sj) + MZZ(G1 − e).

Obviously, the edges uu′ and vv′ belong to all perfect matchings of G1 − e (if this graph
has a perfect matching), so Proposition 2 implies

MZZ(G1 − e) = MZZ(G1 − u− v− u′ − v′) = MZZ(G′1 − u′ − v′).

Therefore,

MZZ(G1)−MZZ(G′1) = yMZZ(G1 − f1) + MZZ(G′1 − u′ − v′)

+ z
p

∑
j=1

MZZ(G1 − f1 − sj)

and we finally obtain

MZZ(G1 · G2) = MZZ(G′1)MZZ(G2) + zMZZ(G′′1 )MZZ(G′′2 )

+ MZZ(G1)MZZ(G′2)−MZZ(G′1)MZZ(G′2),

which completes the proof.

Remark 1. It can happen that G1 · G2 does not have a perfect matching although each of G1 and
G2 has a perfect matching. In this case, edge e1 should not belong to any perfect matching of G1
and e2 should not belong to any perfect matching of G2. Then we have MZZ(G′1) = MZZ(G′2) =
MZZ(G′′1 ) = MZZ(G′′2 ) = 0, so both sides of the formula stated in Theorem 5 are equal to 0.
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The basic compound of a phenylene is the graph obtained from a quadrilateral and a
hexagon by identifying two edges, see Figure 5a. We now apply the previous result in
the case where G2 is the basic compound of a phenylene. Therefore, we obtain the MZZ
polynomial of G1 · P, see Figure 5b.

Figure 5. (a) The basic compound of a phenylene P and (b) the graph G1 · P.

Corollary 1. Let P be the basic compound of a phenylene and let e be an edge of P shown in
Figure 5a. If G1 is a generalized phenylene satisfying Assumption 1, then

MZZ(G1 · P) = (y + 2)MZZ(G1) + zMZZ(G′′1 ) + (x + z + 1)MZZ(G′1).

Proof. Obviously, MZZ(P) = x + y+ z+ 3, MZZ(P′) = y+ 2, and MZZ(P′′) = 1. Hence,
by Theorem 5 we obtain

MZZ(G1 · P) = MZZ(G1)MZZ(P′) + MZZ(G′1)MZZ(P)

+ zMZZ(G′′1 )MZZ(P′′)−MZZ(G′1)MZZ(P′)

= MZZ(G1)(y + 2) + MZZ(G′1)(x + y + z + 3)

+ zMZZ(G′′1 )−MZZ(G′1)(y + 2)

= (y + 2)MZZ(G1) + zMZZ(G′′1 ) + (x + z + 1)MZZ(G′1),

which finishes the proof.

In a similar way, we can also prove the next corollary.

Corollary 2. Let Q be the quadrilateral and let e be an edge of Q. If G1 is a generalized phenylene
satisfying Assumption 1, then

MZZ(G1 ·Q) = MZZ(G1) + zMZZ(G′′1 ) + (x + 1)MZZ(G′1).

4. Phenylene Chains

In this section, we provide some techniques for computing the MZZ polynomial of
phenylene chains. Interestingly, it turns our that this task requires a different approach
than the one used to calculate the (generalized) Zhang–Zhang polynomial of benzenoid
chains [5,17]. In fact, even for linear phenylene chains, the computation is not trivial.

Let Ph0 be the graph with no vertices and let Ph1 be the hexagon h1. Moreover, for
n > 1 we denote by Phn a phenylene chain with exactly n hexagons obtained by adding the
basic compound of a phenylene to the hexagon hn−1 of Phn−1 (to the edge with both end
vertices of degree 2 in Phn−1). The new hexagon is denoted by hn. As a special case, denote
by PLn the linear phenylene chain with n hexagons, where n ≥ 0. The linear phenylene
chain PL6 is depicted in Figure 6.

Computing the (generalized) Zhang–Zhang polynomial of a linear benzenoid chain is
straightforward; see [5,17]. On the other hand, obtaining the MZZ polynomial of a linear
phenylene chain is more complicated. However, this polynomial can be computed by the
recurrence relation described in the following proposition.
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Figure 6. Linear phenylene chain PL6.

Proposition 3. If PLn is the linear phenylene chain with n hexagons, then MZZ(PL0) = 1,
MZZ(PL1) = y + 2, and for any n ≥ 1 it holds

MZZ(PLn+1) = (y + 2)MZZ(PLn) + (x + 2z + 1)MZZ(PLn−1).

Proof. We obtain by definition that MZZ(PL0) = 1 and MZZ(PL1) = y + 2. If n ≥ 1, then
the graph PLn+1 can be obtained as PLn · P, where P is the basic compound of a phenylene,
see Figure 5. Obviously, PL′′n = PLn−1 and therefore, MZZ(PL′′n) = MZZ(PLn−1). More-
over, by Proposition 2 we have MZZ(PL′n) = MZZ(PLn−1). Consequently, by Corollary 1
we obtain

MZZ(PLn+1) = (y + 2)MZZ(PLn) + zMZZ(PL′′n) + (x + z + 1)MZZ(PL′n)

= (y + 2)MZZ(PLn) + zMZZ(PLn−1) + (x + z + 1)MZZ(PLn−1)

= (y + 2)MZZ(PLn) + (x + 2z + 1)MZZ(PLn−1),

which is the desired result.

By using the above result, we immediately get MZZ(PL2) = y2 + x + 4y + 2z + 5 and
MZZ(PL3) = y3 + 2xy + 6y2 + 4yz + 4x + 14y + 8z + 12.

As a simple consequence of the above proposition, we can calculate the number of
perfect matchings (Kekulé structures) of the linear phenylene chain PLn. This number will
be denoted as Kn. Since Kn = MZZ(PLn; 0, 0, 0), it follows by Proposition 3 that K0 = 1,
K1 = 2, and for any n ≥ 1 it holds

Kn+1 = 2Kn + Kn−1.

By solving this recurrence relation, we obtain that the number of perfect matchings of PLn
is equal to

Kn =
2 +
√

2
4

(
1 +
√

2
)n

+
2−
√

2
4

(
1−
√

2
)n

.

However, we should point out that the number Kn was already calculated in [19] and that
this sequence is closely related to the sequence A000129 (the Pell numbers) in the On-line
encyclopedia of integer sequences. Moreover, different methods for computing the number
of perfect matching of various molecular graphs are presented in [1,2].

Next, we describe an algorithm that calculates the MZZ polynomial of any phenylene
chain. Some auxiliary definitions and results are needed for this purpose.

Let Phn be a phenylene chain with n hexagons, where n ≥ 2. Obviously, hexagon hn
contains exactly four vertices of degree 2. By deleting these four vertices from Phn, we
obtain the corresponding reduced phenylene chain Ph∗n. Additionally, let Ph∗1 be an edge K2.
In Figure 7, we can see a phenylene chain Ph4 and the corresponding reduced phenylene
chain Ph∗4 .

Figure 7. A phenylene chain Ph4 and the corresponding reduced phenylene chain Ph∗4 .



Axioms 2023, 12, 1053 12 of 18

First, we state the following proposition, which generalizes Proposition 3.

Proposition 4. Let Phn+1 be a phenylene chain with n + 1 hexagons, where n ≥ 2. If the hexagon
hn is linear, then it holds

MZZ(Phn+1) = (y + 2)MZZ(Phn) + (x + 2z + 1)MZZ(Phn−1).

On the other hand, if the hexagon hn is angular, then it holds

MZZ(Phn+1) = (y + 2)MZZ(Phn) + zMZZ(Phn−1) + (x + z + 1)MZZ(Ph∗n).

Proof. As in the proof of Proposition 3, Phn+1 can be obtained as Phn · P, where P is the
basic compound of a phenylene, see Figure 5. Again, it holds Ph′′n = Phn−1. In the first case,
by Proposition 2 we have MZZ(Ph′n) = MZZ(Phn−1). On the other hand, if hn is angular,
we obtain MZZ(Ph′n) = MZZ(Ph∗n). The result now follows by Corollary 1.

A similar proposition can be stated also for reduced phenylene chains.

Proposition 5. Let Phn+1 be a phenylene chain with n + 1 hexagons, where n ≥ 2, and let Ph∗n+1
be the corresponding reduced phenylene chain. If the hexagon hn is linear, then it holds

MZZ(Ph∗n+1) = MZZ(Phn) + (x + z + 1)MZZ(Phn−1).

On the other hand, if the hexagon hn is angular, then it holds

MZZ(Ph∗n+1) = MZZ(Phn) + zMZZ(Phn−1) + (x + 1)MZZ(Ph∗n).

Proof. Obviously, Ph∗n+1 can be obtained as Phn · Q, where Q is the quadrilateral. The
proof is now similar to the proof of Proposition 4, but we use Corollary 2.

To a phenylene chain Phn with n hexagons we assign the vector of length n, denoted
as (s1, s2, . . . , sn), such that s1 = sn = 0 and if n > 2, then for every i ∈ {2, . . . , n − 1}
we define si ∈ {1, 2} in the following way: si = 1 if the hexagon hi is linear; and si = 2
if the hexagon hi is angular. For example, the phenylene chain from Figure 1 has the
corresponding vector (0, 1, 2, 2, 0).

By using this notation, we can now present Algorithm 1. In the algorithm, we use the
above propositions and the following initial values: MZZ(Ph1) = y + 2, MZZ(Ph∗1) = 1,
MZZ(Ph2) = y2 + x + 4y + 2z + 5, and MZZ(Ph∗2) = x + y + z + 3.

By using our implementation of Algorithm 1 in SageMath, for phenylene G from
Figure 1 we immediately obtain

MZZ(G) = y5 + x3y + 2x2y2 + 4xy3 + 10y4 + 2x2yz + 4xy2z + 8y3z

+ xyz2 + 2y2z2 + 3x3 + 14x2y + 28xy2 + 44y3 + 8x2z + 32xyz

+ 52y2z + 7xz2 + 21yz2 + 2z3 + 23x2 + 73xy + 106y2

+ 56xz + 126yz + 39z2 + 69x + 140y + 112z + 81.

We can also state the following theorem.

Theorem 6. Algorithm 1 correctly computes the MZZ polynomial of a phenylene chain Phn with
n hexagons and the corresponding reduced phenylene chain Ph∗n. Moreover, it can be implemented
in O(n) time, in the model where addition and multiplication of polynomials of three variables can
be performed in constant time.

Proof. By Propositions 4 and 5, the algorithm correctly computes the MZZ polynomial of
Phn and Ph∗n. Moreover, the algorithm contains one “for” loop with n− 2 steps and all the
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remaining commands can be calculated in constant time. Hence, it follows that Algorithm 1
can be implemented in linear time with respect to the number of hexagons.

Algorithm 1: The MZZ polynomial of a (reduced) phenylene chain

Input: Vector (s1, s2, . . . , sn) of a phenylene chain Phn.
Output: The MZZ polynomial of Phn and Ph∗n.

1 A := y + 2, B := 1, C := y2 + x + 4y + 2z + 5, D := x + y + z + 3
2 if n = 1 then
3 return A, B
4 end
5 if n = 2 then
6 return C, D
7 end
8 for i = 2, . . . , n− 1 do
9 if si = 1 then

10 mzz := (y + 2)C + (x + 2z + 1)A, mzzr := C + (x + z + 1)A
11 end
12 if si = 2 then
13 mzz := (y + 2)C + zA + (x + z + 1)D, mzzr := C + zA + (x + 1)D
14 end
15 A := C, C := mzz, D := mzzr
16 end
17 return mzz, mzzr

As we will see in the next section, it turns out useful to consider also chains that start
with a quadrilateral. In this paper, such chains will be called modified phenylene chains. Let
MPh0 be an edge K2 and let MPh1 be the basic compound of a phenylene with hexagon
h1. Moreover, for n > 1, we denote by MPhn a modified phenylene chain with exactly
n hexagons obtained by adding the basic compound of a phenylene to hexagon hn−1 of
MPhn−1 (to the edge with both end vertices of degree 2 in MPhn−1). The new hexagon is
denoted by hn.

Similar to before, the reduced modified phenylene chain can be also defined (by deleting
the four vertices of degree 2 in hexagon hn). If it is obtained from MPhn with n ≥ 1, we will
denote it as MPh∗n. Figure 8 shows a modified phenylene chain MPh4 and the correspond-
ing reduced modified phenylene chain MPh∗4 . Note that any modified phenylene chain is
also a reduced phenylene chain, but on the other hand, reduced modified phenylene chains
form another class of graphs.

Figure 8. A modified phenylene chain MPh4 and the corresponding reduced modified phenylene
chain MPh∗4 .

The next proposition can be proved in the same way as Propositions 4 and 5. We notice
that the same recurrence relations apply for modified phenylene chains (with different
initial conditions).
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Proposition 6. Let MPhn+1 be a modified phenylene chain with n + 1 hexagons, where n ≥ 1,
and let MPh∗n+1 be the reduced modified phenylene chain. If the hexagon hn is linear, then it holds

MZZ(MPhn+1) = (y + 2)MZZ(MPhn) + (x + 2z + 1)MZZ(MPhn−1),

MZZ(MPh∗n+1) = MZZ(MPhn) + (x + z + 1)MZZ(MPhn−1).

On the other hand, if the hexagon hn is angular, then it holds

MZZ(MPhn+1) = (y + 2)MZZ(MPhn) + zMZZ(MPhn−1)

+ (x + z + 1)MZZ(MPh∗n),

MZZ(MPh∗n+1) = MZZ(MPhn) + zMZZ(MPhn−1) + (x + 1)MZZ(MPh∗n).

Similarly as before, to a modified phenylene chain MPhn with n hexagons we as-
sign the vector of length n, (s1, s2, . . . , sn), such that sn = 0 and if n > 1, then for every
i ∈ {1, . . . , n − 1} we define si ∈ {1, 2} in the following way: si = 1 if the hexagon hi
is linear; and si = 2 if the hexagon hi is angular. By using the stated proposition and
initial values MZZ(MPh0) = 1, MZZ(MPh1) = x + y + z + 3, MZZ(MPh∗1) = x + 2,
we obtain Algorithm 2 which computes the MZZ polynomial for any (reduced) modified
phenylene chain. It can be noticed that this algorithm is a slight modification of Algorithm 1.

Algorithm 2: The MZZ polynomial of a (reduced) modified phenylene chain

Input: Vector (s1, s2, . . . , sn) of a modified phenylene chain MPhn.
Output: The MZZ polynomial of MPhn and MPh∗n.

1 A := 1, B := x + y + z + 3, C := x + 2
2 if n = 1 then
3 return B, C
4 end
5 for i = 1, . . . , n− 1 do
6 if si = 1 then
7 mzz := (y + 2)B + (x + 2z + 1)A, mzzr := B + (x + z + 1)A
8 end
9 if si = 2 then

10 mzz := (y + 2)B + zA + (x + z + 1)C, mzzr := B + zA + (x + 1)C
11 end
12 A := B, B := mzz, C := mzzr
13 end
14 return mzz, mzzr

We can also check that Algorithm 2 correctly calculates the MZZ polynomial of a
(reduced) modified phenylene chain in linear time with respect to the number of hexagons
(in the model where addition and multiplication of polynomials of three variables can be
performed in constant time).

5. Phenylenes with Branched Hexagons

In this section we show how the MZZ polynomial can be calculated for phenylenes
that contain some branched hexagons. Note that the main theorem of the section is similar
to analogous results from [5,17], but some technical differences are needed. In the theorem,
the following assumption will be required.

Assumption 2. Let G1, G2, and G3 be generalized phenylenes such that each of them has a perfect
matching. Moreover, for any i ∈ {1, 2, 3} let ei = uivi be a boundary edge of Gi such that ei also
lies on some quadrilateral fi of Gi.
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By adding edges u1v3, v1u2, and v2u3 to the disjoint union of graphs G1, G2, and
G3 satisfying Assumption 2, we obtain another generalized phenylene and denote it as
G1 ∗ G2 ∗ G3, see Figure 9 for an example. Moreover, let f be the hexagon of G1 ∗ G2 ∗ G3
that contains edges u1v3, v1u2, and v2u3. It is easy to see that the graph G1 ∗ G2 ∗ G3 also
has a perfect matching. Similarly as in Section 3, for any i ∈ {1, 2, 3} denote by G′i the graph
Gi − ui − vi and by G′′i the graph Gi − fi.

Figure 9. A generalized phenylene G = G1 ∗ G2 ∗ G3.

In the next theorem, we calculate the MZZ polynomial of G1 ∗ G2 ∗ G3.

Theorem 7. If G1, G2, and G3 are three generalized phenylenes satisfying Assumption 2, then the
MZZ polynomial of G = G1 ∗ G2 ∗ G3 can be computed as

MZZ(G) =
3

∏
j=1

MZZ(Gj) + (y + 1)
3

∏
j=1

MZZ(G′j) + zMZZ(G′′1 )MZZ(G′2)MZZ(G′3)

+ zMZZ(G′1)MZZ(G′′2 )MZZ(G′3) + zMZZ(G′1)MZZ(G′2)MZZ(G′′3 ).

Proof. Suppose that we have the notation from Assumption 2 (see also Figure 9). By using
Theorem 3 on the edge u1v3 of G one can obtain

MZZ(G) = MZZ(G− u1v3) + MZZ(G− u1 − v3) + yMZZ(G− f )

+ zMZZ(G− f − f1) + zMZZ(G− f − f2) + zMZZ(G− f − f3).

It is easy to see that edges v1u2 and v2u3 do not belong to any perfect matching of G− u1v3
and, therefore, by Proposition 2 and Theorem 1 it follows

MZZ(G− u1v3) = MZZ(G− u1v3 − v1u2 − v2u3) =
3

∏
j=1

MZZ(Gj).

In a similar way we can conclude that edges v1u2 and v2u3 belong to every perfect matching
of G− u1 − v3 (if this graph has a perfect matching) and, consequently, by Proposition 2
and Theorem 1 we obtain

MZZ(G− u1 − v3) = MZZ(G− f ) =
3

∏
j=1

MZZ(G′j).

Furthermore, Theorem 1 implies

MZZ(G− f − f1) = MZZ(G′′1 )MZZ(G′2)MZZ(G′3)
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and analogous formulas can be obtained for MZZ(G− f − f2) and MZZ(G− f − f3). By
taking the obtained equalities into the first formula of this proof, we finally obtain the
desired result.

By using Theorem 7, we can reduce the problem of calculating the MZZ polynomial of
any phenylene to the problem of calculating the MZZ polynomials of (reduced) phenylene
chains and (reduced) modified phenylene chains, which can be easily solved by using
Algorithms 1 and 2.

To show an example, let G = G1 ∗ G2 ∗ G3 be a phenylene from Figure 10.

Figure 10. A phenylene G = G1 ∗ G2 ∗ G3.

We can easily calculate that

MZZ(G1) = x2 + xy + y2 + xz + yz + 5x + 5y + 5z + 8,

MZZ(G′1) = y2 + x + 4y + 2z + 5,

MZZ(G′′1 ) = x + y + z + 3

and

MZZ(G2) = MZZ(G3) = x + y + z + 3,

MZZ(G′2) = MZZ(G′3) = y + 2,

MZZ(G′′2 ) = MZZ(G′′3 ) = 1.

Therefore, Theorem 7 finally gives

MZZ(G) = y5 + x4 + 3x3y + 4x2y2 + 4xy3 + 10y4 + 3x3z + 7x2yz + 8xy2z

+ 8y3z + 3x2z2 + 5xyz2 + 4y2z2 + xz3 + yz3 + 11x3 + 27x2y + 32xy2

+ 44y3 + 27x2z + 54xyz + 56y2z + 21xz2 + 29yz2 + 5z3 + 47x2 + 93xy

+ 108y2 + 93xz + 143yz + 50z2 + 97x + 149y + 133z + 92.

A more complicated case is obtained if we have a situation from Figure 11, where G
is a phenylene containing two branched hexagons with one quadrilateral between them.
To calculate MZZ(G1), we can firstly apply Corollary 2 for the face f1. Note that in this
case Theorem 7 and Corollary 2 both require to calculate MZZ(G′′1 ) = MZZ(G1 − f1).
However, we notice that by Theorem 1 it holds MZZ(G′′1 ) = MZZ(G1

1)MZZ(G2
1) since the

edge e′ can not belong to any perfect matching of G′′1 = G1 − f1. Here G1
1 and G2

1 are the
two connected components of the graph G′′1 − e′ (see Figure 11).
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Figure 11. A phenylene G = G1 ∗ G2 ∗ G3, where G1
1 and G2

1 are connected components of G′′1 − e′.

6. Conclusions

In the paper, we have introduced the MZZ polynomial for any generalized pheny-
lene. By definition, this polynomial counts the number of so called (4,6,8)-Clar covers
with specific numbers of 4-cycles, 6-cycles, and 8-cycles. We provided several results that
enable us to calculate the MZZ polynomial of a generalized phenylene by using the MZZ
polynomials of subgraphs of the original graph. Then, we focused on phenylene chains
and developed an efficient algorithm that calculates the MZZ polynomial for any (reduced)
phenylene chain in linear time with respect to the number of hexagons (assuming that addi-
tion and multiplication of polynomials of three variables can be calculated in constant time).
Furthermore, the main result of Section 5 can be used to calculate the MZZ polynomial of a
phenylene with branched hexagons.

Regarding the future work, it would be interesting to investigate the chemical ap-
plicability of the MZZ polynomial. In particular, relations between the MZZ polynomial
and some energy-based quantities of phenylenes can be tested. Moreover, it would be
nice to obtain new mathematical properties of the MZZ polynomial and investigate this
polynomial for some special classes of phenylenes.
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