
Citation: Le, T.H.P.; Chu, T.‑C. Novel

Method for Ranking Generalized

Fuzzy Numbers Based on

Normalized Height Coefficient and

Benefit and Cost Areas. Axioms 2023,

12, 1049. https://doi.org/10.3390/

axioms12111049

Academic Editor: Boldizsár

Tüű‑Szabó

Received: 15 September 2023

Revised: 25 October 2023

Accepted: 6 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Novel Method for Ranking Generalized Fuzzy Numbers Based
on Normalized Height Coefficient and Benefit and Cost Areas
Thi Hong Phuong Le 1 and Ta‑Chung Chu 2,*

1 College of Business, Southern Taiwan University of Science and Technology, Tainan 710301, Taiwan;
da71g205@stust.edu.tw

2 Department of Industrial Management and Information, Southern Taiwan University of Science
and Technology, Tainan 710301, Taiwan

* Correspondence: tcchu@stust.edu.tw

Abstract: This paper proposes a method for ranking generalized fuzzy numbers, which guarantees
that both horizontal and vertical values are important parameters affecting the final ranking score.
In this method, the normalized height coefficient is introduced to evaluate the influence of the height
of fuzzy numbers on the final ranking score. The higher the normalized height coefficient of a gen‑
eralized fuzzy number is, the higher its ranking. The left and right areas are presented to calculate
the impact of the vertical value on the final ranking score. The left area is considered the benefit
area. The right area is considered the cost area. A generalized fuzzy number is preferred if the ben‑
efit area is larger and the cost area is smaller. The proposed method can be employed to rank both
normal and non‑normal fuzzy numbers without normalization or height minimization. Numerical
examples and comparisons with other methods highlight the feasibility and robustness of the pro‑
posed method, which can overcome the shortcomings of some existing methods and can support
decision‑makers in selecting the best alternative.

Keywords: generalized fuzzy numbers; ranking; normalized height coefficient; left area; right area
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1. Introduction
Wang and Luo [1] highlighted that ranking fuzzy numbers is a very important issue in

fuzzy sets theory and applications and has been extensively researced. Some rankingmeth‑
ods have been reviewed and compared by [2–4]. Chou et al. [5] indicated that, neverthe‑
less, none of thesemethods can always guarantee a consistent result in every situation, and
some are even unintuitive and indiscriminate. Yu et al. [6] and Chi and Yu [7] emphasized
that when fuzzy numbers are non‑normal, somemethods use heightminimization (minwi)
or normalization, which leads to information loss. Methods using minwi include the maxi‑
mizing andminimizing sets for ranking fuzzy numbers used by [8] and the rank andmode
approach for ranking generalized fuzzy numbers proposed by [5]. The method that first
normalized fuzzy numbers before ranking them is where fuzzy numbers are ranked with
an integral value, introduced by [9].

It is impossible to define the boundary of the membership function of a fuzzy num‑
ber in normal form. Thus, recent studies have focused on considering the height of the
fuzzy number to avoid a loss of information and incorrect ranking [7]. However, such
studies have some limitations. Chen and Chen [10] determined three factors that affect
the ranking score: the defuzzified value, height, and spread. The defuzzified value and
height of a generalized fuzzy number are the major factors determining its ranking score;
the spread is only a minor factor. However, Kumar et al. [11] indicated that the rank‑
ing function proposed by Chen and Chen [10] does not satisfy the reasonable property

Axioms 2023, 12, 1049. https://doi.org/10.3390/axioms12111049 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12111049
https://doi.org/10.3390/axioms12111049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12111049
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12111049?type=check_update&version=2


Axioms 2023, 12, 1049 2 of 20

Ã ≻ B̃ ⇒
(

Ã − B̃
)

≻
(

B̃ − Ã
)
for the ordering of fuzzy quantities, which is a contra‑

diction according to Wang and Kerre [12] (see Example 1 in Section 2.3). Chen and San‑
guansat [13] considered the areas on the positive and negative sides and the height of the
generalized fuzzy numbers to evaluate the ranking score of the generalized fuzzy numbers.
Xu et al. [14] pointed out that in the situation when the score is zero, the results of Chen
and Sanguansat’s ranking method are unreasonable.

Chi and Yu [7] proposed ranking generalized fuzzy numbers on the basis of the cen‑
troid and rank index, which prevents the truncation of heights during comparison. To
avoid information loss, the original height of a given fuzzy number is retained and consid‑
ered an important factor to affect the ranking of the generalized fuzzy numbers. However,
this considers three factors, namely, the centroid, rank and mode, and height, as discrete
factors, with height being the least influential, leading to incorrect final ranking results
(see Example 2 in Section 2.3). De et al. [15] indicated that the height of fuzzy numbers
plays an essential role in preventing information loss. This study considers the centroid
point, rank index, and height for ranking interval type‑2 fuzzy numbers. However, this
method cannot be used to rank fuzzy numbers with different centroids and heights (see
Example 3 in Section 2.3). Revathi and Valliathal [16] used the centroid method for order‑
ing non‑normal fuzzy numbers with more parameters, which is investigated using level
analysis, which gives flexibility to the expert’s opinion. Nguyen and Chu [17] proposed a
DEMATEL‑ANP‑based fuzzy PROMETHEE II to rank startups, in which areas based on a
subject’s confidence level were suggested and height was not considered. He et al. [18] in‑
troduced a new fuzzy distance based on a novel interval distance that considers all points
within the intervals by using the concept of integration to calculate the average distance
between all points belonging to two intervals.

Jain [19] proposed the maximizing set to rank fuzzy numbers and restricted the mem‑
bership function fA(x) to the normal form. Chen [8] developed the maximizing and min‑
imizing sets for generalized fuzzy numbers. However, this paper used height minimiza‑
tion, which fails to rank the same fuzzy numbers with different heights (see Example 4 in
Section 2.3). Wang et al. [20] developed the deviation degreemethod based on themaximiz‑
ing and minimizing sets. According to Chutia [21], the expectation value of the centroid
points involved in the epsilon deviation degree method does not influence the heights of
fuzzy numbers, which leads to the incorrect ranking of non‑normal fuzzy numbers (illus‑
trated in Example 4 in Section 2.3). Furthermore, according to Equation (11), in the case
where λ = 0 and 1 − λ = 0, when the left and right deviation degree are multiplied
by these values, they become valueless [22]. Wang and Luo [1] proposed ranking indices
based on areas and considered the maximizing and minimizing sets as the positive ideal
and negative ideal points, respectively. However, this study does not consider the height
of fuzzy numbers and thus is not useful for ranking non‑normal fuzzy numbers (as shown
in Example 4 in Section 2.3). Asady [23] revised the deviation degree methodwith the new
left and right areas. However, Hajjari and Abbasbandy [24] pointed out that Asady’s revi‑
sion has a shortcoming similar to the method proposed by [20]. Nejad and Mashinchi [22]
proposed ranking fuzzy numbers based on the areas on the left and the right sides. To pre‑
vent the values of λ = 0 and 1− λ = 0, and SR

i = 0 and SL
i = 0, in any collection including

the fuzzy number Ai, i = 1, 2, . . . . . . , n, two triangular fuzzy numbers, A0 and An+1, are
added. Yu et al. [25] pointed out that [22,23] redefined the deviation degree of a fuzzy
number to overcome the shortcomings of the method proposed by [20]. However, most
methods based on the deviation degree approach exhibit the same limitations due to the
neglect of the decision makers’ attitude, incoherent transfer coefficient formulas, and unre‑
liable ranking index computation. Chutia [21] proposed a method for ranking fuzzy num‑
bers by using the value and angle in the epsilon‑deviation degree method. This method
also has some limitations, which are illustrated in Example 5 in Section 2.3. The historical
timeline of the aforementioned research is presented in the following chart.
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To overcome the aforementioned obstacles, this paper proposes a method for ranking
generalized fuzzy numbers based on the left area (benefit area), the right area (cost area),
and a normalized height coefficient. In this method, the left area denotes the area from
xmin to xL and is bounded by themaximizingmembership function fM(x) andminimizing
membership function fG(x). A ranking is higher if the left area is larger; therefore, the left
area is considered the benefit area. The right area denotes the area from xmax to xR and
is bounded by the maximizing membership function fM(x) and minimizing membership
function fG(x). A ranking is higher if the right area is smaller; therefore, the right area
is considered the cost area. The normalized height coefficient reflects the influence of the
height of generalized fuzzy numbers on their final ranking scores. The proposed method
can rank both normal and non‑normal fuzzy numbers without normalization or height
minimization, thereby avoiding information loss and incorrect final ranking results.

The main contributions of this study to bridge these gaps are briefly as follows:
(I) This research develops a new coefficient to calculate the impact of the height of gen‑

eralized fuzzy numbers on the final ranking score.
(II) The new areas considered as benefit and cost are introduced to reflect the influence

of vertical values on the final ranking score.
(III) A new index is proposed to guarantee that both vertical and horizontal values of a

generalized fuzzy number are important parameters that impact the final ranking
score.

(IV) The proposedmethod can rank both normal and non‑normal fuzzy numbers without
normalization or height minimization, thereby avoiding information loss and incor‑
rect final ranking results.

(V) The proposed method can overcome the shortcomings of some existing methods and
can be applied to many fuzzyMCDMmodels to support decision makers in selecting
the most suitable alternative in the decision‑making process.
This paper is organized as follows. In Section 2, some basic definitions are introduced.

Section 2 also provides an overview of the deviation degreemethod and explores the short‑
comings of recent methods. In Section 3, the proposed method of ranking generalized
fuzzy numbers based on the normalized height coefficient and benefit and cost areas is
presented. In Section 4, numerical examples and comparisons are presented. Finally, we
provide concluding remarks in Section 5.

2. Preliminaries
2.1. Definitions and Notions
Definition 1. Fuzzy Sets
A = {(x, fA(x))| x ∈ U}, where U is the universe of discourse, x is an element in U, A is a fuzzy
set in U, and fA(x) is the membership function of A at x [26]. The larger fA(x), the stronger the
grade of membership for x in A.

Definition 2. Fuzzy Numbers
A real fuzzy number A is described as any fuzzy subset of the real line R with membership

function fA(x) which possesses the following properties [27]:
(a) fA(x) is a continuous mapping from R to [0, 1];
(b) fA(x) = 0, ∀x ∈ (−∞, a];
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(c) fA(x) is strictly increasing on [a, b];
(d) fA(x) = 1, x ∈ [b, c]; (e) fA is strictly decreasing on [c, d];
(f) fA(x) = 0, ∀x ∈ [d, ∞), where a ≺ b ≺ c ≺ d, A can be denoted as [a, b, c, d; w]. A

generalized trapezoidal fuzzy number A = (a, b, c, d; w) is described as any fuzzy subset of the real
lineR. The membership function fA(x) of the fuzzy number A can also be expressed as follows [28]:

fA(x) =



0, x < a;
w(x−a)

b−a , a ≤ x ≤ b;
w, b ≤ x ≤ c;
w(x−d)

c−d , c ≤ x ≤ d;
0, x > d

(1)

This generalized trapezoidal fuzzy number, A = (a, b, c, d; w), 0 ≤ w ≤ 1, as shown in
Figure 1.
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Definition 3. Arithmetic operations
According to Yu et al. [25], the arithmetic operations defined for two generalized trapezoidal

fuzzy numbers A1 = (a1, b1, c1, d1; w1) and A2 = (a2, b2, c2, d2; w2) are as follows:

A1 ⊕ A2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2;min(w1, w2)) (2)

A1 ⊖ A2 = (a1 − d2, b1 − c2, c1 − b2, d1 − a2;min(w1, w2)) (3)

A1 ⊗ A2 = (a1 × a2, b1 × b2, c1 × c2, d1 × d2;min(w1, w2)) (4)

2.2. A Review of the Deviation Degree Method
In this section, the review method from [20] is presented. Firstly, the minimal and

maximal reference sets are reviewed. Then, based on the minimal and maximal reference
sets, the left and right deviation degree (L–R deviation degree) is defined. Moreover, the
transfer coefficient, which measures the relative variation of the L–R deviation degree of
fuzzy numbers, is quoted.

Definition 4. For any group of L–R fuzzy numbers A1, A2, . . . , An, let xmin and xmax be the
infimum and supremum of the support set of these fuzzy numbers. Then, Amin and Amax denote
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the minimal reference set and maximal reference set of these fuzzy numbers, respectively, and their
membership functions are given by

fG(x) =

{
xmax−x

xmax−xmin
, if x ∈ S,

0, otherwise

}
(5)

fM(x) =

{
x−xmin

xmax−xmin
, if x ∈ S,

0, otherwise,

}
(6)

where S is the support set of these fuzzy numbers, i.e., S = ∪n
i=1S(Ai).

Definition 5. For any group of L–R fuzzy numbers A1, A2, . . . , An, let Amin and Amax be the
minimal reference set and maximal reference set of these fuzzy numbers, respectively. Then, the left
deviation degree and right deviation degree of Ai, i = 1, 2, . . . , n, are defined as follows:

dL
i =

∫ xL
Ai

xmin

(
fG(x)− f L

Ai
(x)

)
dx (7)

dR
i =

∫ xR
Ai

xmin

(
fM(x)− f R

Ai
(x)

)
dx (8)

where xL
Ai

and xR
Ai

, i = 1, 2, . . . , n, are the abscissas of the crossover points of f L
Ai
(x) and fG(x)

and f R
Ai
(x) and fM(x), respectively.

Definition 6. For a L–R fuzzy number Ai = (ai, bi, ci, di, wi), its expectation value of the centroid
is defined as follows:

Mi =

∫ di
ai

x fAi (x)dx∫ di
ai

fAi (x)dx
(9)

Definition 7. For a L–R fuzzy number Ai = (ai, bi, ci, di, wi), the transfer coefficient of Ai,
i = 1, 2, . . . , n, is given by

λi =
Mi − Mmin

Mmax − Mmin
(10)

where Mmax = max{M1, M2, . . . , Mn} and Mmin = min{M1, M2, . . . , Mn}.

Definition 8. The ranking index value of a L–R fuzzy number Ai, i = 1, 2, . . . , n, is given by:

di =


dL

i λi
1+dR

i (1−λi)
, Mmax ̸= Mmin

dL
i

1+dR
i

, Mmax = Mmin

(11)

Now, by using di, given in Equation (11), for any two L–R fuzzy numbers Ai, and Aj, it is
possible to rank these fuzzy numbers according to the following rules:

(1)Ai ≻ Aj, if and only if di ≻ dj
(2)Ai ≺ Aj, if and only if di ≺ dj
(3)Ai ∼ Aj, if and only if di = dj

2.3. Limitations and Shortcomings of Existing Methods
Example 1. Consider two generalized trapezoidal fuzzy numbers A1 = (0.2, 0.4, 0.6, 0.8; 0.35)
and A2 = (0.1, 0.2, 0.3, 0.4; 0.7), adopted from [11]. According to Chen and Chen [10] approach
A2 ≻ A1. However, Kumar et al. [11] noted that A2 − A1 ≺ A1 − A1, which is unreasonable and
a contradiction with [12].
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Example 2. Consider two sets; each set comprises two trapezoidal fuzzy numbers (Figures 2 and 3)
as follows:

Set 1 comprises A1 = (0, 0.2, 0.5, 0.7; 1) and A2 = (0.1, 0.2, 0.6, 0.8; 1).
Set 2 comprises A1 = (0, 0.2, 0.5, 0.7; 1) and A2 = (0.1, 0.2, 0.6, 0.8; 0.1).
According to Chi and Yu [10], the final ranking of Set 1 and Set 2 are the same, A2 ≻ A1,

which shows that the height does not affect the final ranking. These two sets have fuzzy numbers
with the same support but different heights; in Set 2, the height of A2 is 0.1.

Axioms 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

Figure 2. Fuzzy numbers 1 2 and A A  of Set 1 in Example 2. 

 

Figure 3. Fuzzy numbers 1 2 and A A  of Set 2 in Example 2. 

Example 3. Consider two sets, each comprising two type-2 trapezoidal fuzzy numbers (Figures 4 
and 5) as follows: 

Set 3 comprises 
( ) ( )( )1 0,0.3,0.5,0.6;1 ; 0.1,0.3,0.4,0.5;0.7A =  and 

( ) ( )( )2 0.1,0.2,0.4,0.8;1 ; 0.2,0.3,0.4,0.6;0.8A = . 
Set 4 comprises 

( ) ( )( )1 0,0.3,0.5,0.6;1 ; 0.1,0.3,0.4,0.5;0.7A =  and 

( ) ( )( )2 0.1,0.2,0.4,0.8;0.3 ; 0.2,0.3,0.4,0.6;0.1A = . 

According to De et al. [15], the final rankings of Set 3 and Set 4 are the same: 2 1A A . Therefore, 
height does not affect the final ranking. These two sets have fuzzy numbers with the same support 

Figure 2. Fuzzy numbers A1 and A2 of Set 1 in Example 2.

Axioms 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

Figure 2. Fuzzy numbers 1 2 and A A  of Set 1 in Example 2. 

 

Figure 3. Fuzzy numbers 1 2 and A A  of Set 2 in Example 2. 

Example 3. Consider two sets, each comprising two type-2 trapezoidal fuzzy numbers (Figures 4 
and 5) as follows: 

Set 3 comprises 
( ) ( )( )1 0,0.3,0.5,0.6;1 ; 0.1,0.3,0.4,0.5;0.7A =  and 

( ) ( )( )2 0.1,0.2,0.4,0.8;1 ; 0.2,0.3,0.4,0.6;0.8A = . 
Set 4 comprises 

( ) ( )( )1 0,0.3,0.5,0.6;1 ; 0.1,0.3,0.4,0.5;0.7A =  and 

( ) ( )( )2 0.1,0.2,0.4,0.8;0.3 ; 0.2,0.3,0.4,0.6;0.1A = . 

According to De et al. [15], the final rankings of Set 3 and Set 4 are the same: 2 1A A . Therefore, 
height does not affect the final ranking. These two sets have fuzzy numbers with the same support 

Figure 3. Fuzzy numbers A1 and A2 of Set 2 in Example 2.

Example 3. Consider two sets, each comprising two type‑2 trapezoidal fuzzy numbers
(Figures 4 and 5) as follows:
Set 3 comprises

A1 = ((0, 0.3, 0.5, 0.6; 1); (0.1, 0.3, 0.4, 0.5; 0.7)) and
A2 = ((0.1, 0.2, 0.4, 0.8; 1); (0.2, 0.3, 0.4, 0.6; 0.8)).

Set 4 comprises
A1 = ((0, 0.3, 0.5, 0.6; 1); (0.1, 0.3, 0.4, 0.5; 0.7)) and
A2 = ((0.1, 0.2, 0.4, 0.8; 0.3); (0.2, 0.3, 0.4, 0.6; 0.1)).
According to De et al. [15], the final rankings of Set 3 and Set 4 are the same: A2 ≻ A1.

Therefore, height does not affect the final ranking. These two sets have fuzzy numbers with the same
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support but different heights; in Set 4, the heights of the upper and lower trapezoidal fuzzy numbers
of A2 are only 0.3 and 0.1, respectively.

Axioms 2023, 12, x FOR PEER REVIEW 8 of 23 
 

but different heights; in Set 4, the heights of the upper and lower trapezoidal fuzzy numbers of 2A  
are only 0.3 and 0.1, respectively. 

 

Figure 4. Fuzzy numbers 1 2 and A A  of Set 3 in Example 3. 

 

Figure 5. Fuzzy numbers 1 2 and A A  of Set 4 in Example 3. 

Example 4. Consider two trapezoidal fuzzy numbers (Figure 6) as follows: 
( )1 0.1,0.3,0.3,0.5;1A =  and ( )1 0.1,0.3,0.3,0.5;0.3A = . 

These two fuzzy numbers have the same support, but the height of 2A  is lower than that of 

1A . However, the final ranking of methods proposed by [8] and [1] is 1 2A A , which is counter-
intuitive, thus illustrating a shortcoming in ranking non-normal fuzzy numbers. According to 
Wang et al. [20], the final ranking result 1 2A A  is inconsistent with human intuition. 

Figure 4. Fuzzy numbers A1 and A2 of Set 3 in Example 3.

Axioms 2023, 12, x FOR PEER REVIEW 8 of 23 
 

but different heights; in Set 4, the heights of the upper and lower trapezoidal fuzzy numbers of 2A  
are only 0.3 and 0.1, respectively. 

 

Figure 4. Fuzzy numbers 1 2 and A A  of Set 3 in Example 3. 

 

Figure 5. Fuzzy numbers 1 2 and A A  of Set 4 in Example 3. 

Example 4. Consider two trapezoidal fuzzy numbers (Figure 6) as follows: 
( )1 0.1,0.3,0.3,0.5;1A =  and ( )1 0.1,0.3,0.3,0.5;0.3A = . 

These two fuzzy numbers have the same support, but the height of 2A  is lower than that of 

1A . However, the final ranking of methods proposed by [8] and [1] is 1 2A A , which is counter-
intuitive, thus illustrating a shortcoming in ranking non-normal fuzzy numbers. According to 
Wang et al. [20], the final ranking result 1 2A A  is inconsistent with human intuition. 

Figure 5. Fuzzy numbers A1 and A2 of Set 4 in Example 3.

Example 4. Consider two trapezoidal fuzzy numbers (Figure 6) as follows:
A1 = (0.1, 0.3, 0.3, 0.5; 1) and A1 = (0.1, 0.3, 0.3, 0.5; 0.3).
These two fuzzy numbers have the same support, but the height of A2 is lower than that of A1.

However, the final ranking of methods proposed by [1,8] is A1 ∼ A2, which is counterintuitive, thus
illustrating a shortcoming in ranking non‑normal fuzzy numbers. According to Wang et al. [20],
the final ranking result A1 ≺ A2 is inconsistent with human intuition.
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S f x f x dx x x= − ≤  (12)
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L

I

i
I

x xL L
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( ) ( )
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L i i i i
A

i i i
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 (14)

Figure 6. Fuzzy numbers A1 and A2 in Example 4.

Example 5. Consider three fuzzy numbers, A1 = (0.3, 0.5, 0.5, 0.7; 1), A2 = (0.3, 0.5, 0.5, 0.9; 1),
and A3 = (0.3, 0.5, 0.8, 0.9; 1). Seghir [29] pointed out that all the compared and proposed meth‑
ods provide the correct ranking A3 ≻ A2 ≻ A1, which is intuitive. However, the ranking
A3 ≻ A1 ≻ A2 proposed by [21] is incorrect and counterintuitive.

3. Proposed Method
This study proposes a method that considers maximizing and minimizing sets to be

reference sets, the left area to be the benefit area, and the right area to be the cost area. Ad‑
ditionally, the normalized height coefficient is used to determine the influence of height
on the final ranking score, thus enabling the ranking of both normal and non‑normal fuzzy
numbers without normalization or height minimization, which avoids a loss of informa‑
tion and incorrect final rankings.

To guarantee that the vertical value is considered an important parameter that impacts
the final ranking score, the left area and the right area are evaluated. Assume there are n
generalized fuzzy numbers Ai = (ai, bi, ci, di; wi), i = 1, 2, . . . . . . , n. The left area denotes
the area from xmin to xL

Ai
and is bounded by the maximizing membership function fM(x)

and minimizing membership function fG(x), where xL
Ai
is the intersection of the crossover

point of the minimizing membership function fG(x) and the left membership function
f LAi

(x). The left area is shown in Figure 7 and is described by Equations (12) and (13).

SL
Ai

=
∫ xL

xmin
( fG(x)− fM(x))dx if xL ≤ xI (12)

SL
Ai

=
∫ xI

xmin
( fG(x)− fM(x))dx +

∫ xL

xI
( fM(x)− fG(x))dx if xL ≻ xI (13)

xL
Ai

=
wiai(xmax − xmin) + wxmax(bi − ai)

wi(xmax − xmin) + w(bi − ai)
(14)

xI =
(xmin + xmax)

2
(15)

xmin = inf ai (16)

In Figure 7, the left areas of generalized fuzzy number A1 and generalized fuzzy num‑
ber A2 are in the case of xL ≤ xI . Therefore, applying Equation (12), the left area of general‑
ized fuzzy number A1 is the round dot area, and the left area of generalized fuzzy number
A2 is the round dot area, adding the square dot area. The left area of generalized fuzzy
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number A3 belongs to the case of xL ≻ xI , applying Equation (13); the left area of gener‑
alized fuzzy number A3 is the round dot area, adding the square dot area and adding the
long dash area.
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Figure 7. The left area.

The right area denotes the area from xmax to xR
Ai
and is bounded by the maximizing

membership function fM(x) andminimizingmembership function fG(x), where xR
Ai
is the

intersection of the crossover point of the maximizing membership function fM(x) and the
right membership function fRAi

(x). The right area is shown in Figure 8 and is described by
Equations (17) and (18).

SR
Ai

=
∫ xmax

xR
( fM(x)− fG(x))dx if xR ≥ xI (17)

SR
Ai

=
∫ xI

xR
( fG(x)− fM(x))dx +

∫ xmax

xI
( fM(x)− fG(x))dx if xR ≺ xI (18)

xR
Ai

=
widi(xmax − xmin)− wxmin(ci − di)

wi(xmax − xmin)− w(ci − di)
(19)

xmax = supdi (20)

In Figure 8, the right areas of generalized fuzzy number A3 and generalized fuzzy
number A2 are in the case of xR ≥ xI . Therefore, applying Equation (17), the right area of
generalized fuzzy number A3 is the long dash area, and the left area of generalized fuzzy
number A2 is the long dash area, adding the square dot area. The right area of generalized
fuzzy number A3 belongs to the case of xR ≺ xI , and applying Equation (18), the right area
of generalized fuzzy number A1 is the long dash area, adding the square area, and adding
the round dot area.

Herein, xmin = infai is considered the negative ideal solution, xmax = supdi is consid‑
ered the positive ideal solution, and xI is the intersection of the maximizing membership
function fM(x) and minimizing membership function fG(x). In the proposed method, the
left and right areas are new areas that are simple to calculate and provide greater consis‑
tency and robustness in comparison with other methods.

The generalized fuzzy number Ai is preferred if it is the farthest from the negative
ideal solution xmin and closest to the positive ideal solution xmax. If SL

Ai
is larger, the gener‑

alized fuzzy number Ai is farther from the negative ideal solution and closer to the positive
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ideal solution. Therefore, SL
Ai

is considered a benefit; thus, a larger SL
Ai

is better. Con‑
versely, if SR

Ai
is smaller, Ai is farther from the negative ideal solution and closer to the

positive ideal solution. Therefore, SR
Ai
is considered a cost; thus, a smaller SR

Ai
is better. In

other words, a larger SL
Ai
and smaller SR

Ai
indicate a larger generalized fuzzy number, Ai.
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To guarantee that the horizontal value is also considered an important parameter to
influence the final ranking, the normalized height coefficient is defined in Equation (21)
to reflect the influence of the height of a generalized fuzzy number on the final ranking
score. The higher the normalized height coefficient of generalized fuzzy number Ai, the
higher the ranking of Ai is. The rationale for this comes from one of four well‑known
normalization procedures: the linear scale transformation (sum) method. According to
Chakraborty [30], this method divides the performance ratings of each attribute by the
sum of the performance ratings for that attribute.

ςAi =
hAi

n
∑

i=1
hAi

(21)

The final ranking score (RS) for generalized fuzzy number Ai is defined as in Equation (22).
This equation is driven based on the closeness coefficient (CC) of the fuzzy technique for
order preference by its similarity to an ideal solution (TOPSIS), which is determined using
the distance of each alternative from the positive and negative ideal solution [31].

RSAi =
SL

Ai
ςAi

SL
Ai

ςAi + SR
Ai
(1 − ςAi )

(22)

If Ai and Aj are two generalized fuzzy numbers, then the ranking score leads to the
following decisions:

If RSAi ≻ RSAj , then Ai ≻ Aj.
If RSAi ≺ RSAj , then Ai ≺ Aj.
If RSAi = RSAj , then Ai ∼ Aj.

(23)

A flowchart in Figure 9, shown below, is used to present the procedure of the pro‑
posed method.
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4. Numerical Example and Comparative Study
4.1. Examples

To highlight the advantages, consistency, and robustness of this method, numerical
examples are used. Step‑by‑step, these examples demonstrate the simple computation and
application of the proposed method.

Example 6. Consider two trapezoidal fuzzy numbers A1 = (0.1, 0.2, 0.3, 0.5; 1) and
A2 = (0.1, 0.3, 0.4, 0.6; 1) (Figure 10). According to the proposed method, the final ranking is
determined to be A1 ≺ A2 as follows:
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Step 1: per Equations (16) and (20), xmin = 0.1, xmax = 0.6.
Step 2: Per Equations (14) and (19), the xL

Ai
and xR

Ai
of fuzzy number A1 are xL
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Step 4: per Equation (21), the normalized height coefficient of fuzzy number A1 and fuzzy
number A2 are ςA1 = 0.5 and ςA2 = 0.5 , respectively.

Step 5: per Equation (22), the ranking score (RS) of fuzzy number A1 and fuzzy number A2
are RSA1 = 0.36189 and RSA2 = 0.5000.

Step 6: per Equation (23), the final ranking is A1 ≺ A2.

The following numerical examples (Figures 11–17) are calculated step‑by‑step as in
Example 6; the results are shown in Table 1.
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Table 1. Numerical Examples.

Fuzzy Numbers SL SR
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Ex.6
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A2 (0.1, 0.2, 0.3, 0.5; 1) 0.064 0.089 0.500 0.419 1

Ex.8
A1 (0.1, 0.2, 0.3, 0.5; 1) 0.044 0.065 0.556 0.460 1
A2 (0.1, 0.2, 0.3, 0.5; 0.8) 0.051 0.071 0.444 0.365 2
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A1 (0.1, 0.3, 0.5, 0.6; 1) 0.113 0.122 0.500 0.479 2
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Ex.10
A1 (0.1, 0.3, 0.5, 0.6; 1) 0.050 0.066 0.625 0.558 1
A2 (0.2, 0.3, 0.6, 0.7; 0.6) 0.073 0.044 0.375 0.500 2

Ex.11
A1 (0.1, 0.3, 0.5, 0.6; 0.9) 0.085 0.096 0.529 0.499 2
A2 (0.2, 0.3, 0.6, 0.7; 0.8) 0.098 0.059 0.471 0.597 1

Ex.12
A1 (0.1, 0.2, 0.3, 0.5; 1) 0.231 0.139 0.500 0.625 1

A2 (−0.5, −0.3, −0.2, −0.1; 1) 0.139 0.231 0.500 0.375 2

Ex.13
A1 (0.1, 0.2, 0.3, 0.5; 1) 0.073 0.150 0.333 0.197 3
A2 (0.1, 0.3, 0.5, 0.6; 1) 0.113 0.122 0.333 0.315 2
A3 (0.2, 0.3, 0.6, 0.7; 1) 0.122 0.073 0.333 0.455 1

Example 7. Consider two normal trapezoidal fuzzy numbers A1 = (0.1, 0.2, 0.3, 0.5; 1) and
A2 = (0.1, 0.2, 0.3, 0.5; 1) (Figure 11). These fuzzy numbers are the same, so the ranking scores
are equal, and the final ranking is A1 ∼ A2.

Example 8. Consider the normal trapezoidal fuzzy number A1 = (0.1, 0.2, 0.3, 0.5; 1) and non‑
normal trapezoidal fuzzy number A2 = (0.1, 0.2, 0.3, 0.5; 0.8) (Figure 12). These fuzzy numbers
share the same support, but the ranking scores are different because of different heights. The final
ranking result is A1 ≻ A2. This example indicates that the proposed method can rank both normal
and non‑normal fuzzy numbers.

Example 9. Consider two normal trapezoidal fuzzy numbers A1 = (0.1, 0.3, 0.5, 0.6; 1) and
A2 = (0.2, 0.3, 0.6, 0.7; 1) (Figure 13). The final ranking result is A1 ≺ A2.

Example 10. Consider the normal trapezoidal fuzzy number A1 = (0.1, 0.3, 0.5, 0.6; 1) and non‑
normal trapezoidal fuzzy number A2 = (0.2, 0.3, 0.6, 0.7; 0.6) (Figure 14). Fuzzy number A1 in
Example 10 is the same as fuzzy number A1 in Example 9. Fuzzy number A2 in Example 10 shares
the same support as the fuzzy number A2 in Example 9, but the height of fuzzy number A2 in
Example 10 is 0.6. Therefore, the final ranking is A1 ≻ A2. This example demonstrates that height
is an important parameter affecting the final ranking score.

Example 11. Consider two non‑normal trapezoidal fuzzy numbers, A1 = (0.1, 0.3, 0.5, 0.6; 0.9)
and A2 = (0.2, 0.3, 0.6, 0.7; 0.8) (Figure 15). Fuzzy number A1 in Example 11 has the same
support as fuzzy number A1 in Example 9, but the height of fuzzy number A1 in Example 11 is 0.9.
Fuzzy number A2 in Example 11 shares the same support as the fuzzy number A2 in Example 9,
but the height of fuzzy number A2 in Example 11 is 0.8. Therefore, the final ranking is A1 ≺ A2.
This example also indicates that the final ranking is sensitive to height.

Example 12. Consider two normal trapezoidal fuzzy numbers, A1 = (0.1, 0.2, 0.3, 0.5; 1) and
A2 = (−0.5,−0.3,−0.2,−0.1; 1) (Figure 16). The final ranking is A1 ≻ A2. This example
shows that the proposed method can be used to rank positive and negative fuzzy numbers.
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Example 13. Consider three normal trapezoidal fuzzy numbers, A1 = (0.1, 0.2, 0.3, 0.5; 1),
A2 = (0.1, 0.3, 0.5, 0.6; 1), and A3 = (0.2, 0.3, 0.6, 0.7; 1) (Figure 17). The final ranking is
A1 ≺ A2 ≺ A3 which is consistent with human intuition.

4.2. Comparison
For the objective comparison, fuzzy sets are adopted from [32]. This section presents

a comparison of the proposed method based on the ranking score (RS) with the methods
based on the maximizing and minimizing set method (UT) proposed by [8], the deviation
degree (DD) proposed by [20], the area ranking based on the positive and negative ideal
points (RIA)proposed by [1], the revisedmethodof the deviationdegree (RDD)proposed
by [23], the areas on the left and right sides of the fuzzy number (SLR) proposed by [22],
the value and angle in the epsilon‑deviation degree (MEDD) proposed by [21], and the
new fuzzy distance (RI) proposed by [18]. The final ranking results and comparison are
presented in Tables 2 and 3, where R is the final ranking.

Table 2. Comparison of the proposed method with other methods.

Set FNs Ut R DD R RIA R RDD R SLR R MEDD R RS R

Set 5 A1 (0.1, 0.3, 0.3, 0.5; 1) 0.375 2 0.000 2 0.250 2 0.222 2 0.075 2 0.041 2 0.429 2
A2 (0.3, 0.5, 0.5, 0.7; 1) 0.625 1 0.300 1 0.750 1 0.571 1 0.303 1 24.462 1 0.571 1

Set 6 A1 (0.1, 0.3, 0.3, 0.5; 1) 0.500 1 0.063 1 0.500 1 0.286 1 0.130 1 1.000 1 0.500 1
A2 (0.1, 0.3, 0.3, 0.5; 1) 0.500 1 0.063 1 0.500 1 0.286 1 0.130 1 1.000 1 0.500 1

Set 7 A1 (0.1, 0.3, 0.3, 0.5; 0.8) 0.400 1 0.063 1 0.500 1 0.242 2 0.242 2 0.126 2 0.444 2
A2 (0.1, 0.3, 0.3, 0.5; 1) 0.400 1 0.061 2 0.500 1 0.286 1 0.286 1 9.488 1 0.556 1

Set 8 A1 (−0.5, −0.3, −0.3, −0.1; 1) 0.250 2 0.000 2 0.125 2 0.154 2 0.035 2 0.015 2 0.333 2
A2 (0.1, 0.3, 0.3, 0.5; 1) 0.750 1 1.333 1 0.875 1 1.143 1 0.679 1 65.091 1 0.667 1

Set 9 A1 (0.3, 0.5, 0.5, 1.0; 1) 0.503 1 0.327 1 0.545 1 0.514 1 0.285 1 1.185 1 0.502 1
A2 (0.1, 0.6, 0.6, 0.8; 1) 0.497 2 0.000 2 0.455 2 0.436 2 0.196 2 0.844 2 0.498 2

Table 3. Comparison the proposed method with other methods.

Set FNs Ut R DD R RIA R RDD R SLR R MEDD R RI R RS R

Set 10
A1 (0.0, 0.4, 0.6, 0.8; 1) 0.517 3 0.000 3 0.500 3 0.474 3 0.229 3 0.087 3 0.000 3 0.349 3
A2 (0.2, 0.5, 0.5, 0.9; 1) 0.554 2 0.313 1 0.636 2 0.600 2 0.363 1 0.498 2 0.552 2 0.363 2
A3 (0.1, 0.6, 0.7, 0.8; 1) 0.614 1 0.207 2 0.700 1 0.647 1 0.362 2 2.176 1 1.000 1 0.434 1

Set 11
A1 (0.4, 0.5, 0.5, 1; 1) 0.344 3 0.000 3 0.167 3 0.222 3 0.102 3 0.043 3 0.000 3 0.198 3
A2 (0.4, 0.7, 0.7, 1; 1) 0.500 2 0.048 2 0.500 2 0.375 2 0.184 2 0.934 2 0.597 2 0.333 2
A3 (0.4, 0.9, 0.9, 1; 1) 0.656 1 0.136 1 0.833 1 0.571 1 0.296 1 3.857 1 1.000 1 0.503 1

Set 12
A1 (0.1, 0.2, 0.3, 0.5; 1) 0.321 3 0.000 3 0.143 3 0.189 3 0.102 3 0.037 3 0.000 3 0.197 3
A2 (0.1, 0.3, 0.5, 0.6; 1) 0.482 2 0.037 2 0.400 2 0.333 2 0.184 2 0.974 2 0.373 2 0.315 2
A3 (0.2, 0.3, 0.6, 0.7; 1) 0.571 1 0.171 1 0.750 1 0.467 1 0.296 1 2.429 1 1.000 1 0.455 1

Table 2 illustrates that the final ranking of Set 7 by the proposed method is consistent
with the rankings generated by the methods based on the revised method of the deviation
degree (RDD), the areas on the left and right sides of the fuzzy number (SLR), and the
value and angle in the epsilon‑deviation degree (MEDD); thus, our method is intuitive
for ranking non‑normal fuzzy numbers. The methods based on the maximizing set and
minimizing set (UT) and the area ranking based on the positive and negative ideal points
(RIA) equally rank the fuzzy numbers, which is counterintuitive because the two fuzzy
numbers share the same score support but differ in height. Furthermore, the final ranking
based on the deviation degree (DD) is unreasonable because the fuzzy number with a
lower height has a higher ranking, making it counterintuitive. These final rankings of Sets
5, 6, 8, and 9 generated by the proposed method are consistent with those by the other
methods. Thus, the final ranking generated by the proposed method is consistent with
those of othermethods for normal fuzzy numbers. Additionally, the proposedmethod can
be used to rank the non‑normal fuzzy numbers described in Set 7 without normalization
or height minimization (minwi).
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Since themethod of ranking fuzzy numbers on the basis of the new fuzzy distance [18],
can rank a set of at least three basic ranking indices, Table 3 compares the proposedmethod
with other methods in a set of three fuzzy numbers. Set 10 is adopted from [32], Set 11 is
adopted from [21], and Set 12 is the same in Example 13. The final rankings of Set 11 and
Set 12 by the proposed method are consistent with all the compared methods. The final
ranking of Set 10 is the same as that generated by most other methods, namely, the maxi‑
mizing set and minimizing set (UT), the area ranking based on the positive and negative
ideal points (RIA), the revised method of the deviation degree (RDD), the value and an‑
gle in the epsilon‑deviation degree (MEDD), and the new fuzzy distance (RI). The final
ranking of Set 10 produced by the areas on the left and right sides of the fuzzy number
(SLR) and the deviation degree (DD) is different with other methods. Table 3 proves that
the proposed method is consistent with all of the compared methods for Set 11 and Set 12,
and is consistent with most of the compared methods in Set 10.

4.3. Method Reasonableness Proof
Wang and Kerre [12] proposed reasonable axioms for ranking fuzzy numbers. The

reasonableness of the proposed ranking method is proven by studying it under the follow‑
ing axiomatic system by Wang and Kerre.

According to Wang and Kerre [12], for all fuzzy numbers, A, B, and C, we have

A ≻ B ⇒ A ⊕ C ≻ B ⊕ C (24)

A ≻ B ⇒ A⊖ C ≻ B ⊖ C (25)

A ∼ B ⇒ A ⊕ C ∼ B ⊕ C (26)

A ≻ B, B ≻ C ⇒ A ⊕ C ≻ B ⊕ C (27)

Based on the reasonable axioms from [12], there are four generalized trapezoidal
fuzzy numbers, A1 = (a1, b1, c1, d1; w1), A2 = (a2, b2, c2, d2; w2), A3 = (a3, b3, c3, d3; w3),
A4 = (a4, b4, c4, d4; w4), and the ranking order is determined based on the following decision:

A1 ≻ A2 if RS(A1 ⊕ A3) ≻ RS(A2 ⊕ A3) (28)

A1 ≻ A2 if RS(A1⊖A3) ≻ RS(A2⊖A3) (29)

A1 ∼ A2 if RS(A1 ⊕ A3) ∼ RS(A2 ⊕ A3) (30)

A1 ≻ A2, A3 ≻ A4 if RS(A1 ⊕ A3) ≻ RS(A2 ⊕ A4) (31)

Table 4 shows the result of the method’s reasonableness proof that indicates that the
proposed ranking function satisfies all reasonable properties of the fuzzy quantities pro‑
posed by [12].

The result of Set 15.1 shows the case of Equation (28) when fuzzy numbers A1 and A2
add the fuzzy number A3; the result satisfies the condition of Equation (28). The result of
Set 15.2 shows the case of Equation (29) when fuzzy numbers A1 and A2 subtract fuzzy
number A3; the result also satisfies the condition of Equation (29). The result of Set 16.1
shows the case of Equation (30) when the ordering of fuzzy numbers A1 and A2 is equal
after adding fuzzy number A3. The result does not change which satisfies the condition of
Equation (30). The result of Set 17.3 shows the case of Equation (31) when fuzzy number
A2 ≻ A1 and A4 ≻ A3; the result of A2 ⊕ A4 is greater than A1 ⊕ A3 which satisfies the
condition of Equation (31). For the validation of the proposed ranking function, Table 4
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shows that the proposed ranking function satisfies all reasonable properties of the fuzzy
quantities proposed by [12].

Table 4. Method reasonableness proof.

Fuzzy Numbers SL SR
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Example 6. Consider two trapezoidal fuzzy numbers ( )1 0.1,0.2,0.3,0.5;1A =  and 
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Step 4: per Equation (21), the normalized height coefficient of fuzzy number 1A  and fuzzy 

number 2A  are
1 2

0.5 and 0.5A A = = , respectively. 

Step 5: per Equation (22), the ranking score (RS) of fuzzy number 1A  and fuzzy number 2A  

are
1 2

0.36189 and 0.5000A ARS RS= = . 

Step 6: per Equation (23), the final ranking is 1 2A A . 

The following numerical examples (Figures 11–17  are calculated step-by-step as in 

Example 6; the results are shown in Table 1. 

Table 1. Numerical Examples. 

  Fuzzy Numbers SL SR ȝ RS Rank 

 Ex.6 
A1 (0.1,0.2,0.3,0.5;1) 0.069 0.122 0.500 0.362 2 

A2(0.1,0.3,0.4,0.6;1) 0.102 0.102 0.500 0.500 1 

Ex.7 
A1(0.1,0.2,0.3,0.5;1) 0.064 0.089 0.500 0.419 1 

A2(0.1,0.2,0.3,0.5;1) 0.064 0.089 0.500 0.419 1 

Ex.8 
A1 (0.1,0.2,0.3,0.5;1) 0.044 0.065 0.556 0.460 1 

A2(0.1,0.2,0.3,0.5;0.8) 0.051 0.071 0.444 0.365 2 

Ex.9 
A1(0.1,0.3,0.5,0.6;1) 0.113 0.122 0.500 0.479 2 

A2(0.2,0.3,0.6,0.7;1) 0.122 0.073 0.500 0.625 1 

Ex.10 
A1(0.1,0.3,0.5,0.6;1) 0.050 0.066 0.625 0.558 1 

A2(0.2,0.3,0.6,0.7;0.6) 0.073 0.044 0.375 0.500 2 

Ex.11 
A1(0.1,0.3,0.5,0.6;0.9) 0.085 0.096 0.529 0.499 2 

A2(0.2,0.3,0.6,0.7;0.8) 0.098 0.059 0.471 0.597 1 

Ex.12 
A1(0.1,0.2,0.3,0.5;1) 0.231 0.139 0.500 0.625 1 

A2(−0.5,−0.3,−0.2,−0.1;1) 0.139 0.231 0.500 0.375 2 

Ex.13 

A1(0.1,0.2,0.3,0.5;1) 0.073 0.150 0.333 0.197 3 

A2(0.1,0.3,0.5,0.6;1) 0.113 0.122 0.333 0.315 2 

A3(0.2,0.3,0.6,0.7;1) 0.122 0.073 0.333 0.455 1 

RS Rank

Set 15
A1 (0.1, 0.2, 0.3, 0.5; 1) 0.102 0.122 0.500 0.455 2
A2 (0.2, 0.3, 0.4, 0.6; 1) 0.111 0.102 0.500 0.521 1

A3 (0.3, 0.5, 0.5, 0.7; 1)
Set 15.1 A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) 0.192 0.213 0.500 0.474 2

A2 ⊕ A3 (0.5, 0.8, 0.9, 1.3; 1) 0.200 0.192 0.500 0.511 1

A3 (0, 0.1, 0.1, 0.2; 1)
Set 15.2 A1 ⊖ A3 (−0.1, 0.2, 0.2, 0.5; 1) 0.147 0.168 0.500 0.467 2

A2 ⊖ A3 (0, 0.2, 0.3, 0.6; 1) 0.156 0.147 0.500 0.514 1

Set 16 A1 (0.1, 0.3, 0.3, 0.5; 1) 0.089 0.089 0.500 0.500 1
A2 (0.1, 0.3, 0.3, 0.5; 1) 0.089 0.089 0.500 0.500 1

Set 16.1 A3 (0.3, 0.5, 0.5, 0.7; 1)
A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) 0.178 0.178 0.500 0.500 1
A2 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) 0.178 0.178 0.500 0.500 1

Set 17.1 A1 (0.1, 0.3, 0.3, 0.5; 1) 0.102 0.122 0.500 0.455 2
A2 (0.2, 0.3, 0.4, 0.6; 1) 0.111 0.102 0.500 0.521 1

Set 17.2 A3 (0.3, 0.5, 0.5, 0.7; 1) 0.113 0.150 0.500 0.429 2
A4 (0.5, 0.7, 0.7, 0.9; 1) 0.150 0.113 0.500 0.571 1

Set 17.3 A2 ⊕ A4 (0.7, 1, 1.1, 1.5; 1) 0.269 0.215 0.500 0.556 1
A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) 0.215 0.274 0.500 0.440 2

5. Conclusions
This paper proposes an approach for ranking generalized fuzzy numbers based on a

normalized height coefficient and benefit and cost areas. In this method, the left area de‑
notes the area from xmin to xL

Ai
and is bounded by the maximizing membership function

fM(x) and minimizing membership function fG(x). The right area denotes the area from
xmax to xR

Ai
and is bounded by the maximizing membership function fM(x) and minimiz‑

ing membership function fG(x). SL
Ai
is considered as the benefit, and larger is better. SR

Ai

is considered as the cost, and smaller is better. In other words, a larger SL
Ai

and smaller
SR

Ai
mean a bigger generalized fuzzy number, Ai. The normalized height coefficient is

designed to reflect the influence of the height of generalized fuzzy numbers on the final
ranking score. The higher the normalized height coefficient of a generalized fuzzy num‑
ber, the higher its ranking is. The numerical example and comparison presented herein
demonstrate the feasibility and robustness of the proposed method.

The proposed ranking method can be applied to fuzzy multicriteria decision making
MCDM to support decisionmakers in selecting the best alternative. Future research can ex‑
tend this ranking method to develop other ranking methods for fuzzy numbers, including
interval type‑2 fuzzy numbers, intuitionistic fuzzy numbers, and hesitant fuzzy numbers,
to solve more complex decision‑making problems in practice. In the coming years, future
research can expand this approach to ensure the consistent ordering of fuzzy Gaussian.
Additionally, to assess the effectiveness of the proposed method, future studies can apply
it in practical, real‑world environments and evaluate its performance with real and com‑
plex applications.

Author Contributions: Conceptualization, T.H.P.L. and T.‑C.C.; methodology, T.H.P.L.; validation,
T.‑C.C. and T.H.P.L.; formal analysis, T.H.P.L. and T.‑C.C.; investigation, T.H.P.L. and T.‑C.C.; re‑
sources, T.‑C.C.; data curation, T.H.P.L.; writing—original draft preparation, T.H.P.L.; writing—



Axioms 2023, 12, 1049 19 of 20

review and editing, T.H.P.L. and T.‑C.C.; visualization, T.H.P.L.; supervision, T.‑C.C.; project ad‑
ministration, T.‑C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This workwas supported in part by the National Science and Technology Council, Taiwan,
under Grant NSTC 112‑2410‑H‑218‑005.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the anonymous reviewers and the editor for
their constructive comments and insights that improved the presentation of this work. This work
was supported in part by the National Science and Technology Council, Taiwan, under Grant NSTC
112‑2410‑H‑218‑005.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Y.M.; Luo, Y. Area ranking of fuzzy numbers based on positive and negative ideal points. Comput. Math. Appl. 2009, 58,

1769–1779. [CrossRef]
2. Bortolan, G.; Degani, R. A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 1985, 15, 1–19. [CrossRef]
3. Brunelli, M.; Mezei, J. How different are ranking methods for fuzzy numbers ? A numerical study. Int. J. Approx. Reason. 2013,

54, 627–639. [CrossRef]
4. Chu, T.C.; Kysely, M. Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method. Electron. Commer. Res.

2021, 21, 881–916. [CrossRef]
5. Chou, S.Y.; Dat, L.Q.; Yu, V.F. A revised method for ranking fuzzy numbers using maximizing set and minimizing set. Comput.

Ind. Eng. 2011, 61, 1342–1348. [CrossRef]
6. Yu, V.F.; Chi, H.T.X.; Dat, L.Q.; Phuc, P.N.K.; Shen, C.W. Ranking generalized fuzzy numbers in fuzzy decision making based

on the left and right transfer coefficients and areas. Appl. Math. Model. 2013, 37, 8106–8117. [CrossRef]
7. Chi, H.T.X.; Yu, V.F. Ranking generalized fuzzy numbers based on centroid and rank index. Appl. Soft Comput. J. 2018, 68,

283–292. [CrossRef]
8. Chen, S.H. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 1985, 17, 113–129. [CrossRef]
9. Liou, T.S.; Wang, M.J.J. Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 1992, 50, 247–255. [CrossRef]
10. Chen, S.M.; Chen, J.H. Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different

spreads. Expert Syst. Appl. 2009, 36, 6833–6842. [CrossRef]
11. Kumar, A.; Singh, P.; Kaur, P.; Kaur, A. RM approach for ranking of L‑R type generalized fuzzy numbers. Soft Comput. 2011, 15,

1373–1381. [CrossRef]
12. Wang, X.; Kerre, E.E. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 2001, 118, 375–385. [CrossRef]
13. Chen, S.M.; Sanguansat, K. Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers.

Expert Syst. Appl. 2011, 38, 2163–2171. [CrossRef]
14. Xu, P.; Su, X.; Wu, J.; Sun, X.; Zhang, Y.; Deng, Y. A note on ranking generalized fuzzy numbers. Expert Syst. Appl. 2012, 39,

6454–6457. [CrossRef]
15. De, A.; Kundu, P.; Das, S.; Kar, S. A ranking method based on interval type‑2 fuzzy sets for multiple attribute group decision

making. Soft Comput. 2020, 24, 131–154. [CrossRef]
16. Revathi, M.; Valliathal, M. Non‑normal fuzzy number analysis in various levels using centroid method for fuzzy optimization.

Soft Comput. 2021, 25, 8957–8969. [CrossRef]
17. Nguyen, H.T.; Chu, T.C. Ranking startups using DEMATEL‑ANP‑Based fuzzy PROMETHEE II.Axioms 2023, 12, 528. [CrossRef]
18. He, W.; Rodríguez, R.M.; Takáč, Z.; Martínez, L. Ranking of Fuzzy Numbers on the Basis of New Fuzzy Distance. Int. J. Fuzzy

Syst. 2023. [CrossRef]
19. Jain, R. A procedure for multiple‑aspect decision making using fuzzy sets. Int. J. Syst. Sci. 1977, 8, 1–7. [CrossRef]
20. Wang, Z.X.; Liu, Y.J.; Fan, Z.P.; Feng, B. Ranking L–R fuzzy number based on deviation degree. Inf. Sci. 2009, 179, 2070–2077.

[CrossRef]
21. Chutia, R. Ranking of fuzzy numbers by using value and angle in the epsilon‑deviation degree method. Appl. Soft Comput. J.

2017, 60, 706–721. [CrossRef]
22. Nejad, A.M.; Mashinchi, M. Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number. Comput.

Math. Appl. 2011, 61, 431–442. [CrossRef]
23. Asady, B. The revised method of ranking LR fuzzy number based on deviation degree. Expert Syst. Appl. 2010, 37, 5056–5060.

[CrossRef]
24. Hajjari, T.; Abbasbandy, S. A note on “the revised method of ranking LR fuzzy number based on deviation degree”. Expert Syst.

Appl. 2011, 38, 13491–13492. [CrossRef]
25. Yu, V.F.; Chi, H.T.X.; Shen, C.W. Ranking fuzzy numbers based on epsilon‑deviation degree. Appl. Soft Comput. J. 2013, 13,

3621–3627. [CrossRef]

https://doi.org/10.1016/j.camwa.2009.07.064
https://doi.org/10.1016/0165-0114(85)90012-0
https://doi.org/10.1016/j.ijar.2013.01.009
https://doi.org/10.1007/s10660-019-09394-z
https://doi.org/10.1016/j.cie.2011.08.009
https://doi.org/10.1016/j.apm.2013.03.022
https://doi.org/10.1016/j.asoc.2018.03.050
https://doi.org/10.1016/0165-0114(85)90050-8
https://doi.org/10.1016/0165-0114(92)90223-Q
https://doi.org/10.1016/j.eswa.2008.08.015
https://doi.org/10.1007/s00500-010-0676-x
https://doi.org/10.1016/S0165-0114(99)00062-7
https://doi.org/10.1016/j.eswa.2010.08.002
https://doi.org/10.1016/j.eswa.2011.12.062
https://doi.org/10.1007/s00500-019-04285-9
https://doi.org/10.1007/s00500-021-05794-2
https://doi.org/10.3390/axioms12060528
https://doi.org/10.1007/s40815-023-01571-5
https://doi.org/10.1080/00207727708942017
https://doi.org/10.1016/j.ins.2008.08.017
https://doi.org/10.1016/j.asoc.2017.07.025
https://doi.org/10.1016/j.camwa.2010.11.020
https://doi.org/10.1016/j.eswa.2009.12.005
https://doi.org/10.1016/j.eswa.2011.04.081
https://doi.org/10.1016/j.asoc.2013.03.016


Axioms 2023, 12, 1049 20 of 20

26. Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theory and Application; Van Nostrand Reinhold: New York, NY,
USA, 1991.

27. Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [CrossRef]
28. Nguyen, V.H. Ranking fuzzy numbers based on relative positions and shape characteristics. Expert Syst. Appl. 2022, 191, 116312.
29. Seghir, F. FDMOABC: Fuzzy discretemulti‑objective artificial bee colony approach for solving the non‑deterministic QoS‑driven

web service composition problem. Expert Syst. Appl. 2021, 167, 114413. [CrossRef]
30. Chakraborty, S. A simulation based comparative study of normalization procedures in multiattribute decision making. In Pro‑

ceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu
Island, Greece, 16–19 February 2007; pp. 102–109.

31. Çelen, A. Comparative analysis of normalization procedures in TOPSIS method: With an application to Turkish deposit banking
market. Informatica 2014, 25, 185–208. [CrossRef]

32. Chen, S.J.; Chen, S.M. Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl. Intell. 2007,
26, 1–11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/00207727808941724
https://doi.org/10.1016/j.eswa.2020.114413
https://doi.org/10.15388/Informatica.2014.10
https://doi.org/10.1007/s10489-006-0003-5

	Introduction 
	Preliminaries 
	Definitions and Notions 
	A Review of the Deviation Degree Method 
	Limitations and Shortcomings of Existing Methods 

	Proposed Method 
	Numerical Example and Comparative Study 
	Examples 
	Comparison 
	Method Reasonableness Proof 

	Conclusions 
	References

