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Abstract: The notion of quasi-Jordan algebras was originally proposed by R. Velasquez and R. Fellipe.
Later, M. R. Bremner provided a modification called K-B quasi-Jordan algebras; these include all
Jordan algebras and all dialgebras, and hence all associative algebras. Any quasi-Jordan algebra
is special if it is isomorphic to a quasi-Jordan subalgebra of some dialgebras. Keeping in view the
pivotal role of homotopes in the theory of Jordan algebras, we begin a study of the homotopes of
quasi-Jordan algebras; among other related results, we show that the homotopes of any special
quasi-Jordan algebra are special quasi-Jordan algebras and that the homotopes of a K-B quasi-Jordan
algebra is a quasi-Jordan algebra. In the sequel, we also give some open problems.
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1. Introduction and Preliminaries

A Jordan algebra is a non-associative algebra with a product x ◦ y that satisfies both
commutativity, x◦y = y◦x, and the Jordan identity, (x2◦y)◦x = x2◦(y◦x), where x2 = x◦x.
Any associative algebra can be considered a Jordan algebra, sharing the same linear space
structure and defined by the Jordan product, x ◦ y := 1

2 (xy + yx). Additionally, it can be
regarded as a Lie algebra under the skew–symmetric product [x, y] := xy− yx, known as
the Lie bracket [1]). Associated with every Jordan algebra J , there exists a corresponding
Lie algebra L(J ), such that J is a linear subspace of L(J ) and the product of J can be
expressed using the Lie bracket in L(J ). Furthermore, the universal enveloping algebra of
a Lie algebra exhibits the structure of an associative algebra, as established in the original
work by I. Kantor, M. Koecher, and J. Tits in [2–4]. A generalization of Lie algebras, namely
Leibniz algebras, was studied by J. Loday [5,6]; he demonstrated that the relationship
between Lie algebras and associative algebras is analogous relationship between Leibniz
algebras and dialgebras ([7]): a dialgebra over a field K is a K-module D equipped with
associative bilinear products a,`: D ×D → D such that x a (y ` z) = x a (y a z); (x `
y) a z = x ` (y a z) and (x a y) ` z = (x ` y) ` z, ∀x, y, z ∈ D. Every dialgebra
(D,a,`) is a Leibniz algebra with the Leibniz bracket [x, y] := x a y− y ` x; the universal
enveloping algebra of any Leibniz algebra is a dialgebra ([6,7]).

In 2008, R. Velásquez and R. Felipe [8] introduced a new class of non-associative
algebras. A vector space = over a field of characteristic 6= 2, 3 is called a quasi-Jordan
algebra if there is a bilinear product / : =×= → =, satisfying x / (y / z) = x / (z / y) and
(y / x) / x2 = (y / x2) / x, called right commutativity and right Jordan identity, respectively;
”/” is called the quasi-Jordan product. If the characteristic of the underlying field of a
dialgebra (D,a,`) is different from 2 and 3, then D is a quasi-Jordan algebra, under the
product x / y := 1

2 (x a y + y ` x); called plus quasi-Jordan algebra, denoted by D+. A
quasi-Jordan algebra is said to be special if it is isomorphic to a subalgebra of some plus
quasi-Jordan algebra; otherwise, the quasi-Jordan algebra is called exceptional ([9]).
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Later on, M. R. Bremner [10] gave a modification of quasi-Jordan algebras; A quasi-Jordan
algebra is called a K-B quasi-Jordan algebra if it satisfies the identity (z, y, x2) = 2(zx, y, x),
where (., ., .) is the associator. Thus, the class of K-B quasi-Jordan algebras includes all
Jordan algebras, all dialgebras and so all associative algebras ([11]). These facts underscore
the significance of studying quasi-Jordan algebras. In [12], the present authors introduced
the norm structure on quasi-Jordan algebras, called quasi-Jordan Banach algebras, and
initiated a study of such algebras from the functional analytic point of view; thus, paving a
new research area in the development of non associative algebras. Recently, the authors
discussed the involution on quasi-Jordan algebras [13], Opening an other novelty in this
area of research. In just a few years time, a reasonable size of stretcher in this research area
have been published ([9,14–19]).

From the above definition it is clear that a quasi-Jordan algebra is a Jordan algebra
if it is commutative. Every quasi-Jordan algebra = contains the following two sets of our
interest in the present work, two important sets: =ann := span{x / y− y / x : x, y ∈ =} and
Z(=) := {z ∈ = : x / z = 0, ∀x ∈ =}, , respectively, called the annihilator and the zero part
of =. From the right commutativity, we obtain =ann ⊆ Z(=); and so the quasi-Jordan
algebra = is a Jordan algebra if =ann = {0}; of course, the converse is always true. If a
quasi-Jordan algebra (=, /) has a left unit e (that is, e / x = x, for all x ∈ =), then = is
commutative and so it is a Jordan algebra. In this work, unit of a quasi-Jordan algebra
would mean a right unit: that is, an element e ∈ = satisfying x / e = x, ∀x ∈ = in a
quasi-Jordan algebra =. A quasi-Jordan algebra may have many (right) units ([12]). An
element e of dialgebra (D,a,`) is said to be a bar-unit if x a e = x = e ` x, for all x ∈ D.
If the dialgebra D has a bar-unit e, x / e = 1

2 (x a e + e ` x) = x, ∀x ∈ D, and so e is a unit
of D+.

It is known that if a quasi-Jordan algebra = has a unit e then =ann and Z(=) are ideals
of =, =ann = {x ∈ = : e / x = 0} = Z(=) and U(=) = {x + e : x ∈ Z(=)}; here, U(=)
symbolizes the set of all (right) units in = ([20]).

The notion of homotopes is one of the basic tools in the study of Jordan algebras ([1,21–30]).
In this article, we initiate a study of homotopes of quasi-Jordan algebras. It is known that
the Jordan triple product is an effective tool in the study of Jordan structures ([1,28,31]). We
propose a triple product for quasi-Jordan algebras and obtain some of its properties in Section 2.
Using this triple product, we prove several theorems on homotopes of quasi-Jordan algebras
in Sections 3–5, which are the main results of this work. In Section 3, among other results,
we prove that homotope of a plus quasi-Jordan algebra is a plus quasi-Jordan algebra and
hence homotopes of special quasi-Jordan algebras are special. We discuss homotopes of K-B
quasi-Jordan algebras in Section 4 where we prove that every homotope of any K-B quasi-Jordan
algebra is a quasi-Jordan algebra. Section 5 contains discussion of other possible analogues of
the Jordan triple product. Some open problems are given in the sequel for further research as
outlined in the conclusion.

2. A Quasi Jordan Triple Product

In any Jordan algebra (J, ◦), the binary product “ ◦” induces an important triple
product {a, b, c}, called the Jordan triple product, defined as follows:

{x, z, y} = x ◦ (z ◦ y)− z ◦ (y ◦ x) + y ◦ (x ◦ z). (1)

As is commonly recognized, the Jordan triple product holds a fundamental position in the ex-
amination of broader Jordan systems, often referred to as Jordan triple systems
([1,24,26–29,32,33]). In particular, the Jordan triple product induces certain operators of a fun-
damental nature; these include the basic operator U(x,y) defined on J by U(x,y)z := {x, z, y}.
The operator U(x,x) is usually written in short as Ux, which being quadratic in x is called
the quadratic operator. In fact, the whole of the Jordan algebra theory can be developed on
the basis of just the quadratic operators ([1,31]).

In this context, we introduce a counterpart of the Jordan triple product designed
for quasi-Jordan algebras, which we term the “quasi-Jordan triple product”. Suppose =
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represents a quasi-Jordan algebra. We proceed to define the quasi-Jordan triple product,
denoted as {., ., .}q : =×=×= → =, in the following manner:

{x, z, y}q := x / (z / y) + (x / z) / y− (x / y) / z. (2)

{a, b, c}q is called the quasi-Jordan triple product of a, b, c in =.
One can always attach a (two-sided) unit to any Jordan algebra by following the

standard unitization process; this unitization process no longer works for quasi-Jordan al-
gebras ([20], pp. 210–211). The challenge of adding a unit to a quasi-Jordan algebra remains
an open problem. As a step towards addressing this unitization problem, Vel’asquez and
Felipe [20] introduced a specific class of quasi-Jordan algebras known as “split quasi-Jordan
algebras”. A quasi-Jordan algebra = is designated as “split” over its ideal I if it fulfills
the condition =ann ⊆ I ⊆ Z(=), where = = J ⊕ I, representing the direct sum of J and
I, with J being a subalgebra of =. In such cases, the subalgebra J functions as a Jordan
algebra under the original quasi-Jordan product, denoted as “/”, within J. If x and y
belong to J, then both x / y and x / y are elements of the subalgebra J, indicating that
x / y− y / x ∈ J; but x / y− y / x ∈ =ann, which is entirely contained within I; therefore,
x / y− y / x ∈ J ∩ I = {0}, and hence x / y = y / x. One can attach a unit to any split
quasi-Jordan algebra; specifics regarding this unitization procedure can be found in [20]. If
a quasi-Jordan algebra = possesses a unit, it follows that =ann = Z(=). Consequently, a
quasi-Jordan algebra =with a unit is a split quasi-Jordan algebra if—and only if—it satisfies
the condition = = J ⊕Z(=), where J represents a subalgebra of =. This subalgebra J is
referred to as the “Jordan part” of =. In such instances, each element x in = has a unique
representation, x = xJ + xZ with xJ ∈ J and xZ ∈ Z(=). These components are referred to
as the “Jordan part” and the “zero part” of x, respectively.

In the case where= = J⊕ I represents a split quasi-Jordan algebra over I, the following
relations hold for any x, y, z ∈ =, we have:

{x, y, z}q = x / (y / z) + (x / y) / z− (x / z) / y

= x / (yJ / zJ ) + (x / yJ ) / zJ − (x / zJ ) / yJ

=
{

x, yJ , zJ

}
q
=
{

xJ , yJ , zJ

}
q
+
{

xZ , yJ , zJ

}
q
.

Here, it is important to note that
{

xZ , yJ , zJ

}
q
∈ I, which is contained within Z(=)

and
{

xJ , yJ , zJ

}
q
∈ J, which is a Jordan algebra. Thus, the quasi-Jordan triple product in

the Jordan part coincides with the usual Jordan triple product.
As for Jordan algebras, we may define the operators U(x,y)q and U(x)q by U(x,y)q z =

{x, z, y}q and U(x)q z = {x, z, x}q for all x, y, z ∈ =. Thus, U(x)q(z) = x / (z / x) + (x / z) /
x− x2 / z.

Clearly, {x, e, y}q = x / y, for all x, y and for any unit e in =. In general, {x, y, z}q 6=
{z, y, x}q. Certainly, if e is a (right) unit in a quasi-Jordan algebra =, then it is evident
that {x, e, e}q = x 6= e / x = {e, e, x}q, for all x ∈ =. Moreover, for any x, y, z ∈ = with
y or z ∈ Z(=), we have {x, y, z}q = 0. Hence, U(z)q = U(x,z)q = 0, for all x ∈ = and
z ∈ Z(=). Furthermore, note that U(αx)q = α2Uxq , for all scalars α and vectors x ∈ =.

Proposition 1. In any plus quasi-Jordan algebra D+, it is readily apparent

{x, y, z}q =
1
2
(x a y a z + z ` y ` x).

Therefore,

U(x)q(y) =
1
2
(x a y a x + x ` y ` x).
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Proof.

4{x, y, z}q = 4(x / (y / z) + (x / y) / z− (x / z) / y)

= (x a y a z + x a z ` y + (y a z) ` x + z ` y ` x)
+(x a y a z + y ` x a z + z ` x a y + z ` y ` x)
−((x a z) a y + (z ` x) a y + y ` (x a z) + y ` (z ` x))

= (x a y a z + x a y a z) + (x a (z ` y)− x a z a y)
+((y a z) ` x− y ` z ` x) + (z ` y ` x + z ` y ` x)

= 2(x a y a z + z ` y ` x).

This gives the required identities.

Proposition 2. In a quasi-Jordan algebra = with unit e, the operator U(e)q(x) = e / x holds true
for all x ∈ =. Additionally, the operator U(x)q is linear for any x ∈ =.

Proof. For any x ∈ =, U(e)q(x) = e / (x / e) + (e / x) / e− e2 / x = e / x + e / x− e / x =
e / x.

Next, for any scalars α, β and vectors x, y, z ∈ =, we obtain the linearity of U(x)q ,
as follows:

U(x)q(αy + βz) = {x, (αy + βz), x}q

= x / ((αy + βz) / x) + (x / (αy + βz)) / x

−x2 / (αy + βz)
= x / (αy / x) + (x / αy) / x− x2 / αy

+x / (βz / x) + (x / βz) / x− x2 / βz

= α(x / (y / x)) + α((x / y) / x)− α
(

x2 / y
)

+β(x / (z / x)) + β((x / z) / x)− β
(

x2 / z
)

= α{x, y, x}q + β{x, z, x}q = αU(x)q(y) + βU(x)q(z).

In a quasi-Jordan algebra = with unit e, an element x is deemed invertible with
respect to the unit e if there exists an element y ∈ = such that y / x = e + (e / x− x) and
y / x2 = x + (e / x− x) +

(
e / x2 − x2). In this context, y is referred to as the inverse of x

with respect to the unit e. From the above proposition, U(e)q(e
′) = e / e′ = e for any unit e′

in =; and U(e)q(z) = e / z = 0 if—and only if—z ∈ Z(=). Therefore, ker U(e)q = Z(=) and
U(e)q(=) = =e, where =e := {e / x : x ∈ =}. Furthermore, U(e)q maps all units to e and all
zero elements of = to 0. Hence, even though e is invertible with a unique inverse, U(e)q
cannot be invertible as an operator.

Proposition 3. Let = be a quasi-Jordan algebra. Then:

U(x,y)q + U(y,x)q = U(x+y)q −U(x)q −U(y)q , f or all x, y ∈ =.
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Proof. Let z be any element of =. Then:

U(x+y)q(z) = (x + y) / (z / (x + y)) + ((x + y) / z) / (x + y)

−(x + y)2 / z

= x / (z / x) + x / (z / y) + y / (z / x) + y / (z / y)
+(x / z) / x + (y / z) / x + (x / z) / y + (y / z) / y

−x2 / z− (x / y) / z− (y / x) / z− y2 / z

= U(x)q z + U(y)q z + {x, z, y}q + {y, z, x}q = U(x)q z + U(y)q z + U(x,y)q z + U(y,x)q z.

3. Homotopes

Keeping in view the pivotal role of homotopes in the theory of Jordan algebras ([1,21–29]),
We embark on an investigation into the homotopes of quasi-Jordan algebras. Consider any
quasi-Jordan algebra = and an element a ∈ =.We proceed to introduce a new product in =, as
follows:x /a y = {x, a, y}q. This product is clearly a bilinear operator on =. The linear space
= equipped with the product “/a” is called the a-homotope of =, denoted by =[a].

If e is a unit in the quasi-Jordan algebra =, then x /e y = {x, e, y}q = x / (e / y) +
(x / e) / y − (x / y) / e = x / y. Hence, the e-homotope =[e] coincides with the original
algebra = itself, for any unit e in =.

Our primary focus in this section is to demonstrate that homotopes of any special
quasi-Jordan algebra also belong to the category of special quasi-Jordan algebras. To
establish this, we commence by proving that homotopes of any plus quasi-Jordan algebra,
denoted as (D+, /a) fall under the umbrella of quasi-Jordan algebras.

Proposition 4. Let D+ be a plus quasi-Jordan algebra and a ∈ D+. Then, (D+, /a) is a quasi-
Jordan algebra.

Proof. According to Proposition 1, we establish that x /a y = {x, a, y}q = 1
2 (x a a a y+

y ` a ` x) = {x, a, y}q for all x, y ∈ D+. This observation leads us to the following:

x a (a a (y ` (a ` z))) = x a (a a (y a (a ` z)))
= x a (a a (y a (a a z))) = x a a a y a a a z.

Similarly, (((z a a) a y) ` a) ` x = z ` a ` y ` a ` x.
Now,

x /a (y /a z) =
{

x, a, {y, a, z}q

}
q
=

1
2
(x a (a a {y, a, z}q) + ({y, a, z}q ` a) ` x)

=
1
4
((x a a a y a a a z) + (x a (a a (z ` (a ` y))))

+((((y a a) a z) ` a) ` x) + (z ` a ` y ` a ` x))

=
1
4
((x a a a y a a a z) + (x a a a z a a a y)

+(y ` a ` z ` a ` x) + (z ` a ` y ` a ` x))

and

x /a (z /a y) =
{

x, a, {z, a, y}q

}
q
=

1
2
(x a (a a {z, a, y}q) + ({z, a, y}q ` a) ` x)

=
1
4
((x a a a z a a a y) + (x a (a a (y ` (a ` z))))
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+((((z a a) a y) ` a) ` x) + (y ` a ` z ` a ` x))

=
1
4
((x a a a z a a a y) + (x a a a y a a a z)

+(z ` a ` y ` a ` x) + (y ` a ` z ` a ` x)).

So that x /a (y /a z) = x /a (z /a y).
To prove the Jordan right identity (y /a x) /a x2 =

(
y /a x2) /a x, we need to show

that
{
{y, a, x}q, a, {x, a, x}q

}
q
=

{{
y, a, {x, a, x}q

}
q
, a, x

}
q
, for all x, y ∈ D+. For this, we

observe that: {
{y, a, x}q, a, {x, a, x}q

}
q
=

1
2
({y, a, x}q a

(
a a {x, a, x}q

)
+
(
{x, a, x}q ` a

)
` {y, a, x}q).

However,

2{y, a, x}q a (a a {x, a, x}q) = {y, a, x}q a (a a (x a a a x + x ` a ` x))

= ({y, a, x}q a (a a (x a (a a x)))) + ({y, a, x}q a (a a (x ` (a ` x))))

= ({y, a, x}q a (a a x a a a x)) + ({y, a, x}q a (a a x a a a x))

= 2{y, a, x}q a (a a x a a a x)

= (y a a a x a a a x a a a x) + ((x ` a ` y) a a a x a a a x)

and
2({x, a, x}q ` a) ` {y, a, x}q = ((x a a a x + x ` a ` x) ` a) ` {y, a, x}q

= (((x a a a x) ` a) ` {y, a, x}q) + (((x ` a ` x) ` a) ` {y, a, x}q)

= (((x ` a ` x) ` a) ` {y, a, x}q) + (((x ` a ` x) ` a) ` {y, a, x}q)

= 2(x ` a ` x ` a ` {y, a, x}q)

= (((x ` a ` x) ` a) ` (y a a a x)) + (((x ` a ` x) ` a) ` x ` a ` y)

= ((x ` a ` x ` a) ` (y a a a x)) + (x ` a ` x ` a ` x ` a ` y).

Therefore,

4
{
{y, a, x}q, a, {x, a, x}q

}
q

= (y a a a x a a a x a a a x) + ((x ` a ` y) a (a a x a a a x))
+((x ` a ` x ` a) ` (y a a a x)) + (x ` a ` x ` a ` x ` a ` y).

Continuing, we note the following:

4
{{

y, a, {x, a, x}q

}
q
, a, x

}
q

= 2(
{
{y, a, (x a a a x)}q, a, x

}
q
+
{
{y, a, (x ` a ` x)}q, a, x

}
q
)

= ({(y a a a x a a a x), a, x}q + {((x a a a x) ` a ` y), a, x}q

+{(y a (a a (x ` a ` x))), a, x}q + {(x ` a ` x ` a ` y), a, x}q)

= ({(y a a a x a a a x), a, x}q + {(x ` a ` x ` a ` y), a, x}q
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+{(y a a a x a a a x), a, x}q + {(x ` a ` x ` a ` y), a, x}q)

= 2({(y a a a x a a a x), a, x}q + {(x ` a ` x ` a ` y), a, x}q)

= ((y a a a x a a a x a a a x) + ((x ` a) ` (y a a a x a a a x))

+((x ` a ` x ` a ` y) a (a a x)) + (x ` a ` x ` a ` x ` a ` y)).

It follows that:

4(
{{

y, a, {x, a, x}q

}
q
, a, x

}
q
−
{
{y, a, x}q, a, {x, a, x}q

}
q
)

= ((x ` a) ` (y a a a x a a a x))− ((x ` a ` y) a (a a x a a a x))

+((x ` a ` x ` a ` y) a (a a x))− ((x ` a ` x ` a) ` (y a a a x))

= (((x ` a) ` y) a (a a x a a a x))− (((x ` a) ` y) a (a a x a a a x))

+((x ` a ` x ` a) ` (y a (a a x)))− ((x ` a ` x ` a) ` (y a (a a x))) = 0.

Let (D,a,`) be a dialgebra, a ∈ D. Define in D, the new products aa and `a, as
follows: x aa y := x a a a y and x `a y := x ` a ` y for all x, y ∈ D; here, we dropped the
brackets because a and ` are associative.

Lemma 1. Let D be a dialgebra and a ∈ D. Then, (D,aa,`a) is a dialgebra over the same field.
The dialgebra (D,aa,`a) will be denoted by D[a]; called the a-homotope of D.

Proof. Clearly, the dialgebra D is closed under the products aa and `a. The product aa
is bilinear because (αx + βy) aa z = (αx + βy) a a a z = αx a a a z + βy a a a z =
α(x aa z) + β(x aa z), for all x, y, z ∈ D. Similarly, the product `a is bilinear.

Next, we verify that both aa and `a are associative: for this, let x, y, z ∈ D. Then,
by using the associativity of a, we obtain (x aa y) aa z = (x a a a y) a a a z = x a a a
(y a a a z) = x aa (y aa z); similarly, (x `a y) `a z = x `a (y `a z).

We now show that aa and `a also satisfy the remaining three defining identities of
a dialgebra (see the definition of a dialgebra). For this, let x, y, z ∈ D. Since both the
original multiplications a and ` satisfy the three defining identities, we obtain: (x `a
y) aa z = (x ` a ` y) a a a z = ((x ` a) ` y) a a a z = (x ` a) ` (y a a a z) = x ` a `
(y a a a z) = x `a (y aa z); (x aa y) `a z = (x a a a y) ` a ` z = ((x a a) a y) ` a ` z =
((x a a) ` y) ` a ` z = ((x ` a) ` y) ` a ` z = (x `a y) `a z; finally, x aa (y `a z) = x a
a a (y ` a ` z) = x a a a (y ` (a ` z)) = x a a a (y a (a ` z)) = x a a a (y a (a a z)) =
x aa (y aa z).

Remark 1. LetD be a dialgebra with a bar-unit e. In this context, we make the following observations:

1. Given that x a e a y = x a y and x ` e ` y = x ` y holds true for all x, y ∈ D, it
follows that ae=a and `e=`. Consequently, the e-homotope D[e] coincides with the original
dialgebra D.

2. As previously discussed in [34], an element x in a dialgebra D is considered regular with
respect to a bar-unit e if there exists y ∈ D satisfying the conditions y a x = (e− x) + (e a
x) and x ` y = (e− x) + (x ` e); such an element y is called an inverse of x with respect to
the bar-unit e. Let x be a regular element in D with respect to e, and let y be the inverse of x.
Then y is a bar unit in the dialgebra D[x] and x is a bar-unit of D[y]. Indeed, as y is the inverse
of x with respect to x, we get y a x = (e− x) + e a x and x ` y = (e− x) + (x ` e),
so that:

z ax y = z a x a y = z a (x a y) = z a (x ` y)

= z a ((e− x) + (x ` e)) = z a (e− x) + z a (x ` e)
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= z a e− z a x + z a x a e = z− z a x + z a x = z

and
y `x z = y ` x ` z = (y ` x) ` z = (y a x) ` z

= ((e− x) + e a x) ` z = e ` z− x ` z + (e a x) ` z

= e− x ` z + (e ` x) ` z = e− x ` z + x ` z = z,

for all z ∈ D. Similarly, for all z ∈ D, we have that:

z ay x = z a y a x = z a ((e− x) + e a x) = z a e− z a x + z a e a x = z

and

x `y z = x ` y ` z = ((e− x) + (x ` e)) ` z = e ` z− x ` z + x ` e ` z = z.

Proposition 5. Let D be a dialgebra and a ∈ D. Then, the a-homotope of the plus quasi Jordan
algebra D+ is a plus quasi-Jordan algebra.

Proof. By Lemma 1,
(
D[a],aa,`a

)
is a dialgebra. Recall that x aa y := x a a a y and

x `a y := x ` a ` y, for all x, y ∈ D. Then,
((
D[a]

)+
, /
)

is a plus quasi-Jordan algebra,

where the quasi-Jordan product “/” is given by:

x / y =
1
2
(x aa y + y `a x),

for all x, y ∈ D[a]. Which implies,

x /a y = {xay}q =
1
2
(x a a a y + y ` a ` x),

for all x, y ∈ D. Thus, the quasi-Jordan product ”/a” in the a-homotope of D+ is precisely

the quasi-Jordan product “/” in
(
D[a]

)+
, so that the two structures coincide.

Corollary 1. Any homotope of a special quasi-Jordan algebra is a special quasi-Jordan algebra.

Example 1. 1. Let (A, d) be a (non-graded) differential associative algebra. As per our hy-
pothesis, d(ab) = da b + a db and d2 = 0. Define left and right products on A with the
formulas x a y := x dy and x ` y := dx y. Then, (A,a,`) is a dialgebra ([8]). For
an element a ∈ A the a-homotope of this dialgebra

(
A[a],aa,`a

)
, has products defined as

follows: x aa y = x da dy and x `a y = dx da y. The quasi-Jordan product ”/a” induced in

the plus quasi-Jordan algebra
(
A[a]

)+
is defined by:

x / y =
1
2
(x aa y + y `a x) =

1
2
(x da dy + dy da x).

On the other hand, the a-Homotope of the plus quasi-Jordan algebra A+ is (A+, /a) with
product x /a y := 1

2 (x da dy + dy da x). This product coincides with the product in the plus

quasi-Jordan algebra constructed on
(
A[a],aa,`a

)
; here, the products aa,`a are defined as

follows: x aa y = x da dy and x `a y := dx da y.
2. Let H be a Hilbert space and e ∈ H with ‖e‖ = 1. We define two bilinear products in H,

as follows:
x a y := 〈y, e〉x and x ` y := 〈x, e〉y.
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It is easily seen that (H,a,`) is a dialgebra. The plus quasi-Jordan algebra induced by this
dialgebra (H, /), where x / y = 〈y, e〉x and the a-Homotope ofH is (H, /a) with product /a
defined by:

x /a y = 〈y, e〉〈a, e〉x.

Which is exactly the plus quasi-Jordan algebra of the dialgebra
(
H[a],aa,`a

)
where x aa

y = 〈y, e〉〈a, e〉x and x `a y = 〈y, e〉〈a, e〉x.
3. Let V be a vector space and fix φ ∈ V′ (the dual space of V) with φ 6= 0. We define the

products a and ` by:

x a y := φ(y)x;

x ` y := φ(x)y.

Then, (V,a,`) is a dialgebra that introduces a special quasi-Jordan algebra, namely (V, /);
here, the product is defined by:

x / y = φ(y)x,

for all x, y ∈ V. In this conclusion, for any a ∈ V we find that the a-homotope of this dialgebra
is
(

V[a],aa,`a

)
with products:

x aa y := φ(y)φ(a)x;

x `a y := φ(x)φ(a)y.

Which implies that the a-homotope of the quasi-Jordan algebra structure of V has the product
defined by x /a y = φ(y)φ(a)x, for all x, y ∈ V.

4. Homotopes of K-B Quasi-Jordan Algebras

In this context, we delve into the concept of homotopes within the broader framework
of K-B quasi-Jordan algebras. Our aim is to demonstrate that homotopes of any K-B
quasi-Jordan algebra belong to the category of quasi-Jordan algebras.

Lemma 2. For any elements x, y, z, a in a quasi-Jordan algebra =, we have: a / {x, y, z}q =

a / {z, y, x}q.

Proof. By using the right commutativity of the quasi-Jordan product, we obtain:

a / {x, y, z}q = a / (x / (y / z) + (x / y) / z− (x / z) / y)

= a / (x / (y / z) + (x / y) / z− (x / z) / y)

= a / ((y / z) / x + z / (x / y)− (z / x) / y) = a / {zyx}q.

Lemma 3. Let = be a quasi-Jordan algebra and let a ∈ =. Then,

x /a (y /a z) = x /a (z /a y) f or any x, y, z, a ∈ =.
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Proof. Let x, y, z, a ∈ =, then by using Lemma 2 we obtain:

x /a (y /a z) =
{

x, a, {y, a, z}q

}
q

= x /
(

a / {y, a, z}q

)
+ (x / a) / {y, a, z}q −

(
x / {y, a, z}q

)
/ a

= x /
(

a / {z, a, y}q

)
+ (x / a) / {z, a, y}q −

(
x / {z, a, y}q

)
/ a

=
{

x, a, {z, a, y}q

}
q
= x /a (z /a y).

Lemma 4. Let = be a K-B quasi-Jordan algebra. Then,(
y /a x2

)
/a x = (y /a x) /a x2, (3)

for all x, y, a ∈ =.

Proof. By Proposition 4, the identity (3) is satisfied if = is a special quasi-Jordan algebra;
hence, by ([9], Theorem 28), it is true if = is any K-B quasi-Jordan algebra.

Proposition 6. Let = be a K-B quasi-Jordan algebra. Then, for any a ∈ =, the a-homotope (=, /a)
of = is a quasi-Jordan algebra.

Proof. Based on the implications of Lemmas 3 and 4, it is evident that the product /a qualifies
as a quasi-Jordan product. Consequently, (=, /a) takes the form of a quasi-Jordan algebra.

Remark 2. From Corollary 1, we know that homotopes of any special quasi-Jordan algebra is a
special quasi-Jordan algebra. Recall that special quasi-Jordan algebras comprise a proper subclass
of K-B quasi-Jordan algebras. At this stage, we do not know the complete answer to the following
question: Is every homotope of a K-B quasi-Jordan algebra itself a K-B quasi-Jordan algebra?

5. Other Possible Quasi Triple Products

One may attempt to investigate other analogue/s of the Jordan triple product for
quasi-Jordan algebras. We define another triple product “{., ., .}◦” in a quasi-Jordan algebra
(=, /), as follows:

{x, z, y}◦ := (z / y) / x + (z / x) / y− z / (x / y)

for all x, y, z ∈ =. This triple product is consistent with the quadratic operator studied by
Felipe ([35]). Here, we investigate some properties of the triple product “{., ., .}◦” in the
setting of quasi-Jordan algebras =. We define the operator U(x,y)◦ , as follows:

U(x,y)◦z = {x, z, y}◦, f or all x, y, z ∈ =. (4)

In particular, for any fixed x ∈ =, the operator U(x,x)◦ translates as below: U(x,x)◦(y) =
{x, y, x}◦ = 2(y / x) / x− y / x2, for all y ∈ =.

We note that {x, y, z}◦ = {z, y, x}◦ for all x, y, z ∈ =. If e is a unit of=, then U(e,e)◦(x) =
2(x / e) / e− x / e2 = 2x / e− x / e = x / e == x, for all x ∈ =; so U(e,e)◦ is precisely the
identity operator on =. If x or z is in Z(=), then {x, y, z}◦ = 0; in particular, the operator
U(z,z)◦ is just the zero operator, for every z ∈ Z(=).
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The operator U(x,x)◦ is linear because:

U(x,x)◦(αy + βz) = {x, (αy + βz), x}◦
= α{x, y, x}◦ + β{x, z, x}◦
= αU(x,x)◦(y) + βU(x,x)◦(z),

for all scalars α, β and all x, y, z ∈ =.
In the case of a plus quasi-Jordan algebra D+, the triple product {., ., .}◦ translates

as follows:

4{x, y, z}◦ = (y a z a x + z ` y a x + x ` y ` z + x ` z a y)
+(y a x a z + x ` y a z + z ` y ` x + z ` x a y)
−(y a x a z + y a (z ` x) + (x a z) ` y + z ` x ` y)

= (x ` y a z + x ` y a z)
+(x ` z ` y− (x a z) ` y)
+(y a x a z− y a x a z)
+(y a z a x− y a (z ` x))
+(z ` x ` y− z ` x ` y)
+(z ` y a x + z ` y a x)

= 2(x ` y a z + z ` y a x),

so that:
{x, y, z}◦ =

1
2
(x ` y a z + z ` y a x)

and
U(x,x)◦(y) = x ` y a x.

Next, for any x, y ∈ =, we define the operator V(x,y)◦ on quasi-Jordan algebra =,
as follows:

V(x,y)◦z :=
(

U(x+z,x+z)◦ −U(x,x)◦ −U(z,z)◦

)
y,

for all z ∈ =. We observe that:

V(x,y)◦z = 2((y / (x + z)) / (x + z))− y / (x + z)2

−2(y / x) / x + y / x2 − 2(y / z) / z + y / z2

= 2(y / x) / x + 2(y / x) / z + 2(y / z) / x + 2(y / z) / z

−y /
(

x2 + x / z + z / x + z2
)

−2(y / x) / x + y / x2 − 2(y / z) / z + y / z2

= 2(y / x) / x + 2(y / x) / z + 2(y / z) / x + 2(y / z) / z

−y / x2 − y / (x / z)− y / (z / x)− y / z2

−y / x− y / z− 2(y / x) / x + y / x2 − 2(y / z) / z + y / z2

= 2(y / x) / z + 2(y / z) / x− y / (x / z)− y / (z / x)
= 2(y / x) / z + 2(y / z) / x− 2y / (x / z)
= 2{x, y, z}◦,

for all x, y, z ∈ =.

Proposition 7. Let = be a quasi-Jordan algebra with a unit e. If x is invertible with inverse y with
regard to the unit e, then U(x,x)◦y = e / x− x2 + U(x,x)◦ e.
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Proof. Suppose x has an inverse y with regard to the unit e. Then:

U(x,x)◦y = 2(y / x) / x− y / x2

= 2(e + e/(x)) / x− x− e/(x)− e/
(

x2
)

= 2(e / x + (e / x− x) / x)− x− (e / x− x)−
(

e / x2 − x2
)

= 2e / x + 2(e / x) / x− 2x2 − x− e / x + x− e / x2 + x2

= e / x + 2(e / x) / x− x2 − e / x2

= e / x− x2 + U(x,x)◦ e.

Remark 3. Since the (right) unit e in a quasi-Jordan algebra = may not be a left unit, we may
neither obtain e / x = x nor U(x,x)◦ e(:= 2(e / x) / x− e / x2) = x + x2 − e / x. Hence, by the
above proposition, U(x,x)◦y may not equal x; this is inconsistent with a well-known result obtained
by N. Jacobson, see ([1], p. 56). Thus, the operator U(x,x)◦ on the quasi-Jordan algebra = is not
consistent with the usual quadratic operator defined on a Jordan algebra.

Next, let us consider homotopes of a plus quasi-Jordan algebra D+ with respect
to the triple product {., ., .}◦. For any fixed a ∈ =, one may attempt to construct the a-
homotope of D+ with respect to the triple product {., ., .}0, as the original vector space
D equipped with the product “•a,” defined by: x •a y = {x, a, y}0. It is easy to see that
{x, a, y}0 = 1

2 (x ` a a y + y ` a a x).
Note that {x, a, y}0 = {y, a, x}0, and so x •a y = y •a x, for all x, y ∈ =. However,

(y •a x) •a x2 6=
(
y •a x2) •a x. For instance, if x = y = e (a bar-unit in D), then:

(y •a x) •a x2 =
(

e •a e2
)
•a e =

1
2
(a a a a a + a ` a ` a)

6= a ` a a a = (e •a e) •a e2 = (y •a x) •a x2.

This proves the following result:

Proposition 8. The a-homotope of D+ with respect to the triple product {., ., .}◦ (as defined above)
is not a quasi-Jordan algebra.

One may ask for other possible quasi-Jordan algebra analogues of classical Jordan
triple product. By definition of the Jordan triple product, we have that:

Ux,yz = {x, z, y} = (x ◦ z) ◦ y + x ◦ (z ◦ y)− z ◦ (x ◦ y) = TxTyz + TyTxz− Tx◦yz,

for all x, y, z ∈ =, where the operator Ta is the multiplication by a. In case of a quasi
Jordan algebra (=, /), we have right multiplication and left multiplication operators, Rx
and Lx, respectively; each of the two operators coincides with Tx if (=, /) is a Jordan alge-
bra. Therefore, in attempting to construct a possible triple product in a quasi-Jordan
algebra, we may replace Tx by Lx or Rx: so in the above construction of the Jordan
triple product, the expression TxTy may be replaced by any one of the four expressions
RxRy, RxLy, LxRy, LxLy; similarly, the expression TyTx may be replaced by any one of the
four expressions RyRx, RyLx, LyRx, LyLx. Of course, we have LxRy = LxLy by the right
commutativity of quasi-Jordan product “/”. This reduces the number of possible replace-
ments for TxTy to 3 and 3 for TyTx, too. Next, the expression Tx◦y may be replaced by
any one of the expressions Rx/y, Ry/x, Lx/y, Ly/x; again, by the right commutativity, we
have Rx/y = Ry/x and so for Tx◦y we have three possible replacements. Thus, there are
33 = 27 possible combinations of the left multiplication and right multiplication operators
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that are all possible analogues of the Jordan triple product for quasi-Jordan algebras. These
27 possible constructions are listed below; notice that the above two triple quasi-Jordan
triple products {., ., .}◦ and {., ., .}q are induced by the following constructions U(x,y)1

and
U(x,y)23

, respectively:

1. U(x,y)1
:= RxRy + RyRx − Rx/y;

2. U(x,y)2
:= RxRy + RyRx − Lx/y;

3. U(x,y)3
:= RxRy + RyRx − Ly/x;

4. U(x,y)4
:= RxRy + RyLx − Rx/y;

5. U(x,y)5
:= RxRy + RyLx − Lx/y;

6. U(x,y)6
:= RxRy + RyLx − Ly/x;

7. U(x,y)7
:= RxRy + LyLx − Rx/y;

8. U(x,y)8
:= RxRy + LyLx − Lx/y;

9. U(x,y)9
:= RxRy + LyLx − Ly/x;

10. U(x,y)10
:= RxLy + RyRx − Rx/y;

11. U(x,y)11
:= RxLy + RyRx − Lx/y;

12. U(x,y)12
:= RxLy + RyRx − Ly/x;

13. U(x,y)13
:= RxLy + RyLx − Rx/y;

14. U(x,y)14
:= RxLy + RyLx − Lx/y;

15. U(x,y)15
:= RxLy + RyLx − Ly/x;

16. U(x,y)16
:= RxLy + LyLx − Rx/y;

17. U(x,y)17
:= RxLy + LyLx − Lx/y;

18. U(x,y)18
:= RxLy + LyLx − Ly/x;

19. U(x,y)19
:= LxLy + RyRx − Rx/y;

20. U(x,y)20
:= LxLy + RyRx − Lx/y;

21. U(x,y)21
:= LxLy + RyRx − Ly/x;

22. U(x,y)22
:= LxLy + RyLx − Rx/y;

23. U(x,y)23
:= LxLy + RyLx − Lx/y;

24. U(x,y)24
:= LxLy + RyLx − Ly/x;

25. U(x,y)25
:= LxLy + LyLx − Rx/y;

26. U(x,y)26
:= LxLy + LyLx − Lx/y;

27. U(x,y)27
:= LxLy + LyLx − Ly/x.

For y = x, the above list of operators reduces to:
U(x,x)1

= 2R2
x − Rx2 ;

U(x,x)2
= U(x,x)3

= 2R2
x − Lx2 ;

U(x,x)7
= U(x,x)19

= R2
x + LxRx − Rx2 = R2

x + L2
x − Rx2 ;

U(x,x)8
= U(x,x)20

= U(x,x)21
= R2

x + LxRx − Lx2 = R2
x + L2

x − Lx2 ;
U(x,x)4

= R2
x + RxLx − Rx2 ;

U(x,x)5
= U(x,x)6

= U(x,x)12
= R2

x + RxLx − Lx2 ;
U(x,x)9

= U(x,x)25
= 2LxRx − Rx2 = 2L2

x − Rx2 ;
U(x,x)10

= U(x,x)11
= U(x,x)26

= U(x,x)27
= 2LxRx − Lx2 = 2L2

x − Lx2 ;
U(x,x)13

= 2RxLx − Rx2 ;
U(x,x)14

= U(x,x)15
= 2RxLx − Lx2 ;

U(x,x)16
= U(x,x)22

= RxLx + LxRx − Rx2 = RxLx + L2
x − Rx2 ;

U(x,x)17
= U(x,x)18

= U(x,x)23
= U(x,x)24

= RxLx + LxRx − Lx2 = RxLx + L2
x − Lx2 .

If the quasi-Jordan product “/” is commutative, then it is a Jordan product on = and
Lx = Rx = Tx, for all x ∈ =; hence, U(x,y)k

z = TxTyz + TyTxz− Tx/yz = Ux,yz (the usual
Jordan triple product) and so U(x,x)k

= 2TxTx − Tx2 = Ux (the usual quadratic operator),
for all x, y, z ∈ = and for all k ∈ {1, . . . , 27}.
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In case of the plus quasi-Jordan algebra D+ of a dialgebra (D,a,`), we observe that:

RxRyz =
1
4
((z a y a x) + (y ` z a x) + (x ` z a y) + (x ` y ` z));

RyRxz =
1
4
((z a x a y) + (x ` z a y) + (y ` z a x) + (z ` y ` x));

RxLyz =
1
4
((y a z a x) + (z ` y a x) + (x ` y a z) + (x ` z ` y));

RyLxz =
1
4
((x a z a y) + (z ` x a y) + (y ` x a z) + (y ` z ` x));

LxLyz =
1
4
((x a y a z) + (x a z a y) + (y ` z ` x) + (z ` y ` x));

LyLxz =
1
4
((y a x a z) + (y a z a x) + (x ` z ` y) + (z ` x ` y));

Rx/yz =
1
4
((z a x a y) + (z a y a x) + (x ` y ` z) + (y ` x ` z));

Lx/yz =
1
4
((x a y a z) + (y ` x a z) + (z ` x a y) + (z ` y ` x));

Ly/xz =
1
4
((y a x a z) + (x ` y a z) + (z ` y a x) + (z ` x ` y)).

Rx2 y =
1
4
(2(y a x a x) + 2(x ` x ` y));

Lx2 y =
1
4
((x a x a y) + (y ` x a x) + (x ` x a y) + (y ` x ` x));

R2
xy =

1
4
((y a x a x) + 2(x ` y a x) + (x ` x ` y));

L2
xy =

1
4
((x a x a y) + (x a y a x) + (x ` y ` x) + (y ` x ` x));

RxLxy =
1
4
((x a y a x) + (y ` x a x) + (x ` x a y) + (x ` y ` x)).

Hence, in case of plus quasi-Jordan algebra D+, the above list of 27 possible construc-
tions specializes as follows:

1. U(x,x)1
y = (x ` y a x).

2. U(x,x)2
y = U(x,x)3

y = 1
4 (2(y a x a x) + 4(x ` y a x) + 2(x ` x ` y)

− ((x a x a y) + (y ` x a x) + (x ` x a y) + (y ` x ` x)));
3. U(x,x)4

y = 1
4 (2(x ` y a x) + (x a x a y) + (x a y a x) + (x ` y ` x)

+ (y ` x ` x)− (y a x a x)− (x ` x ` y));
4. U(x,x)5

y = U(x,x)6
y = 1

4 ((y a x a x) + 2(x ` y a x) + (x ` x ` y)
+ (x a y a x) + (x ` y ` x)− ((y ` x a x) + (x ` x a y)));

5. U(x,x)7
y = 1

4 (2(x ` y a x) + (x a y a x) + (y ` x a x) + (x ` x a y)
+ (x ` y ` x)− (y a x a x)− (x ` x ` y));

6. U(x,x)8
y = 1

4 ((y a x a x) + 2(x ` y a x) + (x ` x ` y) + (y ` x a x)
+ (x ` x a y)− (x a x a y)− (y ` x ` x));

7. U(x,x)9
y = 1

2 (((x a x a y) + (x a y a x) + (x ` y ` x)
+ (y ` x ` x))− (y a x a x)− (x ` x ` y));

8. U(x,x)10
y = U(x,x)11

y = 1
4 ((x a x a y) + 2(x a y a x)

+ 2(x ` y ` x) + (y ` x ` x)− (y ` x a x)− (x ` x a y));
9. U(x,x)13

y = 1
2 ((x a y a x) + (y ` x a x) + (x ` x a y)

+ (x ` y ` x)− (y a x a x)− (x ` x ` y));
10. U(x,x)14

y = U(x,x)15
y = 1

4 ((x a y a x) + 2(y ` x a x) + 2(x ` x a y)
+ (x ` y ` x)− ((x a x a y) + (y ` x ` x)));
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11. U(x,x)16
y = 1

4 (2(x a y a x) + (y ` x a x) + (x ` x a y) + 2(x ` y ` x)
+ (x a x a y) + (y ` x ` x)− 2(y a x a x)− 2(x ` x ` y));

12. U(x,x)17
y = 1

2 ((x a y a x) + (x ` y ` x)).

6. Conclusions

The Jordan binary product “◦” induces the Jordan triple product, {a, b, c}, defined by
{a, b, c} = a ◦ (b ◦ c)− b ◦ (c ◦ a) + c ◦ (a ◦ b). The Jordan triple product, as highlighted,
plays a central role in the study of Jordan algebras and more extensive Jordan systems
known as Jordan triple systems. Notably, this product gives rise to essential operators, such
as the fundamental operators U(a,b) and V(a,b) which are defined on J, as follows: U(a,b)x :=
{a, x, b} and V(a,b)x := {a, b, x}. The operator U(a,a) is usually written in short as Ua, which
being quadratic in a is called the quadratic operator. It is a well-established fact that the
entire theory of Jordan algebras can be developed solely based on the quadratic operators.

In this article, we explored the potential for finding suitable analogues to the Jordan
triple product and its associated operators U(a,b) and V(a,b) within the realm of quasi-Jordan
algebras. We embarked on an investigation involving all 27 possible combinations of
the quasi-Jordan product “/”, aiming to identify quasi-Jordan triple products that exhibit
behaviors akin to the conventional Jordan triple product found in Jordan algebras. In the
context of Jordan algebras, all 27 combinations coincide with the Jordan triple product. Out
of these potential combinations, we specifically examined two:: {x, z, y}◦ := U(x,y)1

z =
(z / y) / x + (z / x) / y− z / (x / y) and {x, z, y}q := U(x,y)23

z = x / (z / y) + (x / z) / y−
(x / y) / z. Our primary objective was to examine these products in the context of quasi-
Jordan algebras, leading to the discovery of some intriguing properties. Notably, we
established the following key findings:

1. The homotope of a plus quasi-Jordan algebra, induced by the triple product {x, z, y}◦
may not be a quasi-Jordan algebra.

2. Any homotope of a special quasi-Jordan algebra, induced by the triple product
{x, z, y}q, is itself a special quasi-Jordan algebra.

3. Any homotope of a K-B quasi-Jordan algebra, induced by the triple product {x, z, y}q,
transforms into a quasi-Jordan algebra.

These results provide valuable insights into the behavior of these products in various
types of quasi-Jordan algebras. The question is whether such homotopes of an arbitrary
K-B quasi-Jordan algebra is again a K-B quasi-Jordan algebra is still an open problem. The
main difficulty in getting some positive answer to this question is due to non-availability
of the Macdonald’s theorems for quasi-Jordan algebras, even for K-B quasi-Jordan algebras.
It is known, due to V. Voronin, that straightforward generalizations of the Shirshov and
Macdonald theorems do not hold for general quasi-Jordan algebras. However, certain
appropriate analogues of these theorems in the setting of K-B quasi-Jordan algebras are
known, again due to Voronin. In the sequel, we intend to go further investigating the
homotopes and isotopes induced by the above picked two as well as other possible triple
products; particularly, in the setting of quasi-Jordan Banach algebras.
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