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Abstract: We developed a repeated quantum game of public goods by using quantum entanglement
and strong reciprocity mechanisms. Utilizing the framework of quantum game analysis, a compara-
tive investigation incorporating both entangled and non-entangled states reveals that the player will
choose a fully cooperative strategy when the expected cooperation strategy of the competitor exceeds
a certain threshold. When the entanglement of states is not considered, the prisoner’s dilemma still
exists, and the cooperating party must bear the cost of defactoring the quantum strategy themselves;
when considering the entanglement of states, the benefits of both parties in the game are closely
related, forming a community of benefits. By signing a strong reciprocity contract, the degree of
cooperation between the game parties can be considered using the strong reciprocity entanglement
contract mechanism. The party striving to cooperate does not have to bear the risk of the other party’s
defector, and to some extent, it can solve the prisoner’s dilemma problem. Finally, taking the public
goods green planting industry project as an example, by jointly entrusting a third party to determine
and sign a strong reciprocity entanglement contract, both parties can ensure a complete quantum
strategy to maximize cooperation and achieve Pareto optimality, ultimately enabling the long-term
and stable development of the public goods industry project.
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1. Introduction

In 1954, Samuelson considered public goods as goods and services that can be shared
by members of society in The Pure Theory of Public Expenditure.

A large number of public goods game experimental data summarized by Cardenas
and Carpenter confirmed that human behavior deviated from the assumption of complete
rationality [1]. Chen, Ye, and Wang pointed out that individuals were not all rational,
and they had heterogeneous social preferences [2]. Dosi, G Marengo, L., and Fagiolo,
G. proposed to examine the origins of institutional and evolutionary economics and to
examine evolutionary economics theory from the perspectives of research guidelines and
paradigms in order to further analyze the firm theory of evolutionary economics [3]. In
terms of the supply and use of public goods or public resources, cooperation among
individuals is ubiquitous, such as environmental protection, rural residents jointly raising
funds to repair water canals, and urban residents jointly purchasing cleaning services.
These phenomena are formed through participants’ repeated or multiple-stage games.
Cooperation strategy makes the collective benefit greater than the sum of individual
benefits. Therefore, cooperation has synergy. In 1971, Friedman proved that each Nash
equilibrium in which Pareto dominated the original game could be established in a perfect
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equilibrium of repeated games [4]. Thereafter, Aumann and Shapley proposed to replace
Nash equilibrium with subgame perfect equilibrium. Theoreticians have explained the
reasons for the emergence and maintenance of cooperation from various perspectives.
Robert believed that the repeated game of complete information was related to the evolution
of the basic form of interactions between people, and proved that cooperation, altruism,
revenge and threat in real life were the results of bounded rationality [5]. For the expectation
of future interests in an infinitely repeated game, the most appropriate measure to promote
cooperation is to use the theory of strong reciprocity [6]. Therefore, in the repeated game
of public goods, we can promote and maintain cooperation by constructing a reasonable
strong reciprocity mechanism. The SantaFe Institute is the main creator of the theory of
strong reciprocity, and after more than a decade of development, the influence of the theory
of strong reciprocity has become increasingly powerful. Gintis and Bowles is a trait of
agents that operate even when there is no expected benefit from doing so [7,8]. Domestic
scholars such as Wang, Ye, and Huang mainly introduce the research results of the Santafei
Institute, without conducting in-depth research on strong reciprocity [9]. However, the
papers by Gong Zhishui and Wei Qian review the new perspective of institutional evolution
research on strong reciprocity in recent years [10,11]. Therefore, strong reciprocity is a
strong form of cooperation.

Since the end of the 1990s, expanding domestic demand has been an important goal
that the Chinese government is committed to pursuing, and the government has carried
out a lot of work for it. However, the problem of insufficient domestic demand has not been
fundamentally solved. In the context of the US financial crisis and the European debt crisis,
reversing the traditional export-oriented economy and establishing an economic structure
dominated by domestic demand becomes one of the central tasks of China’s economic
work. Studying the supply mechanism of public goods to promote a more adequate and
effective supply of public goods can promote the expansion of domestic demand. Changing
an export-oriented economy into a domestic demand economy is an important issue.

The COVID-19 that broke out at the end of 2019 caused heavy losses to social welfare.
The externalities of the epidemic itself determine that public finance plays an important
role in combating the epidemic. However, the issue of public finance construction during
the epidemic reminds us that public goods cannot be completely provided by the market,
and we should increase the diversification of public goods supply. To some extent, it is
necessary to encourage enterprises to participate in the supply of public goods, so that they
can pay attention to these social issues from the perspective of mechanism design, and it is
also another business opportunity for enterprise development.

So far, research on games of public goods has mainly focused on theoretical analyses
of market competitions based on Evolutionary Game with more than two populations [12]
and the mechanism coexistence or supply chain mechanism [13,14].Yu,Yang et al. con-
ducted a large amount of research on the equilibrium of population game [15–19], taking
a multi-player repeated game in eBay online bidding as an example. Khakzad studied
repeated games for eco-friendly flushing in reservoirs to study interactions between mul-
tiple self-interested parties [20]. Escobara and Llanes studied cooperation dynamics in
repeated games of adverse selection to study cooperation dynamics in repeated games
with Markovian private information. Many scholars have made a comparative analysis
of the incentive effect of incentive contracts in different situations, and they have drawn
corresponding conclusions and inspiration. Cao et al. believed that the government’s
incentive contract for manufacturers to recycle and remanufacture could better motivate
manufacturers and also improve the government’s revenue to a certain extent [21]. Tang,
Dan, and Song pointed out that different discount rates would lead to different incentive
effects of contracts [22]. So, the incentive effect of relationship contracts was gradually
enhanced with the increase of discount rates.

In general, although some scholars have investigated and have discussed the incentive
effects of different types of contracts, the binding force on game players is actually not
strong. For example, free rider situations such as smart pig games still exist in public goods
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games. Therefore, it is necessary to study the impact of strong reciprocity mechanisms on
game players’ strategies.

As the cross field of quantum mechanics and classical information theory, quantum
information theory has played a significant role in promoting the development of quantum
computers and has yielded a series of scientific research progressions. Quantum game
theory is the product of the application of quantum information theory to the analysis
framework of game theory and is also one of the new expansion fields of game theory. It was
proposed in Meyer’s paper on the quantum game of coin flipping [23]. Eisert and others
further applied quantum game to the situation of the prisoner’s dilemma [24]. Subsequent
researchers in the field of physics and economics proposed relevant theorems, further
enriching the quantum game theory [25]. Among them, Brandenburger compared and
analyzed the difference between classical game and quantum game and pointed out that
quantum strategy was not inferior to Nash equilibrium strategy [26]. Iqbal and Toor applied
quantum games to the framework of evolutionary games and obtained an evolutionary
stable strategy containing quantum strategies [27].

In recent years, scholars in information technology, computational mathematics,
physics, electronic engineering and other disciplines have conducted very in-depth re-
search on quantum games. Huang and Qiu investigated the quantized coward game
and studied the influence of quantum decoherence on the Nash equilibrium solution of
the quantum game [28]. Groisman proposed that quantum games could be regarded
as classical extended games in some situations for quantized eagle pigeon games and
prisoner’s dilemma [29]. At the same time, domestic scholars in related fields have also
made a series of studies. Zheng Junjun and others studied the exit dilemma caused by
the different views of heterogeneous bidders and further solved the investment dilemma
using quantum entanglement based on game theory. Yang and Zhang analyzed quantum
repeated games with continuous-variable strategies [30]. Shi, Xu, and Chen analyzed the
quantum Cournot duopoly game with an isoelastic demand function [31]. Wang and Yang
analyzed the quantum equilibrium quantities and quantum equilibrium profits of nonlinear
quantum Cournot duopoly games by using qualitative analysis [32] and quantum mixed
duopoly games with a nonlinear demand function [33]. We believed in the advantages of
quantum games that classical games could not achieve from the perspective of thinking
form. Quantum games are a nonlinear, probabilistic, nondeterministic thinking mode. The
research results showed that the greater the degree of entanglement of the game, the higher
the overall maximum benefit. The above literature mainly focuses on the field of physics,
but there are few articles on the economic background of applying quantum games to our
production and life, and none on the applications of quantum game to the situation of
repeated supply of public goods.

Quantum games without entanglement have the same outcome as classical games,
and this type of problem may usually be solved using classical games of corresponding
contracts.

In summary, from a new perspective of the game of repeated supply of public goods,
this article first introduces a quantum strategy set and constructs a repeated quantum
game model of public goods; secondly, using the paradigm of quantum game analysis,
comparative research is conducted on whether to consider entangled states. Finally, an
application analysis is conducted using the cooperation project of green planting industry
in public goods greenhouses as an example.

2. Quantum Game Analysis of Repeated Supply of Public Goods under
Strong Reciprocity

Public goods industry cooperation projects are not a non black or white binary strategic
game of cooperation and non cooperation. Especially for public goods industry cooperation
projects with long-term repetition, the degree of cooperative effort should be regarded as a
continuous variable. This state, which exists between complete effort and complete non
effort, is very similar to the concepts of superposition and the entanglement of states in
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quantum mechanics. This article uses the analytical paradigm of quantum games, using
a repeated game framework to study the evolution process of industrial cooperation in
repeated quantum games of public goods with strong reciprocity mechanisms.

The public goods supply market consists of two populations: private enterprises and
state-owned enterprises, with the supply strategy set of agents in each population being
{C(cooperate), D(defector)}. Then, the repeated game scenario of public goods supply is
as follows.

Firstly, their investment is assumed to be the degree of effort e1 and e2, and the
investment risks of game population are Ec(e1) =

γ1
2 e2

1, Gc(e2) =
γ2
2 e2

2, where γ1 and γ2
are the cost parameters of the two populations.

Secondly, since the mutual discount coefficient is strong and all populations are the
same after the game starts in the second stage, we set the total market income U of public
goods to

U = beα
1e1−α

2 + ε,

where b denotes the coefficient of outputs; α represents the weight of the state-owned
enterprise population’s cooperation degree 1 − α ; and ε is a random perturbation on
Cobb–Douglas.

In this article,the income distribution contract will temporarily consider the ordinary
linear form, where E(U) = βU and β are the income distribution coefficients.

Further, let the degree of cooperation between private enterprise population and the
state-owned enterprise population be θ1 = 1− e1 and θ2 = 1− e2, respectively, then θi = 0
means full cooperation, and θi = 1 means no cooperation. From the perspective of quantum
games, the two polarized states of complete effort and complete no effort correspond to
θi = 0 and θi = 1, respectively, and correspond to the two polarized quantum states of |0〉
and |1〉 in quantum theory. The corresponding return matrices are shown in Table 1.

Table 1. Payoff matrix of supply with public goods.

Payoffs The State-Owned Enterprises

The private enterprises C(|0〉) D(|1〉)
C(|0〉) (1− β)b− γ1

2 , βb− γ2
2 − γ1

2 , 0
D(|1〉) 0,− γ2

2 0, 0

Thus, the payoff function of the private enterprises is

EEU = (1− β)beα
1e1−α

2 − Ec(e1) = (1− β)b(1− θ1)
α(1− θ2)

1−α − γ1

2
(1− θ1)

2,

where β represents the product factor of the return after the first game, and the payoff
function of the state-owned enterprises is

EGU = βbeα
1e1−α

2 − Gc(e2) = βb(1− θ1)
α(1− θ2)

1−α − γ2

2
(1− θ2)

2.

Therefore, the benefits of pure strategies (0, 0), (0, 1), (1, 0), and (1, 1) for the private
enterprises and the state-owned enterprises are((1− β)b− γ1

2 ,βb− γ2
2 ), (− γ1

2 ,0), (0,− γ2
2 ),

and (0, 0).

2.1. Repeated Game Based on Strong Reciprocity Public Goods

In the repeated game including private enterprises and the state-owned enterprises,
these agents repeatedly play a game with public goods; the payoff matrix of such a game is
put in Table 1.

We further make the following assumptions:

(i) Game scenario strategy assumption: In the game process, both the private enterprises
and the state-owned enterprises have only cooperation and betrayal strategies. After
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the first game, a tit for tat update mechanism is adopted in the repeated game. In
the sub game, the game population only has two strategy choices, that is, hypothesis
C strategy and D strategy. We will not consider the escape strategy of the game
population for the time being.

(ii) Game process parameter assumption: Consider the strong reciprocal punishment that
affects the game strategy in the repeated game process as δ(0 < δ < 1). So, when the
player chooses the defector strategy, he will pay δ as a cost of defector. The payoffs on
defector decreases with the increase in strong reciprocity δ, which is reflected in the
repeated quantum game payoffs BE and CG in 2.2 below.

(iii) Game result assumption: Consider the time value of returns in repeated game returns
as ρ(0 < ρ < 1). It is the discount factor and the probability of repeated games in the
next stage. So, 1− ρ is the probability of game ending.

According to the above assumptions, after the public goods supply game population
conducts the first stage of the game, there are four kinds of returns from the second stage
of the repeated game:

(1) In the second stage, we assume that the state-owned enterprises and private enter-
prises always choose to cooperate, except when opponents choose to defect, then the
payoffs of private enterprises are A1 ∑∞

i=0 ρi = A1
1−ρ , (A1 = (1− β)b− γ1

2 ); and the

payoffs of the state-owned enterprises are A2 ∑∞
i=0 ρi = A2

1−ρ , (A2 = βb− γ2
2 ).

(2) In the second stage, we assume that the state-owned enterprises with cooperation will
always choose to defect in the future if the private enterprises respond by choosing
to defect; then, the payoffs of the private enterprises are 0, and the payoffs of the
state-owned enterprises are C2(1−ρ)−δρ

1−ρ , (C2 = γ2
2 ).

(3) This is similar to (2)—the private enterprises with cooperation will always choose to
defect in the future if the state-owned enterprises respond by choosing to defect; then,
the payoffs of the private enterprises are B1(1−ρ)−δρ

1−ρ , (B1 = γ1
2 ). and the payoffs of the

state-owned enterprises are 0.
(4) In this repeated game, a tit for tat update strategy was adopted. Once a player chooses

a defector strategy in the current stage, the other player will choose a defector (never
cooperate) strategy in the following stages. That is to say, both sides of the game have
chosen a defector strategy, and the payoffs on the game is 0.

2.2. Public Goods Repeated Quantum Game

In Sun et al. [34], the Pareto optimal state is achieved by designing a reasonable
mechanism for strong reciprocity coefficient δ and discount factor ρ, but the achievement
of the Pareto optimal state is roundabout. Fortunately, this problem is solved by some
quantum schemes.

According to quantum game theory, the two polarization states θi = 0 (complete
cooperation) and θi = 1 (complete betrayal) correspond to the polarized quantum states
|0〉 and |1〉, respectively. Then, the corresponding payoff matrix is shown in Table 2.

Table 2. Payoff matrix of repeated supply of public goods based on quantum game.

Payoffs The State-Owned Enterprises

The private enterprises C(|0〉) D(|1〉)
C(|0〉) A1

1−ρ , A2
1−ρ −B1 − δρ

1−ρ , 0

D(|1〉) 0,−C2 − δρ
1−ρ 0, 0

The payoff matrix of Table 2 implies that the payoffs reach the Pareto optimal state
only when the private enterprises and the state-owned enterprises choose the strategy of
full effort. Moreover, if one cooperates completely and the other one betrays, then the fully
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cooperative one will bear both the cost of the cooperation and no profit. This means the
risk of the cooperation is aggravated by the increase in the public goods supply investment
(Ec, Gc). However, the Pareto optimal state is not the unique Nash Equilibrium.

According to the two extreme states |0〉 and |1〉, we set the initial quantum state of
both parties as |00〉, where the first digit represents the private enterprises, the second digit
represents the state-owned enterprises, and |00〉 = |0〉⊗ |1〉. Then, let the entanglement
matrix be

Ĵ = exp(i
w
2

σx
⊗

σx) = cos
w
2
· I + i sin

w
2
· H.

where

H =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

,

σx =

(
0 1
−1 0

)
,

I denotes a 4 × 4 identity matrix, and w represents the degree of entanglement. If ω = π
2 ,

namely, the degree of entanglement is the maximum, then the anti entanglement matrix is

Ĵ+ = cos
w
2
· I − i sin

w
2
· H;

the strategy matrix of the private enterprises is

U1(θ1, ϕ1) =

(
eiϕ1 cos θ1

2 sin θ1
2

− sin θ1
2 e−iϕ1 cos θ1

2

)
;

and the strategy matrix of the state-owned enterprises is

U2(θ2, ϕ2) =

(
eiϕ2 cos θ2

2 sin θ2
2

− sin θ2
2 e−iϕ2 cos θ2

2

)
;

where θ1, θ2 ∈ [0, π], ϕ1, ϕ2 ∈ [0, π
2 ]. The setup of a two-player quantum game is shown in

Figure 1 [23].

Figure 1. The setup of a two-player quantum game.

If θ1 = 0, ϕ1 = 0, namely, both the private enterprises and the state-owned enterprise
choose complete cooperation, then

U1(0, 0) =
(

1 0
0 1

)
.

If θ1 = π, ϕ1 = 0, namely, the private enterprises choose complete defector and the
state-owned enterprise choose complete cooperation, then

U1(π, 0) =
(

0 1
−1 0

)
.
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For the simplest entanglement-free situation, that is Ĵ = I, we have

|ψ f 〉 = Ĵ+(U1
⊗

U2) Ĵ|00〉 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ·


1
0
0
0

 = −|10〉.

This degenerates to the situation of player 1’s defector in the prisoner’s dilemma game.
When the entanglement of states is considered, namely, Ĵ = exp(i w

2 σx
⊗

σx), it follows that

|ψ f 〉 = Ĵ+ · [U1(θ1, ϕ1)
⊗

U2(θ2, ϕ2)] · Ĵ|00〉

= [cos(ϕ1 + ϕ2)− i · sin(ϕ1 + ϕ2)] cos
θ1

2
cos

θ2

2
|00〉

+ [cos ϕ1 − i · sin ϕ1 · cos w] cos
θ1

2
sin

θ2

2
|01〉

+ [sin w · sin ϕ2] sin
θ1

2
cos

θ2

2
|01〉

+ [cos ϕ2 − i · sin ϕ2 · cos w]sin
θ1

2
cos

θ2

2
|10〉

+ [sin w · sin ϕ1] cos
θ1

2
sin

θ2

2
|10〉

+ [sin w · sin(ϕ1 + ϕ2)] cos
θ1

2
cos

θ2

2
|11〉+ sin

θ1

2
sin

θ2

2
|11〉.

Thus, the probability of each quantum state is

P(Q) =



P00 = [cos2(ϕ1 + ϕ2) + sin2(ϕ1 + ϕ2) cos2 w] cos2 θ1
2 cos2 θ2

2
P01 = [cos2 ϕ1 + sin2 ϕ1 cos2 w] cos2 θ1

2 sin2 θ2
2

+ [sin2 ϕ2 sin2 w] sin2 θ1
2 cos2 θ2

2
P10 = [sin2 ϕ1 sin2 w] cos2 θ1

2 sin2 θ2
2

+ [cos2 ϕ2 + sin2 ϕ2 cos2 w] sin2 θ1
2 cos2 θ2

2
P11 = [sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2 cos2 θ2
2 + sin2 θ1

2 sin2 θ2
2

.

Obviously, since P00 + P01 + P10 + P11 = 1, the expected payoffs of the private enter-
prises are obtained as follows:

EEU = AEP00 + BEP01 + 0P10 + 0P11

= AE[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ BE[cos2 ϕ1 + sin2 ϕ1 · cos2 w] cos2 θ1

2
sin2 θ2

2

+ BE[sin2 ϕ2 · sin2 w] sin2 θ1

2
cos2 θ2

2
;

and the expected payoffs of the state-owned enterprises are obtained as follows:

EGU = AGP00 + 0P01 + CGP10 + 0P11

= AG[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ CG[sin2 ϕ1 · sin2 w] cos
θ1
2 sin2 θ2

2

+ CG[cos2 ϕ2 + sin2 ϕ2 · cos2 w] sin2 θ1

2
cos2 θ2

2
;

where AE = A1
1−ρ , BG = A2

1−ρ , BE = −B1 − δρ
1−ρ , CG = −C2 − δρ

1−ρ .
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3. Entanglement of Quantum States

Since the game process is uniformly affected by the entanglement ω, we only need to
discuss the entanglement with or without states.

3.1. The Entanglement without States

When the entanglement of states is not considered, i.e., ω = 0, Ĵ+ = Ĵ = I, we have

|ψ f 〉 = Ĵ+ · [U1(θ1, ϕ1)
⊗

U2(θ2, ϕ2)] · Ĵ|00〉

= ei(ϕ1+ϕ2) cos
θ1

2
cos

θ2

2
|00〉 − eiϕ1 cos

θ1

2
sin

θ2

2
|01〉

− eiϕ2 sin
θ1

2
cos

θ2

2
|10〉+ sin

θ1

2
sin

θ2

2
|11〉;

the payoffs of the private enterprises are

EEU = AEP00 + BEP01 + 0P10 + 0P11

= AEcos2 θ1

2
cos2 θ2

2
+ BE cos2 θ1

2
sin2 θ2

2
;

and the payoffs of the state-owned enterprises are

EGU = AGP00 + 0P01 + CGP10 + 0P11

= AG cos2 θ1

2
cos2 θ2

2
+ CG sin2 θ1

2
cos2 θ2

2
.

Theorem 1. For the entanglement without states,

(i) The private enterprises’ payoffs EEU raise the increase in effort degree e1 if and only if
AE cos2 θ2

2 + BE sin2 θ2
2 > 0;

(ii) the state-owned enterprises’ payoffs EGU lower the increase in effort degree e2 if and only if
AG cos2 θ1

2 + CG sin2 θ1
2 > 0.

Proof. Since proof of the state-owned enterprises is similar to the private enterprises’, we
only verify the case of the private enterprises. By

EEU = AEP00 + BEP01 + 0P10 + 0P11

= AE cos2 θ1

2
cos2 θ2

2
+ BE cos2 θ1

2
sin2 θ2

2

= cos2 θ1

2
(AE cos2 θ2

2
+ BE sin2 θ2

2
),

it follows that the private enterprises’ payoffs EEU is positive if and only if AE cos2 θ2
2 +

BE sin2 θ2
2 > 0. Hence, the private enterprises’ payoffs EEU raise the increase in effort

degree e1.
So, Theorem 1 is proved.

In this game, the benefits of the players are equally affected by strong reciprocity
and quantum entanglement. When conducting numerical simulation analysis, we only
consider the impact of private enterprise profits. In order to better reflect the impact of
strong reciprocity δ on the payoffs of the private enterprises, we first give the parameters
β = 0.4, b = 1.5, γ1 = 0.2, ρ = 0.5 and then take δ = 0, δ = 0.4, δ = 0.8 for numerical
simulation.

The numerical simulation diagrams are as follows:
Figure 2. Among them, (a) is a three-dimensional image of the enterprises’ payoffs and

effort level without quantum entanglement, (b) is EEU and θ2 corresponds to projection on
θ1, (c) is EEU , and θ1 corresponds to projection on θ2.
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(1a) (1b)

(2a) (2b) (2c)

(3a) (3b) (3c)

(1c)

Figure 2. Three-dimensional image of the enterprises’ payoffs EEU (1a,2a,3a). EEU and θ2 corre-
sponds to projection on θ1 (1b,2b,3b); EEU and θ1 corresponds to projection on θ2 (1c,2c,3c).

From Figure 2(1a–3a), we find that the closer θ2 is to 0, the more obvious the decreasing
trend of the private enterprises’ payoffs EEU are with the increase in θ1. And as θ2 is close
to π, it is difficult to judge whether the private enterprises’ payoffs EEU will increase or
decrease with θ1, because AE cos2 θ2

2 + BE sin2 θ2
2 > 0.

However, from the projections in Figure 2(1b–3b), we can see that when the strong
reciprocity parameter takes different values of δ, the payoffs EEU of private enterprises
increase as θ1 increases from 0 to a certain threshold and θ2 increases, but after reaching the
threshold, it decreases as θ1 increases from threshold to π and θ2 increases.

At the same time, the threshold of θ2 is obtained by taking different values of δ for the
positive and negative payoffs EEU of private enterprises. As mentioned earlier, when δ is

0, 0.4 and 0.8, respectively, the thresholds for θ2 are arcsin
√

8
11 , arcsin

√
8

13 , and arcsin
√

8
15 .

Therefore, it can be seen that the payoffs of the game party decrease with the increase in the
value of the strong reciprocity parameter δ, and this change is very clear in the numerical
simulation of the threshold point θ2 in Figure 2(1c–3c).

Table 3 provides the payoff matrix of four special strategies for the private enterprises
and the state-owned enterprises. From Table 3, we easily find the value of the parameter
ϕ1 and ϕ2 do not affect the payoffs. Besides, the payoffs of the private enterprises will
be reduced to BE if the private enterprises fully cooperates (θ1 = 0) and state-owned
enterprises do not choose to cooperate (θ2 = 0). Namely, the cost of betrayal of the state-
owned enterprises will be borne by the effortful one.
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Table 3. Payoff Matrix under Four Strategies without Entanglement.

Payoff The State Owned Enterprises

The private enterprises θ2 = 0, ϕ2 = 0 θ2 = 0, ϕ2 = π
2 θ2 = π, ϕ2 = 0 θ2 = π, ϕ2 = π

2
θ1 = 0, ϕ1 = 0 AE, AG AE, AG BE, 0 BE, 0
θ1 = 0, ϕ1 = π

2 AE, AG AE, AG BE, 0 BE, 0
θ1 = π, ϕ1 = 0 0, CG 0, CG 0, 0 0, 0
θ1 = π, ϕ1 = π

2 0, CG 0, CG 0, 0 0, 0

Next, let q ≡ cos2 θ2
2 , then 1− q = sin2 θ2

2 . Noticeably, the enterprises chooses the
strategy of full effort, and the sufficient and necessary conditions can be rewritten by
AEq + BE(1− q) > 0. That is, the conclusion of the quantum game model is consistent with
that of the deterministic evolutionary game model when the entanglement of states is not
considered, Only when the expectation of the opponent’s level of effort exceeds a certain
threshold will the game player choose a complete effort strategy without considering
entanglement, and the prisoner’s dilemma remains unresolved. Even if the trustworthy
party uses quantum strategy to defect, the cost still needs to be borne by the trustworthy
party.

3.2. The Entanglement of States

Quantum game possesses extra state entanglements different from traditional game;
this state entanglement has a positive effect on equilibria. For every state entanglement
ω ∈ (0, π

2 ), the probabilities of each quantum state are as follows:
P00 = [cos2(ϕ1 + ϕ2) + sin2(ϕ1 + ϕ2) cos2 w] cos2 θ1

2 cos2 θ2
2

P01 = [cos2 ϕ1 + sin2 ϕ1 cos2 w] cos2 θ1
2 sin2 θ2

2 + [sin2 ϕ2 sin2 w] sin2 θ1
2 cos2 θ2

2
P10 = [sin2 ϕ1 sin2 w] cos2 θ1

2 sin2 θ2
2 + [cos2 ϕ2 + sin2 ϕ2 cos2 w] sin2 θ1

2 cos2 θ2
2

P11 = [sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1
2 cos2 θ2

2 + sin2 θ1
2 sin2 θ2

2

.

Then, the expected payoffs of the private enterprises are

EEU = AEP00 + BEP01 + 0P10 + 0P11

= AE[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ BE[cos2 ϕ1 + sin2 ϕ1 · cos2 w] cos2 θ1

2
sin2 θ2

2

+ BE[sin2 ϕ2 · sin2 w] sin2 θ1

2
cos2 θ2

2
;

and the expected payoffs of the state-owned enterprises are

EGU = AGP00 + 0P01 + CGP10 + 0P11

= AG[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ CG[sin2 ϕ1 · sin2 w] cos2 θ1

2
sin2 θ2

2

+ CG[cos2 ϕ2 + sin2 ϕ2 · cos2 w] sin2 θ1

2
cos2 θ2

2
.

We only consider the case of ω = π
2 in the case that 0 < ω < π

2 is similar. Without
special instructions, the entanglement of the considered state in this paper refers to ω = π

2 .

Theorem 2. For the entanglement of states ω = π
2 ,

(i) when the private enterprises adopt maximal quantum strategys (ϕ1 = π
2 ) and sin2 ϕ2 cos2 θ2

2 >
0, the private enterprises’ payoffs EEU raise the increase in effort degree θ1, δ;
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(ii) when the private enterprises adopt maximal non quantum strategy (ϕ2 = π
2 ) and

sin2 ϕ1 cos2 θ1
2 > 0, the state-owned enterprises’ payoffs EGU raise the increase in effort

degree θ2, δ.

Proof. We only consider the private enterprises due to the likeness of the state-owned
enterprises.

Let ϕ1 = π
2 , then the private enterprises’ payoffs EEU are

EEU = [AE cos2(ϕ1 + ϕ2) cos2 θ2

2

+ BE cos2 ϕ1 sin2 θ2

2
] · cos2 θ1

2
+ BE sin2 ϕ2 sin2 θ1

2
cos2 θ2

2

= [AE cos2 θ1

2
+ BE sin2 θ1

2
] sin2 ϕ2 cos2 θ2

2
.

Obviously, since AE cos2 θ1
2 + BE sin2 θ1

2 decreases with the increase in θ1,
sin2 ϕ2 cos2 θ2

2 > 0 implies that EEU decreases with the increase in θ1.
So, Theorem 2 is proved.

Noteworthy, the achievement of Theorem 2 has to join a third party to determine the
strong reciprocal punishment and the time value of returns observable and quantifiable
performance indicators and sign an “entanglement contract.”

Theorem 3. For the entanglement of states ω = π
2 ,

(i) when the private enterprises adopts a non quantum strategy (ϕ1 = 0) and AE cos2 ϕ2 cos2 θ2
2 −

BE sin2 θ2
2 ≥ 0, the private enterprises’ payoffs EEU raise the increase in effort degree θ1, δ;

(ii) when the state-owned enterprises adopt the non quantum strategy (ϕ2 = 0) and AG sin2 ϕ1 cos2 θ1
2 +

CG sin2 θ1
2 > 0, the the state-owned enterprises’ payoffs EEU raise the increase in effort degree

θ2, δ.

Proof. It is similar to the proof of Theorem 3, we only consider the private enterprises.
Let ϕ1 = 0, then the private enterprises’ payoffs EEU is

EEU = [AE cos2(ϕ1 + ϕ2) cos2 θ2

2

+ BE cos2 ϕ1 sin2 θ2

2
] · cos2 θ1

2
+ BE sin2 ϕ2 sin2 θ1

2
cos2 θ2

2

= [AE cos2 ϕ2 cos2 θ2

2
+ BE sin2 θ2

2
] cos2 θ1

2
+ BE sin2 ϕ2 sin2 θ1

2
cos2 θ2

2
.

Obviously, AE cos2 ϕ2 cos2 θ2
2 + BE sin2 θ2

2 > 0 decreases with the increase of θ1, and
sin2 ϕ2 cos2 θ2

2 > 0 decreases with the increase of θ1. Notably, for AE cos2 ϕ2 cos2 θ2
2 +

BE sin2 θ2
2 ≥ 0 and sin2 ϕ2 cos2 θ2

2 ≥ 0, if “=” is not taken at the same time, EEU decreases
with the increase of θ1.

Hence, Theorem 3 is proved.

Theorem 4. For the entanglement of states ω = π
2 ,

(i) when the private enterprises adopts a quantum strategy (ϕ1 ∈ (0, π
2 )) and AE cos2(ϕ1 +

ϕ2) cos2 θ2
2 + BE cos2 ϕ1 sin2 θ2

2 ≥ 0, the private enterprises’ payoffs EEU raise the increase in
effort degree θ1, δ;

(ii) when the state-owned enterprises adopt a quantum strategy (ϕ2 ∈ (0, π
2 )) and AG cos2(ϕ1 +

ϕ2) cos2 θ1
2 + CG cos2 ϕ2 sin2 θ1

2 > 0, then the state-owned enterprises’ payoffs EGU raise the
increase in effort degree θ2, δ.
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Proof. Similarly, we consider the private enterprises.
From the private enterprises’ payoffs

EEU = [AE cos2(ϕ1 + ϕ2) cos2 θ2

2

+ BE cos2 ϕ1 sin2 θ2

2
] · cos2 θ1

2
+ BE sin2 ϕ2 sin2 θ1

2
cos2 θ2

2
,

It follows that the first term on the right of EEU decreases with the increase in θ1

as AE cos2(ϕ1 + ϕ2) cos2 θ2
2 + BE cos2 ϕ1 sin2 θ2

2 > 0, and the second term on the right
of F decreases with the increase in θ1 as sin2 ϕ2 cos2 θ2

2 > 0. Notably, for AE cos2(ϕ1 +

ϕ2) cos2 θ2
2 + BE cos2 ϕ1 sin2 θ2

2 ≥ 0 and sin2 ϕ2 cos2 θ2
2 ≥ 0, if = is not taken at the same

time, EEU decreases with the increase in θ1.
Thereby, Theorem 4 is proved.

Next, we verify that Theorems 2, 3 and 4 by simulation. The parameters of Theorem 1
remain unchanged, then we still take δ = 0, δ = 0.4, δ = 0.8. To compare the changes
in payoffs EEU of private enterprises using two quantum states, it shows in Figure 3 of
ϕ1 = π

2 and ϕ2 = 0 and ϕ1 = π
2 and ϕ2 = π

2 .

(1a) (1b) (1c)

(2a) (2b) (2c)

Figure 3. Three-dimensional image of EEU When taking ϕ1 = π
2 and ϕ2 = 0 (1a) or ϕ1 = π

2
and ϕ2 = π

2 (2a). EEU and θ2 corresponds to Projection on θ2 (1b,2b); EEU and θ1 corresponds to
Projection on θ2 (1c,2c).

Firstly, from Figure 3(1a,2a), we can clearly see that when the strong reciprocity
parameter δ takes different values, there is a significant change in the payoffs EEU of
private enterprises. When θ1 and θ2 are closer to π, the payoffs EEU decrease with the
increase in the strong reciprocity parameter δ.

Secondly, from Figure 3(1b,2b,1c,2c), ϕ1 = π
2 , ϕ2 = 0 and ϕ1 = π

2 , ϕ2 = π
2 , we find

that if θ1, θ2 ∈( π
4 , 3π

4 ), then the more obvious the trend is that the payoffs EEU of the private
enterprise decreases with the increase in θ2 or θ1. Similarly, we find that if θ2, θ1 ∈ (0, π

4 ) or
θ2, θ1 ∈( 3π

4 , π) it is difficult to judge the impact of the payoffs EEU of the private enterprises
changing with θ1 or θ2. It implies that the private enterprise still tends to cooperate even if
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the payoffs of the private enterprises decline due to the decline in the degree of cooperation
between the state-owned enterprises.

Similar to Table 3, we also give the payoff matrix of private enterprises and the state-
owned enterprises of four special strategies with the entanglement of states as shown in
Table 4.

Table 4. Payoff matrix of repeated game for special strategic public goods.

Payoffs The State-Owned Enterprises

The private enterprises θ2 = 0, ϕ2 = 0 θ2 = 0, ϕ2 = π
2 θ2 = π, ϕ2 = 0 θ2 = π, ϕ2 = π

2
θ1 = 0, ϕ1 = 0 AE, AG 0,0 BE, 0 BE, 0
θ1 = 0, ϕ1 = π

2 0,0 AE, AG 0, CG 0, CG
θ1 = π, ϕ1 = 0 0, CG BE, 0 0, 0 0, 0
θ1 = π, ϕ1 = π

2 0, CG BE, 0 0, 0 0, 0

According to Table 4, we easily find the full quantum strategy of maximum cooperation
(θ1 = 0, ϕ1 = π

2 , θ2 = 0, ϕ2 = π
2 ) achieves Pareto optimality and avoids the risk of

defecting to the other one. Therefore, once private enterprises choose the maximum effort
cooperation strategy, the defector of state-owned enterprises will result in their payoffs
being damaged. If the state-owned enterprise industry does not adopt a quantum strategy,
its profits will decrease to 0. If state-owned enterprises adopt a no-effort strategy, their
profits will decrease to CG, and they will bear the risk of defection. In the other three
defector situations, if the private enterprise’s payoffs only decrease to 0, then the private
enterprise does not need to bear the risk of defection. Therefore, after considering the
entanglement of states, it is only necessary to adopt a maximum-effort complete quantum
strategy to achieve both self maximization and Pareto optimality, without the risk of the
other party’s defector.

To sum up, it is necessary to sign entanglement contracts in the game. The profits of
both parties in the repeated game of public goods are closely related, forming a community
of profits. By signing strong reciprocity entanglement contracts, the efforts of the game
parties can be better measured using the strong reciprocity entanglement contract index,
forming a good signal transmission for each other. The party who strives to cooperate
does not need to bear the risk of the other party’s defector; to some extent, it can solve the
prisoner’s dilemma problem of classical games.

4. Example Numerical Analysis

This section uses the analysis paradigm of quantum game to further analyze the game
case of the repeated supply of public goods, vividly showing the theoretical analysis in
Sections 3.1 and 3.2, and it further explains the way to promote the maximum cooperation
between the state-owned enterprises and the private enterprises in the process of repeated
supply of public goods.

Case: The private enterprise signed an agreement with the state-owned enterprise
to jointly develop the distribution of the rural revitalization project “Greenhouse green
vegetable planting industry in a certain place”. The agreement stated that the state owned
enterprises was responsible for land rent 35 needed for the “Greenhouse green vegetable
planting industry”, and the private enterprises were responsible for planting equipment,
roads, irrigation and other infrastructure construction projects, as well as marketing. The
total human cost was about 55. However, due to the existence of bilateral credit risk in
the context of the greenhouse green vegetable planting industry, some hidden inputs will
decline with the decline of the degree of cooperation between the two players. Suppose
that the discount amount of the state-owned enterprises is between 30 and 60, and that
of the private enterprises is between 40 and 80. Since the specific investment amount of
both players cannot be observed by the other players, how can we promote long-term and
repeated cooperation between both players?
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Case analysis: This case is abstracted into a quantum game model of a repeated supply
of public goods. Suppose that the strategy set of the private enterprises is [40, 80], namely,
40 ≤ e1 ≤ 80, where e1 is the cost of the enterprises. Similarly, let the strategy set of the
state-owned enterprises be [30, 60], then the cost of the state-owned enterprises e2 ∈ [30, 60].
Let the final output meets U = be1e2 and the distribution coefficient is β = 0.4, then the
relationship between strategy selection and effort level θ1 = 2π − π

40 e1, θ2 = 2π − π
30 e2.

This section mainly analyzes the operation and application of the public goods rural
revitalization project “greenhouse green vegetable planting industry”, mainly involving
the concepts of quantum strategy and quantum entanglement. The difference between
quantum strategy and classical strategy is that the imaginary unit i is introduced, which is
another dimension perpendicular to the real number axis in the coordinate system. In the
application scenario of repeated supply of public goods, it is regarded as a measurable and
quantifiable performance indicator in the rural revitalization project, such as total working
hours, project construction costs, production costs, sales costs, etc. These observable
indicators reflect the degree of cooperation of the players. Quantum strategies reflect both
the degree of quantization ϕi and the degree of cooperation θi, which respectively represent
various quantifiable performance indicators and the unquantifiable degree of cooperation
of the agents. However, due to being incompletely positively correlated, the quantifiable
performance indicators cannot fully reflect the degree of cooperation and relevant hidden
investment in the project. So, it is necessary to strike an appropriate balance between the
formulation of strong reciprocity policy and discount policy.

Quantum entanglement is to bundle the strategy of the agents together. It means
the degree of correlation between the investment of agents is improved. A entanglement
contract stating the project performance value with stronger reciprocal binding force should
be signed before signing a contract for the repeated supply of public goods. Everyone
sets a discount fund according to the stated performance value, and the amount of the
discount fund is linked to the high or low performance target value. On the assessment
date specified in the contract, the agents who fail to reach the performance target value
in the assessment will be fined three times the difference in the discount fund. So, the
investment of both agents will be tied. And, the previously stated performance target value
can also convey some unobservable information. It greatly reduces the probability of credit
risk behavior.

4.1. Regardless of Entanglement of States

In the first case, before the launch of the “Greenhouse green viable planting industry in
a certain place” project, no relevant performance indicators were specified, that is, quantum
strategy ϕi and quantum entanglement ω were not considered. From the analysis of case 1
in Section 3.1, it is known that the expected payoffs of the private enterprises are

EEU = AE cos2(π − π

80
e1) cos2(π − π

60
e2)

+ BE cos2(π − π

80
e1) sin2(π − π

60
e2);

and the expected payoffs of the state-owned enterprises are

EGU = AG cos2(π − π

80
e1) cos2(π − π

60
e2) + CG sin2(π − π

80
e1) cos2(π − π

60
e2).
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Let us first discuss the payoffs of private enterprises. According to the exported payoff
function in Part 2, if the values of parameters β = 0.4, b = 1.5, γ1 = 0.2 remain unchanged,
then

EEU =
0.9e1e2 − 0.05e2

1
1− ρ

cos2(π − π

80
e1) cos2(π − π

60
e2)

+ (e1 −
δρ

1− ρ
) cos2(π − π

80
e1) sin2(π − π

60
e2).

Under the model assumption in Section 3.1, we set ρ = 0.5, then

EEU = (1.8e1e2 − 0.1e2
1) cos2(π − π

80
e1) cos2(π − π

60
e2)

+ (e1 − δ) cos2(π − π

80
e1) sin2(π − π

60
e2)

Obviously, when 0 < δ < 1, that is to say, the game party has signed a strong
reciprocity agreement, e1 cos2(π − π

80 e1) is an increasing function of e1.
When δ = 0, the game becomes a one-time classic game. Then,

EEU = (1.8e1e2 − 0.1e2
1) cos2(π − π

80
e1) cos2(π − π

60
e2)

+ e1 cos2(π − π

80
e1) sin2(π − π

60
e2)

e1 cos2(π − π
80 e1) is an increasing function of e1.

Obviously, since F(e2) = (1.8e1e2 − 0.1e2
1) cos2(π − π

60 e2) + e1 sin2(π − π
60 e2) is an

increasing function of e2, the increase or decrease of EEU is determined by the positive or
negative of F(e2). Assume that the zero point of F(e2) is e∗2 , then,

(1) When 30 ≤ e2 ≤ e∗2 , F(e2) is negative, and EEU is a monotone decreasing function
of e1; the optimal choice of the private enterprises is e∗1 = 40, which is the minimum
investment;

(2) When e∗2 ≤ e2 ≤ 60, F(e2) is positive, and EEU is a monotone increasing function of
e1; the optimal choice of the private enterprises is e∗1 = 80, which is the maximum
investment.

Similar to Theorem 1, when the strategy of state-owned enterprises reaches a certain
threshold of e∗2 ≈ 42, the optimal choice of private enterprises tends towards maximum
cooperation.

4.2. Considering Entanglement of States

Now, we consider the entanglement of states. Before the launch of “Greenhouse green
viable planting industry in a certain place” project, both parties entrusted to establish
relevant measurable and quantifiable performance indicators and signed a binding entan-
glement contract. According to the analysis of Case 2 in Section 3.2, when the entanglement
of states is being considered, the expected payoffs of the private enterprises are

EEU = AE[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ BE[cos2 ϕ1 + sin2 ϕ1 · cos2 w] cos2 θ1

2
sin2 θ2

2

+ BE[sin2 ϕ2 · sin2 w] sin2 θ1

2
cos2 θ2

2
;
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and the expected payoffs of the state-owned enterprises are

EGU = AG[1− sin2(ϕ1 + ϕ2) sin2 w] cos2 θ1

2
cos2 θ2

2

+ CG[sin2 ϕ1 · sin2 w] cos2 θ1

2
sin2 θ2

2

+ CG[cos2 ϕ2 + sin2 ϕ2 · cos2 w] sin2 θ1

2
cos2 θ2

2
.

We keep the parameter values in 4.1 unchanged and we consider the maximum value

of entanglement (ω =
π

2
); we obtain the payoffs of the private enterprises, which are

EEU = (1.8e1e2 − 0.1e2
1) cos2(ϕ1 + ϕ2) cos2 θ1

2
cos2 θ2

2

+ (e1 − δ) cos2 ϕ1 cos2 θ1

2
sin2 θ2

2
+ (e1 − δ) sin2 ϕ2 sin2 θ1

2
cos2 θ2

2
;

and the expected payoffs of the state-owned enterprises are

EGU = (1.2e1e2 − 0.1e2
1) cos2(ϕ1 + ϕ2) cos2 θ1

2
cos2 θ2

2

+ (e1 − δ) sin2 ϕ1 cos2 θ1

2
sin2 θ2

2
+ (e1 − δ) cos2 ϕ2 sin2 θ1

2
cos2 θ2

2
.

Here, it is assumed that the performance system of the private enterprises and the state-
owned enterprises is determined by the total investment cost of the project implementation
of the two populations. It is stipulated that the total investment of the private enterprises
is 80, the total investment of the state-owned enterprises is 60, and the incentive fund
for project performance is 50. Before signing the project contract, both parties signed
a performance entanglement contract and agreed that once one party fails to reach the
investment amount, he will be fined three times the difference in the incentive fund. Now,
the quantization degree corresponds to the total investment, as shown in the following
formula, ϕ1 = π

2 ·
Ec
80 and ϕ2 = π

2 ·
Gc
60 .

Under the model assumption in Section 2.1, we set ρ = 0.5, 0 < δ < 1, and then the
expected payoffs of the private enterprises are

EEU = (1.8e1e2 − 0.1e2
1) cos2(π − π

80
e1) cos2(π − π

60
e2)

+ e1 sin2(π − π

80
e1) cos2(π − π

60
e2)

− δ(π − π

80
e1) cos2(π − π

60
e2);

and the expected payoffs of the state-owned enterprises are

EGU = (1.2e1e2 − 0.1e2
2) cos2(π − π

80
e1) cos2(π − π

60
e2)

+ e2 cos2(π − π

80
e1) sin2(π − π

60
e2)

− δ cos2(π − π

80
e1) sin2(π − π

60
e2).

Therefore, we look at the payoffs of private enterprises: as long as e2 > 5
9 e1, and

cos2(π− π
60 e2) 6= 0, δ remains constant, the expected payoffs EEU of the private enterprises

will increase with the increase in the degree of cooperation e1. Similarly, we look at the
payoffs of state-owned enterprises: as long as e1 > 5

6 e2, and cos2(π − π
80 e2) 6= 0, δ remains

constant, the expected payoffs EGU of the state-owned enterprises will increase with
the increase in the degree of cooperation e2. However, due to the existence of a strong
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reciprocity coefficient δ, it is easy to see that the expected payoffs of the game players will
decrease with the increase in δ. So, in the game of repeated supply of public goods, the
strong reciprocity coefficient can promote the game population to repeat the supply of
public goods. In this case, as long as the other party does not choose not to cooperate at all,
the revenue of the game population will increase with the increase in the cooperation degree,
instead of bearing the loss of the other party’s defector. The signing of the entanglement
contract can increase the constraints on both sides of the game and reduce the occurrence
of free riding and other smart pig game phenomena.

5. Conclusions

We constructed a repeated quantum game model of strong-reciprocity public goods
with quantum entanglement using the analytical paradigm of quantum games. Through
comparative studies on entanglement without considering states and entanglement when
considering states, a numerical analysis was conducted on greenhouse green planting indus-
try cooperation projects under strong reciprocity. The following conclusions were drawn:

1. Because of quantifiable explicit discount indicators, the signing of strong reciprocity
entanglement contracts can better improve the correlation of returns between the
game parties in public goods industry cooperation projects and can better promote
the cooperation efforts of the game parties. From the analysis in Section 3.2, after
considering the entanglement of states, adopting a complete quantum strategy makes
it easier to achieve an increase in returns with the increase in one’s own efforts. The
cost of defection by the other party is no longer borne by the striving party, which
solves the prisoner’s dilemma problem in classical games to some extent.

2. In the analysis in Section 3, due to the entanglement of states, the cooperative game
parties in the public goods industry need to entrust a third party to determine the
strong reciprocity entanglement contract index before the project implementation,
which ensures that there is no motivation for the game parties to adopt non quantum
strategies. Then, only the fully quantum strategy with the maximum degree of
cooperation is optimal.

3. It is reasonable to analyze the repeated game of public goods from the perspective
of quantum games. Due to the complexity of implementing cooperation projects in
the public goods industry, the strategies of the game players are not a pure set of
cooperative or non cooperative strategies. Because of many influencing factors, the
degree of cooperation between the game players should be a continuous set of strate-
gies, similar to the superposition of states in quantum games. The superposition of
states and entanglement of states in quantum games can better reflect the cooperative
degree of repeated games in public goods.

With the advancement of artificial intelligence, games in the future will transcend
human–human interactions and encompass human–machine or machine–machine interac-
tions. Furthermore, with the progress in quantum computing, quantum gaming is poised
to become commonplace. By contemplating the evolution of cooperation under quantum
entanglement and strong reciprocity mechanisms, we try to find more interesting game
implementation mechanisms to solve the social cooperation dilemma.
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