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Abstract: We study three classes of variational inclusion problems in the framework of a real Hilbert
space and propose a simple modification of Tseng’s forward-backward-forward splitting method for
solving such problems. Our algorithm is obtained via a certain regularization procedure and uses
self-adaptive step sizes. We show that the approximating sequences generated by our algorithm
converge strongly to a solution of the problems under suitable assumptions on the regularization
parameters. Furthermore, we apply our results to an elastic net penalty problem in statistical learning
theory and to split feasibility problems. Moreover, we illustrate the usefulness and effectiveness of
our algorithm by using numerical examples in comparison with some existing relevant algorithms
that can be found in the literature.
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1. Introduction

Variational inclusion problems have widely been studied by researchers because of their
many valuable applications and generalizations. It is well known that many problems in
applied sciences and engineering, mathematical optimization, machine learning, statistical
learning, and optimal control can be modeled as variational inclusion problems. See, for
example, [1–3] and references therein. In addition, under some assumptions, such problems
involve many important concepts in applied mathematics, such as convex minimization, split
feasibility, fixed points, saddle points, and variational inequalities; see, for example, [4–7].

Let H be a real Hilbert space, and let S : H ⇒ H and T : H → H be maximal
monotone and monotone operators, respectively. The variational inclusion problem (VIP)
is to

find u ∈ H such that 0 ∈ (T + S)u. (1)

A foremost method proposed for solving (1) is the forward-backward splitting method (FBSM) [2].
The FBSM operates as follows:

xn+1 = (I + λS)−1(xn − λTxn) ∀n ∈ N,

where λ ∈ (0, 2
L ) and I : H → H is the identity operator. The FBSM was proved to

generate sequences that converge weakly to a solution of (1) under the assumption that T
is 1

L -cocoercive (or inverse strongly monotone). Aside from the cocoercivity assumption,
convergence is only guaranteed under a similar strong assumption such as the strong
monotonicity of S + T [8]. Interested readers could consult [9] for results on finding zeros
of sums of maximal monotone operators using a similar forward-backward scheme.

As an improvement on the FBSM, Tseng [10] proposed the modified forward-backward
splitting method (MFBSM) (also called the forward-backward-forward splitting method) for
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solving the VIP for a more general case, where T is monotone and L-Lipschitz continuous.
The MFBSM has the following structure:{

yn = (I + λS)−1(xn − λTxn)
xn+1 = yn − λ(Tyn − Txn), n ∈ N.

A weak convergence theorem was proved for this algorithm. While the implementation
of the FBSM requires the prior knowledge of the Lipschitz constant of T, which makes
the algorithm a bit restrictive, the MFBSM uses line search techniques to circumvent the
onerous task of estimating the Lipschitz constant. Be that as it may, line search techniques
are computationally expensive, as they require several extra computations per iteration; see,
for example, [11]. For the inexact and the stochastic versions of the MFBSM, respectively,
please see [12,13].

Motivated by the need to reduce the computational burden associated with the line
search technique, and by the fact that strong convergence is more desirable than weak
convergence in infinite dimensional Hilbert spaces and in applications, some authors have
incorporated existing hybrid techniques in the MFBSM and have proposed hybrid-like
strongly convergent methods with self-adaptive step sizes. See, for instance, [11,14] and
references therein.

Let S : H ⇒ H and Ti : H → H be maximal monotone and monotone operators,
respectively, where i ∈ [I] := {1, 2, . . . , I}. We recall the modified variational inclusion problem
(MVIP) introduced in [15]:

find u ∈ H such that 0 ∈ ∑
i∈[I]

(aiTi + S)u, (2)

where ai ∈ (0, 1) and ∑
i∈[I]

ai = 1. Obviously, the MVIP is more general than the VIP in

the sense that if Ti = T ∀i ∈ [I], then the MVIP becomes the VIP. It is easy to see that
if x ∈ ∩i∈[I](Ti + S)−1(0), then 0 ∈ ∑

i∈[I]
(aiTi + S)x. However, the converse is not true

in general.
In addition, the MVIP is more general than the following common variational inclusion

problem, which has recently been studied in [16]:

find 0 ∈ ∩i∈[I](Ti + S)u. (3)

In view of its generality, the MVIP has recently attracted the attention of some authors who
studied it and proposed algorithms for solving it. The authors of [17] studied the problem
for the case where the Tis are inverse strongly monotone. They proposed a Halpern-
inertial forward-backward splitting algorithm for solving the problem and proved a strong
convergence theorem. Moreover, the authors of [18] studied the MVIP in the case where
the Tis are monotone and Lipschitz continuous and designed a modified Tseng method for
solving it. By using some symmetry properties, they proved the weak convergence of the
method they proposed. Furthermore, they provided a formulation of an image deblurring
problem as an MVIP and used their results in order to solve this problem.

On the other hand, motivated by the work [16], the authors of [19] have recently
studied the following common variational inclusion problem:

find 0 ∈ ∩i∈[I](Ti + Si)u, (4)

where Si : H ⇒ H are maximal monotone operators and Ti : H → H are monotone
Lipschitz continuous operators. They combined the inertial technique, Tseng’s method,
and the shrinking projection method to design an iterative algorithm that solves (4).

Motivated by the above studies, in this paper, we propose a unified simple modifica-
tion of the MFBSM, which we call the regularized MFBSM (RMFBSM), for solving (2)–(4)
and establish a strong convergence theorem for the sequences it generates. To realize our
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objectives, we first examine a regularized MVIP and study the solution nets it generates.
The novelty of our scheme lies in the fact that, unlike the existing modifications of the MF-
BSM in the literature, it yields strong convergence while preserving the two-step structure
of the MFBSM. In the case where Ti = T and Si = S for all i = 1, 2, . . . , I, we apply our
result to a statistical learning model and to split feasibility problems.

The organization of our paper is as follows: In Section 2, we recall some useful
definitions and preliminary results, which are needed in our study and in the convergence
analysis of our algorithm. In Section 3, we propose the regularized MFBSM and establish
a strong convergence theorem for it. In Section 4, we give some applications of our main
results. In Section 5, we present numerical examples to illustrate our method and compare
it with some existing related algorithms in the literature. We conclude with Section 6.

2. Preliminaries

We start this section by stating some notations and recalling a number of important
definitions.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H, the inner
product and induced norm of which are denoted by 〈·, ·〉 and ‖ · ‖, respectively. We denote
by ‘un ⇀ u’ and ‘un → u’ the weak and the strong convergence, respectively, of the
sequence {un} to a point u. The following identity is well known:

‖u± v‖2 = ‖u‖2 ± 2〈u, v〉+ ‖v‖2 ∀u, v ∈ H.

Definition 1 ([1,20]). A mapping T : H → H is said to be

(i) L-Lipschitz continuous if there exists a constant L > 0 such that

‖Tu− Tv‖ ≤ L‖u− v‖ ∀u, v ∈ H;

(ii) β-strongly monotone if there exists a constant β > 0 such that

〈Tu− Tv, u− v〉 ≥ β‖u− v‖2 ∀u, v ∈ H;

(iii) β-inverse strongly monotone if there exists a constant β > 0 such that

〈Tu− Tv, u− v〉 ≥ β‖Tu− Tv‖2 ∀u, v ∈ H;

(iv) monotone if
〈Tu− Tv, u− v〉 ≥ 0 ∀u, v ∈ H;

(v) hemicontinuous if for every u, v, w ∈ H, we have

lim
α→0
〈T(u + αv), w〉 = 〈Tu, w〉.

Remark 1. In view of the above definitions, it is clear that every strongly monotone mapping is
monotone. In addition, Lipschitz continuous mappings are hemicontinuous.

Let S : H⇒ H be a set-valued operator. The graph of S, denoted by gr(S), is defined by

gr(S) := {(u, v) ∈ H×H : v ∈ Su}.

The set-valued operator S is called a monotone operator if ∀ (u, v), (y, z) ∈ gr(S), 〈u−
y, v− z〉 ≥ 0 and a maximal monotone operator if the graph of S is not a proper subset of
the graph of any other monotone operator. For a maximal monotone operator S and λ > 0,
the resolvent of S is defined by

JλS := (I + λS)−1 : H → H.
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It is well known that JλS is firmly nonexpansive (in particualr, nonexpansive).
For each u ∈ H, there exists a unique nearest element, denoted by PCu ∈ C and called the
metric projection ofH onto C at u. That is,

‖u− PCu‖ ≤ ‖u− v‖ ∀v ∈ C.

The indicator function of C, denoted by iC, is defined by

iC(u) :=
{

0, if u ∈ C,
+∞, if u /∈ C.

Recall that the subdifferential ∂ f of a proper convex function f at u ∈ H is defined by

∂ f (u) := {z ∈ H : f (u) + 〈z, y− u〉 ≤ f (y), ∀y ∈ H}.

The normal cone of C at the point u ∈ H, denoted by NC(u), is defined by

NC(u) :=

{
{x ∈ H : 〈x, y− u〉 ≤ 0 ∀y ∈ C}, if u ∈ C,
∅, otherwise.

We know that ∂iK is a maximal monotone operator, and we have ∂iK = NK. Furthermore,
for each λ > 0,

PCu = (I + λ∂iK)
−1u. (5)

The following important lemmata are useful in our convergence analysis.

Lemma 1 ([21]). LetH be a real Hilbert space. Let S : H⇒ H be a maximal monotone operator
and let T : H → H be a monotone and Lipschitz continuous mapping. Then, the mapping
M = S + T is a maximal monotone mapping.

Lemma 2 ([22]). LetH be a real Hilbert space. Let K be a nonempty, closed, and convex subset of
H, and let F : H → H be a hemicontinuous and monotone operator. Then, ū is a solution to the
variational inequality

find ū ∈ K such that 〈F ū, u− ū〉 ≥ 0 ∀u ∈ K

if and only if ū is a solution to the following problem:

find ū ∈ K such that 〈Fu, u− ū〉 ≥ 0 ∀u ∈ K.

Lemma 3 ([23]). Let H be a real Hilbert space. Suppose that F : H → H is κ-Lipschitzian and
β-strongly monotone over a closed and convex subset K ⊂ H. Then, the variational inequality
problem

find ū ∈ K such that 〈F ū, v− ū〉 ≥ 0 ∀v ∈ K

has a unique solution ū ∈ K.

Lemma 4 ([24]). Let {Ψn} be a sequence of non-negative real numbers, {an} be a sequence of real

numbers in (0, 1) satisfying the condition
∞
∑

n=1
an = ∞, and {bn} be a sequence of real numbers.

Assume that
Ψn+1 ≤ (1− an)Ψn + anbn, n ≥ 1.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {Ψnk} of {Ψn} satisfying lim inf
k→∞

(
Ψnk+1 −Ψnk

)
≥ 0,

then lim
n→∞

Ψn = 0.
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3. Regularized Modified Forward-Backward Splitting Method

Let S : H ⇒ H be a maximal monotone operator, Ti : H → H be a monotone and
Li-Lipschitz continuous operator for i ∈ [I] := {1, 2, . . . , I}, and ai ∈ (0, 1) such that
∑i∈[I] ai = 1. We denote the solution set of problem (2) by Ω, that is,

Ω := {u ∈ H : 0 ∈ ( ∑
i∈[I]

aiTi + S)u},

and assume that Ω 6= ∅. Let F : H → H be a γ-strongly monotone and L-Lipschitz
continuous operator. We are seeking a solution x∗ ∈ H such that

x∗ ∈ Ω and 〈Fx∗, u† − x∗〉 ≥ 0 ∀u† ∈ Ω. (6)

We denote the solution set of (6) by Ω̃. In this connection, we consider the following
regularized modified variational inclusion problem (RMVIP):

find u ∈ H such that 0 ∈ ( ∑
i∈[I]

aiTi + S)u + τFu, (7)

where τ > 0 is a regularization parameter. Observe that by Lemma 1, ∑i∈[I] aiTi + S is
a maximal monotone operator. In addition, (∑i∈[I] aiTi + S) + τF is strongly monotone
because F is strongly monotone. Therefore, for each τ > 0, problem (7) possesses a
unique solution which we denote by uτ . The following result concerning the solution net
{uτ}τ∈(0,1) can be deduced from [25] of Lemma 2, see also [7] of Proposition 3.1, but we
will give the proof for completeness.

Proposition 1. Let {uτ}τ∈(0,1) be the solution net of (7). Then,

(a) {uτ}τ∈(0,1) is bounded.

(b) Let uτj ∈ {uτ}τ∈(0,1), j = 1, 2. Then, ‖uτ1 − uτ2‖ ≤
|τ1−τ2|

τ1
M, where M > 0 is a constant.

(c) lim
τ→0+

uτ exists and belongs to Ω̃.

Proof. (a) Let uτ be a solution to (7). Then we have

−τFuτ − ∑
i∈[I]

aiTiuτ ∈ Suτ . (8)

Choose u† ∈ Ω. Then,
− ∑

i∈[I]
aiTiu† ∈ Su†. (9)

Using (8) and (9), we obtain

〈−τFuτ − ∑
i∈[I]

aiTiuτ + ∑
i∈[I]

aiTiu†, uτ − u†〉 ≥ 0. (10)

Since Ti is monotone, it follows from (10) that

τ〈Fuτ , u† − uτ〉 ≥ ∑
i∈[I]

ai〈Tiuτ − Tiu†, uτ − u†〉 ≥ 0. (11)

Using (11) and the γ-strong monotonicity of F , we find that

γ‖u† − uτ‖2 ≤ 〈Fu† −Fuτ , u† − uτ〉
≤ 〈Fu†, u† − uτ〉
≤ ‖Fu†‖‖u† − uτ‖. (12)
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It now follows from (12) that ‖u† − uτ‖ ≤ ‖Fu†‖
γ and hence {uτ}τ∈(0,1) is bounded.

(b) Let uτj ∈ {uτ}τ∈(0,1), j = 1, 2. Then,

0 ∈ ( ∑
i∈[I]

aiTi + S)uτj + τjFuτj . (13)

Using the monotonicity of (∑i∈[I] aiTi + S) and (13), we find that

〈−τ1Fuτ1 + τ2Fuτ1 − τ2Fuτ1 + τ2Fuτ2 , uτ1 − uτ2〉 = 〈−τ1Fuτ1 + τ2Fuτ2 , uτ1 − uτ2〉 ≥ 0. (14)

Using (14), we see that

(τ2 − τ1)〈Fuτ1 , uτ1 − uτ2〉 ≥ τ2〈Fuτ1 −Fuτ2 , uτ1 − uτ2〉 ≥ τ2γ‖uτ1 − uτ2‖2. (15)

Therefore, it follows from (15) that

τ2γ‖uτ1 − uτ2‖2 ≤ (τ2 − τ1)〈Fuτ1 , uτ1 − uτ2〉
≤ |τ2 − τ1|||Fuτ1 ||||uτ1 − uτ2 ||. (16)

Using (16), we obtain

‖uτ1 − uτ2‖ ≤
|τ2 − τ1|‖Fuτ1‖

τ2γ
=
|τ2 − τ1|M

τ2
,

where M =
‖Fuτ1‖

γ .
(c) The boundedness of the net {uτ}τ∈(0,1) implies that there exists a subsequence {uτn}
of {uτ} such that uτn ⇀ ū as n → ∞ where (τn)n∈N is a sequence in (0, 1) such that
τn → 0+ as n→ ∞. Note that −τnFuτn ∈ (∑i∈[I] aiTi + S)uτn for each n. Since the operator
(∑i∈[I] aiTi + S) is maximal monotone and hence sequentially closed in the weak-strong
topology on H×H, taking n→ ∞, we infer that 0 ∈ (∑i∈[I] aiTi + S)ū. Therefore, ū ∈ Ω.
In addition, 0 ∈ (∑i∈[I] aiTi + S)x∗ and 〈Fx∗, u† − x∗〉 ≥ 0 ∀u† ∈ Ω. It then follows that

〈−τnFuτn − ∑
i∈[I]

aiTiuτn + ∑
i∈[I]

aiTix∗, uτn − x∗〉 ≥ 0. (17)

It now follows from (17) and the monotonicity of Ti that

−〈τnFuτn , uτn − x∗〉 ≥ ∑
i∈[I]

ai〈Tiuτn − Tix∗, uτn − x∗〉 ≥ 0. (18)

Using (18), we conclude that

〈Fuτn −Fx∗, uτn − x∗〉+ 〈Fx∗, uτn − x∗〉 = 〈Fuτn , uτn − x∗〉 ≤ 0. (19)

Moreover, using (19) and the γ-strong monotonicity of F , we see that

γ‖uτn − x∗‖2 ≤ 〈Fuτn −Fx∗, uτn − x∗〉 ≤ 〈Fx∗, x∗ − uτn〉. (20)

Therefore, using (20), we have

〈Fx∗, x∗ − uτn〉 ≥ 0. (21)

Passing to the limit in (21) as n→ ∞, we find that

〈Fx∗, x∗ − ū〉 ≥ 0 ∀x∗ ∈ Ω, ū ∈ Ω,
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and using Lemma 2, we arrive at the conclusion that ū solves (6). The uniqueness of the
solution to 〈Fx∗, u† − x∗〉 ≥ 0 according to Lemma 3 implies that ū = x∗. Thus, passing to
the limit as n→ ∞ in (20), we conclude that uτn → x∗ as n→ ∞.

Following an approach similar to the above analysis, we denote the solution set of
problem (4) by Ω2 and consider the corresponding regularized common variational inclusion
problem:

find u ∈ H such that 0 ∈ (Ti + Si)u + τFu for all i. (22)

If {uτ}τ∈(0,1) is the solution net of (22), then Proposition 1 (a) and (b) hold, and for (c), we
see that limτ→0+ uτ exists and belongs to Ω̃2 := {x∗ ∈ Ω2 : 〈Fx∗, u∗ − x∗〉 ≥ 0 ∀u∗ ∈ Ω2}.
We make the following assumptions in connection with our Algorithm 1.

Assumption 1.

(A1) τn ∈ (0, 1), lim
n→∞

τn = 0, and
∞
∑

n=1
τn = ∞;

(A2) lim
n→∞

|τn+1−τn |
τ2

n
= 0;

(A3) {µn} and {pn} are two real sequences satisfying
∞
∑

n=1
µn < ∞ and

∞
∑

n=1
pn < ∞, respectively.

We next present a unified algorithm for solving the aforementioned problems.

Algorithm 1: Regularized Modified Forward-Backward Splitting Method
(RMFBSM)

Initialization: Let u1 ∈ H, µ ∈ (0, 1), and λ1 > 0 be given.
Iterative steps: Given un, calculate un+1 as follows:
Step 1: Compute

yi
n = JλnSi (un − λnTiun − λnτnFun). (23)

Step 2: Find in := arg maxi∈[I]{‖yi
n − un‖}.

Step 3: Compute
un+1 = yin

n − λn(Tin yin
n − Tin un). (24)

Update

λn+1 =

min
{

λn + ρn, (µ+µn)‖yn−un‖
‖Tin yin

n −Tin un‖

}
, if Tin yin

n 6= Tin un,

λn + ρn, otherwise.

Set n := n + 1 and go back to Step 1.

Remark 2. If Ti = T, Si = S, ρn = 0 = µn in Algorithm 1, and dn = 0 in Algorithm 1 of Hieu
et al. [25], then the two algorithms are the same. However, the problems we intend to solve are more
general than the problem (VIP) studied by Hieu et al. The sequence of step sizes in Algorithm 1 is
convergent, as shown in the next lemma.

Lemma 5. The sequence {λn} generated by Algorithm 1 is bounded, and λn ∈ [min{ µ
Lin

, λ1}, λ1 +

P]. Moreover, there exists λ ∈ [min{ µ
Lin

, λ1}, λ1 + P] such that lim
n→∞

λn = λ, where P =
∞
∑

n=1
ρn.

Proof. The proof follows from [26] of Lemma 2.1.
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Lemma 6. Let {un} be the sequence generated by Algorithm 1. Then, there exists n0 ∈ N such
that

‖un+1 − uτn‖2 ≤
(
1− γλnτn

)
‖un − uτn‖2 − (1− µ)‖yi

n − un‖2 ∀i ∈ [I], n ≥ n0,

where uτn solves the RMVIP with uτ replaced by uτn .

Proof. Using the definition of yi
n, we obtain

un − λnTiun − λnτnFun ∈ yi
n + λnSiyi

n,

from which it follows that

un − λn(Tiun − Tiyi
n)− λnτnFun − yi

n ∈ λn(Ti + Si)yi
n, for each i. (25)

Employing (24) and (25) in particular for in, we obtain

un − un+1 − λnτnFun ∈ λn(Tin + Sin)y
in
n . (26)

In addition,
−λnτnFuτn ∈ λn(Tin + Sin)uτn . (27)

Therefore, it follows from (26) and (27) that

〈un − un+1, yin
n − uτn〉 − λnτn〈Fun −Fuτn , yin

n − uτn〉 ≥ 0. (28)

Using the fact that F is γ-strongly monotone, we infer from (28) that

〈un − yin
n , yin

n − uτn〉 − 〈un+1 − yin
n , yin

n − uτn〉 − λnτn〈Fun −Fuτn , yin
n − un〉 ≥ λnτn〈Fun −Fuτn , un − uτn〉

≥ λnτnγ‖un − uτn‖2. (29)

Note that

〈un − yin
n , yin

n − uτn〉 =
1
2
(
‖un − uτn‖2 − ‖un − yin

n ‖2 − ‖yin
n − uτn‖2) (30)

and

〈un+1 − yin
n , yin

n − uτn〉 =
1
2
(
‖un+1 − uτn‖2 − ‖un+1 − yin

n ‖2 − ‖yin
n − uτn‖2). (31)

Substituting (30) and (31) in (29) and multiplying throughout by 2, we obtain

‖un+1 − uτn‖2 ≤ ‖un − uτn‖2 − ‖un − yin
n ‖2 + ‖un+1 − yin

n ‖2 − 2λnτn〈Fun −Fuτn , yin
n − un〉

−2λnτnγ‖un − uτn‖2

= (1− 2λnτnγ)‖un − uτn‖2 − 2λnτn〈Fun −Fuτn , yin
n − un〉

−‖un − yin
n ‖2 + ‖un+1 − yin

n ‖2. (32)

Using (24) and the Peter-Paul inequality, as well as (32), for any ε1 > 0, we have

‖un+1 − uτn‖2 ≤ (1− 2λnτnγ)‖un − uτn‖2 +
λnτnL

ε1
‖un − uτn‖2 + λnτnLε1‖yin

n − un‖2

−‖un − yin
n ‖2 + λ2

n‖Tin yin
n − Tin un‖2

≤
(
1− λnτn(2γ− L

ε1
)
)
‖un − uτn‖2 −

(
1− λnτnLε1 −

λ2
n(µ + µn)2

λ2
n+1

)
‖yin

n − un‖2. (33)
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Choose ε1 = L
γ . Observe that from Lemma 5 and the Assumption 1 (A1) and Assumption 1

(A3),

lim
n→∞

(
1− λnτnL2

γ
− λ2

n(µ + µn)2

λ2
n+1

)
= 1− µ2 > 1− µ > 0.

Therefore, there exists n0 ∈ N such that
(

1− λnτn L2
1

γ − λ2
nµ2

λ2
n+1

)
> (1− µ) for all n ≥ n0. Thus,

it follows from (33) that

‖un+1 − uτn‖2 ≤ (1− γλnτn)‖un − uτn‖2 − (1− µ)‖yin
n − un‖2

≤ (1− γλnτn)‖un − uτn‖2 − (1− µ)‖yi
n − un‖2, ∀i ∈ [I], ∀n ≥ n0, (34)

as asserted.

Theorem 1. The sequences generated by Algorithm 1 converge strongly to x∗ ∈ Ω̃2.

Proof. Invoking Proposition 1(b) and the Peter-Paul inequality, we see that there exists
ε2 > 0 such that

‖un+1 − uτn‖2 = ‖un+1 − uτn+1 + uτn+1 − uτn‖2

= ‖un+1 − uτn+1‖
2 + 2〈un+1 − uτn+1 , uτn+1 − uτn〉+ ‖uτn+1 − uτn‖2

≥ ‖un+1 − uτn+1‖
2 − ε2‖un+1 − uτn+1‖

2 −
‖uτn+1 − uτn‖2

ε2
+ ‖uτn+1 − uτn‖2

= (1− ε2)‖un+1 − uτn+1‖
2 − (

1− ε2

ε2
)‖uτn+1 − uτn‖2

≥ (1− ε2)‖un+1 − uτn+1‖
2 −

(
1− ε2

ε2

)(
τn+1 − τn

τn

)2

M2. (35)

Next, we define the sequence {βn} by

βn :=

{
τn, if γλn > 1
γλnτn, if γλn ≤ 1.

Then, from Lemma 6 and (35), it follows that ∀i ∈ [I] and for n ≥ n0,

‖un+1 − uτn+1‖
2 ≤ (1− βn)

1− ε2
‖un − uτn‖2 +

1
ε2

(
τn+1 − τn

τn

)2

M2

− 1
1− ε2

(1− µ)‖yi
n − un‖2. (36)

Let ε2 = 0.5βn. Then, from (36), it follows that

‖un+1 − uτn+1‖
2 ≤ (1− ε2

1− ε2
)‖un − uτn‖2 +

ε2

1− ε2

(
1− ε2

ε2
2

(
τn+1 − τn

τn

)2

M2
)

− 1− µ

1− ε2
‖yi

n − un‖2

= (1− ε2

1− ε2
)‖un − uτn‖2 +

ε2

1− ε2

(
4(1− ε2)

β2
n

(
τn+1 − τn

τn

)2

M2
)

− 1− µ

1− ε2
‖yi

n − un‖2, ∀n ≥ n0. (37)
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Let Θn = ‖un − uτn‖2, δn = ε2
1−ε2

and

bn =
4(1− ε2)

β2
n

(
τn+1 − τn

τn

)2

M2.

We see that δn ∈ (0, 1) and
∞
∑

n=1
δn = ∞. Then, from (37), we obtain

Θn+1 ≤ (1− δn)Θn + δnbn −
1− µ

1− ε2
‖yi

n − un‖2, ∀n ≥ n0. (38)

It is not difficult to see that the sequence {bn} is bounded. To complete the proof, we
invoke Lemma 4 by showing that lim sup

k→∞
bnk ≤ 0 for every subsequence {Θnk} of {Θn}

that satisfies lim inf
k→∞

(Θnk+1−Θnk ) ≥ 0. Therefore, let {Θnk} be a subsequence of {Θn} such

that lim inf
k→∞

(Θnk+1 −Θnk ) ≥ 0. It then follows from (38) that

lim sup
k→∞

1− µ

(1− ε2)
‖yi

nk
− unk‖

2 ≤ lim sup
k→∞

(
(Θnk −Θnk+1) + δnk (bnk −Θnk )

)
≤ − lim inf

k→∞
(Θnk+1 −Θnk )

≤ 0. (39)

From (39), we infer that
lim
k→∞
‖yi

nk
− unk‖ = 0. (40)

Moreover, from (24) and (40), it follows that

lim
k→∞
‖unk+1 − unk‖ = 0.

Indeed, it immediately follows from conditions (A1) and (A2) that lim sup
k→∞

bk = 0. Therefore,

using Lemma 4, we obtain that lim
n→∞

Θn = 0. Consequently, using Proposition 1 (c) and (40),

we conclude that lim
n→∞

un = lim
n→∞

yi
n = x∗.

We next present some consequences of the above result to confirm that our Algorithm 1
indeed provides a unified framework for solving the inclusion problems (2)–(4).

Corollary 1. Let S : H ⇒ H be a maximal monotone operator and Ti : H → H be monotone
Lipschitz continuous operators with constants Li for i ∈ [I]. Let F : H → H be a γ-strongly
monotone and Lipschitz continuous operator with constant L. Assume Ω1 := {x ∈ H : 0 ∈
∩i∈[I](Ti + S)} 6= ∅. Then, the sequences generated by Algorithm 2, under Assumption 1, converge
strongly to x∗ ∈ Ω1, satisfying 〈Fx∗, u∗ − x∗〉 ≥ 0 ∀u∗ ∈ Ω1.

Proof. Note that Algorithm 2 is derived from Algorithm 1 by taking Si = S for i ∈ [I].
Thus, the proof follows from the proof of Theorem 1.

Corollary 2. Let S : H ⇒ H be a maximal monotone operator and Tj : H → H be monotone
Lipschitz continuous operators with constants Lj for j ∈ [J]. Let F : H → H be a γ-strongly

monotone and Lipschitz continuous operator with constant L and aj ∈ (0, 1) such that
I

∑
j∈[J]

aj = 1.

Assume that Ω := {x ∈ H : 0 ∈ ∑j∈[J](ajTj + S)} 6= ∅. Then, the sequences generated by
Algorithm 3, under Assumption 1, converge strongly to x∗ ∈ Ω, satisfying 〈Fx∗, u∗ − x∗〉 ≥
0 ∀u∗ ∈ Ω.
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Algorithm 2: Regularized Modified Forward-Backward Splitting Method
(RMFBSM)

Initialization: Let u1 ∈ H, µ ∈ (0, 1), and λ1 > 0 be given.
Iterative steps: Calculate un+1 as follows:
Step 1: Compute

yi
n = JλnS(un − λnTiun − λnτnFun).

Step 2: Find in := arg maxi∈[I]{‖yi
n − un‖}.

Step 3: Compute
un+1 = yin

n − λn(Tin yin
n − Tin un).

Update

λn+1 =

min
{

λn + ρn, (µ+µn)‖yn−un‖
‖Tin yin

n −Tin un‖

}
, if Tin yin

n 6= Tin un,

λn + ρn, otherwise.

Set n := n + 1 and go back to Step 1.

Algorithm 3: Regularized Modified Forward-Backward Splitting Method
(RMFBSM)

Initialization: Let u1 ∈ H, µ ∈ (0, 1), and λ1 > 0 be given.
Iterative steps: Given un, calculate un+1 as follows:
Step 1: Compute

yn = JλnS(un − λn

J

∑
j=1

ajTjun − λnτnFun).

Step 2: Compute

un+1 = yn − λn

J

∑
i=1

aj(Tjyn − Tjun). (41)

Update

λn+1 =

min
{

λn + ρn, (µ+µn)‖yn−un‖
‖∑j∈[J] aj(Tjyn−Tjun)‖

}
, if ∑j∈[J] ajTjyn 6= ∑j∈[J] ajTjun,

λn + ρn, otherwise.

Set n := n + 1 and go back to Step 1.

Proof. Note that Algorithm 3 is derived from Algorithm 1 by taking I = 1 and setting
T1 = T = ∑j∈[J] ajTj. Note that the new operator T is monotone and Lipschitz continuous.
Thus, the proof follows from the proof of Theorem 1.

Remark 3. On the other hand, we note that the structure of some steps in Algorithm 1 differs from
that of Algorithm 1 of [18]. For instance, the authors of [18] needed to solve an optimization problem
to compute un+1. Our iterative scheme 3 provides an alternative and bypasses such difficulties.
However, we do not consider accelerated schemes in the present study because such results can easily
be obtained from the results in a recent work of ours [27].

4. Applications

In this section, in the cases where I = 1, we will consider two applications of our
main results.
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4.1. Split Feasibility Problems

Let C and Q be nonempty, closed, and convex subsets of the real Hilbert spaces H1
and H2, respectively, and let A : H1 → H2 be a bounded linear operator, the adjoint of
which is denoted by A∗ : H2 → H1. We now recall the split feasibility problems (SFP):

find u ∈ C such that Au ∈ Q. (42)

We denote the set of solutions of (42) by S and assume that S 6= ∅. The concept of SFP was
introduced by Censor and Elfving [28] in 1994 in the framework of Euclidean spaces. It has
been successfully applied to model some inverse problems in medical image reconstruction,
phase retrievals, gene regulatory network inference, and intensity modulation radiation
therapy; see, for example, [29,30]. From its conception to date, the SFP have been widely
studied by several authors who also proposed various iterative schemes for solving them.
Interested readers should consult [31–38] and references therein for recent studies and
generalizations of this problem.

One can verify that the solution set of SFP (42) coincides with the solution set of the
following constrained minimization problem; see, for example, [36]:

min
u∈C

f (u) :=
1
2
‖Au− PQ Au‖2. (43)

However, it is to be observed that the minimization problem (43) is ill-posed, in general, and
therefore calls for regularization. We consider the following Tikhonov regularization [38]:

min
u∈C

f κ(u) :=
1
2
‖Au− PQ Au‖2 +

1
2

κ‖u‖2. (44)

Equivalently, (44) can be written as the following unconstrained minimization problem:

min
u∈H1

Fκ(u) :=
1
2
‖Au− PQ Au‖2 +

1
2

κ‖u‖2 + iC(u). (45)

Note that the function f κ is differentiable and its gradient∇ f κ(u) = A∗(Au− PQ Au) + κu.
Problem (45) is equivalent to the following inclusion problem:

find u ∈ H1 such that 0 ∈ ∇ f κ(u) + ∂iC(u). (46)

It is not difficult to see that ∇ f κ is monotone and (‖A‖2 + κ) Lipschitz continuous. There-
fore, since ∂iC is a maximal monotone operator, (46) assures us that we can apply our result
to solving the SFP (42). Thence, our next result.

Theorem 2. Let C and Q be nonempty, closed, and convex subsets of the real Hilbert spaces H1
andH2, respectively. Suppose that A : H1 → H2 is a bounded linear operator and let the operator
A∗ : H2 → H1 be its adjoint operator. Assume that S := {u ∈ H1 : u ∈ C and Au∗ ∈ Q} 6= ∅
and that Assumption 1 holds. Then, the sequence {un} generated by Algorithm 4 converges strongly
to a point u∗ ∈ S , satisfying 〈Fu∗, y− u∗〉 ≥ 0 ∀y ∈ S .

Proof. Let S = ∂iC and Ti = T = ∇ f κ for all i = 1, 2, . . . , N in Algorithm 1. Note that by
(5), we have JλnS = PC. Therefore, the proof can be obtained by following the steps of the
proof of Theorem 1.
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Algorithm 4: RMFBSM Method for Solving SFP
Initialization: Let u1 ∈ H1, µ ∈ (0, 1), and λ1 > 0 be given. Iterative steps:
Calculate un+1 as follows: Step 1: Compute

yn = PC(un − λn∇ f κun − λnτnFun).

Step 2: Compute
un+1 = yn − λn(∇ f κyn −∇ f κun).

Update

λn+1 =

min
{

λn, µ‖yn−un‖
‖∇ f κyn−∇ f κun‖

}
, if ∇ f κyn 6= ∇ f κun,

λn, otherwise.

Set n := n + 1 and go back to Step 1.

4.2. Elastic Net Penalty Problem

We consider the following linear regression model used in statistical learning:

y = A1ū1 + A2ū2 + · · ·+ AN ūN + ε, (47)

where y is the response predicted by the N predictors A1, A2, · · · , AN and ε is a random er-
ror term. We assume that the model is sparse with a limited number of nonzero coefficients.
The model can be written in matrix format as follows:

y = Au + ε, (48)

where y ∈ RM, A ∈ RM×N is the predictor matrix and u = (ū1, ū2, . . . , ūN) ∈ RN . In
the statistics community, one solves the model by recasting (48) as the following penalized
optimization problem:

min
u∈RN

‖Au− y‖2
2 + penσ(u), (49)

where penσ(u), σ ≥ 0, is a penalty function of u.
Penalized regression and variable selection are two key topics in linear regression

analysis. They have recently attracted the attention of many authors who have proposed
and analyzed various penalty functions (see [39] and references therein). A very popular
penalized regression model for variable selection is LASSO (least absolute shrinkage and
selection operator), which was proposed by Tibshirani [40]. It is an `1-norm regularization
least square model given by

min
u∈RN

1
2
‖Au− y‖2

2 + σ1‖u‖1, (50)

where σ1 ≥ 0 is a nonnegative regularization parameter. The `1 penalty makes LASSO
perform both continuous shrinkage and automatic variable selection simultaneously [41].
However, its conditions are invalid when applied to a group of highly correlated variables [42].
In addition to LASSO, other approaches for variable selection with penalty functions more
general than the `1 penalty have been proposed (please see [43] and references therein for
more details on other penalty functions and applications to SVM).

In this subsection, we focus on the penalty function, which was proposed by Zou and
Hastie [41] and called the elastic net penalty function. The elastic net is a linear combination
of `1 and `2 penalties and is defined by

penσ(u) := σ1‖u‖1 + σ2‖u‖2
2, σ1, σ2 > 0.
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Therefore, we will consider the following elastic net penalty problem:

min
u∈RN

1
2
‖Au− y‖2

2 + σ1‖u‖1 + σ2‖u‖2
2. (51)

Let
f (u) =

1
2
‖Au− y‖2

2 + σ2‖u‖2
2

and
g(u) = σ1‖u‖1.

Then, ∇ f (u) = A>(Au− y) + 2σ2u, where A> stands for the transpose of A. Thus, ∇ f is
monotone and Lipschitz continuous with constant L + 2σ2, L being the largest eigenvalue
of the matrix A>A. Note that g is a proper lower semicontinuous convex function and
∂g is maximal monotone. The resolvent of the maximal monotone operator ∂g is given
as (see [20])

Jσ∂gv = arg min
u∈RN

{g(u) + 1
2σ
‖u− v‖2

2}.

By the optimality condition, the penalty problem (51) is equivalent to the following inclu-
sion problem:

0 ∈ ∇ f (u∗) + ∂g(u∗). (52)

We apply our Algorithm 1 to solve the elastic net penalty problem (51), taking S = ∂g
and Ti = T = ∇ f for each i = 1, 2, . . . , N, and then compare the effectiveness of our
methods with some existing methods in the literature. To this end, let u ∈ RN be a sparse
randomly generated N × 1 matrix and let A ∈ RM×N and ε ∈ RM be randomly generated
matrices, the entries of which are normally distributed with mean 0 and variance 1. In our
experiments, we choose different values for u, u1, A, and ε, as follows:

Case A: A = randn(50, 10), ε = randn(50, 1), u = sprandn(10, 1, 0.3),
u1 = sprandn(10, 1, 0.2).
Case B: A = randn(1000, 200), ε = randn(100, 1), u = sprandn(200, 1, 0.1),
u1 = sprandn(200, 1, 0.2).
Case C: A = randn(200, 1200), ε = randn(200, 1), u = sprandn(1200, 1, 1

60 ),
u1 = sprandn(1200, 1, 0.02).
Case D: A = randn(120, 512), ε = randn(120, 1), u = sprandn(512, 1, 1

64 ),
u1 = sprandn(512, 1, 1

64 ).

We also choose σ1 = 0.6, σ2 = 0.4, µ = 0.02, τn = 1√
n+2 , and Fu = 10u for all u ∈ H.

Using MATLAB 2021b, we compare the performance of our Algorithm 1 (RMFBSM) with
MFBSM and Algorithm 2 in [14] (VTM). Table 1 and Figure 1 illustrate the outcome of our
computations. The stopping criterion is en = 1

n‖un − u‖2
2 ≤ 10−3.

Table 1. Numerical results.

RMFBSM MFBSM VTM

Case A CPU time (sec) 0.0131 0.0200 0.0448
No. of Iter. 590 936 2818

Case B CPU time (sec) 0.5782 0.6199 2.6694
No. of Iter. 2441 2734 10,564

Case C CPU time (sec) 3.8084 5.3986 5.2824
No. of Iter. 10,710 15,901 15,345

Case D CPU time (sec) 0.8748 1.1264 0.9293
No. of Iter. 5412 6833 5530
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Figure 1. Top left: Case A; top right: Case B; bottom left: Case C; bottom right: Case D.

5. Numerical Example

We present the following numerical example to further illustrate the effectiveness of
our proposed Algorithm 1 (RMFBSM). The codes are written in MATLAB 2021b and run
on an HP Laptop Windows 10 with Intel(R) Core(TM) i5 CPU and 4 GB RAM.

Example 1. Consider `2(R) := {u = (u1, u2, . . . , uj, . . . ), uj ∈ R :
∞
∑

j=1
|uj|2 < ∞}, ‖u‖ =

(
∞
∑

j=1
|uj|2)

1
2 ∀u ∈ `2(R). Let H = `2(R), and let S : H ⇒ H, Ti : H → H, i = 1, 2, 3, and

F : H → H be defined by Su = (2u1, 2u2, . . . , 2ui, . . . ), T1x = (u1, u2
2 , . . . ,

uj
2 , . . . ), T2u = u

2 +
(1, 0, 0, . . . , ), T3u = u

3 + (2, 0, 0, . . . ), and Fu = (7u1, 7u2, . . . , 7uj, . . . ), respectively ∀u ∈
H. Choose a1 = 1

2 , a2 = 1
5 , and a3 = 3

10 . One can see that S is maximal monotone, Tis are
Lipschitz continuous and monotone, and F is strongly monotone and Lipschitz continuous. In our
computations, we choose, for each n ∈ N, τn = 1√

n+1
, λ1 = 0.3, and µ = 0.1.

The following choices of the initial values u1 are considered:
Case a: u1 = (−1, 1

2 ,− 1
4 , 1

8 , . . . );
Case b: u1 = ( 2

3 , 1
9 , 1

54 , 1
324 , . . . ) ;

Case c: u1 = (100, 10, 1, 0.1, . . . );
Case d: u1 = (9, 3

√
3, 3,
√

3, . . . ).

We compare the performance of our Algorithm (1) (RMFBSM) with MFBSM and VTM. We
choose αn = 1

n+2 and f (u) = u
2 for VTM. The stopping criterion used for our computations is

en = ‖un − JλnS(I − λnT)un‖ < 10−8. Observe that en = 0 implies that un is a solution to the
inclusion problem of finding u ∈ H such that 0 ∈ (S + T)u. We plot the graphs of errors against
the number of iterations in each case. The figures and numerical results are shown in Figure 2 and
Table 2, respectively.
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Figure 2. Top left: Case a; top right: Case b; bottom left: Case c; bottom right: Case d.

Table 2. Numerical results.

RMFBSM MFBSM VTM

Case a CPU time (sec) 0.0145 0.0155 0.0154
No of Iter. 17 70 46

Case b CPU time (sec) 0.0040 0.0163 0.0050
No. of Iter. 17 67 45

Case c CPU time (sec) 0.0019 0.0038 0.0048
No of Iter. 23 88 58

Case d CPU time (sec) 0.0019 0.0027 0.0359
No of Iter. 19 78 52

Remark 4. The numerical results show that our algorithm performs better than the two algorithms
with which we compared it with respect to both the computation time taken and the number
of iterations. Nevertheless, its performance can be further improved by incorporating inertial
extrapolation terms into the algorithm. A possible future direction of research concerns estimating
and comparing the rate of convergence of our proposed algorithm with the pertinent algorithms in
the literature.

6. Conclusions

We study three classes of variational inclusion problems of finding a zero of the sum
of monotone operators in real Hilbert space. We propose a unified simple structure, which
combines a modification of the Tseng method with self-adaptive step sizes, and prove
that the sequences it generates converge strongly to a solution of the problems. We apply
our results to the elastic net penalty problem in statistical learning and to split feasibility
problems. Numerical experiments are presented in order to illustrate the usefulness and
effectiveness of our new method. Results related to accelerated versions of our method can
be derived from the results of our recent work [27].
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