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1. Introduction and Preliminaries

Monoidal topology [1] provides a unification of settings to describe some important
mathematical structures as (T,Q, T̂)-algebras (lax algebras for short) in which Q is a quan-
tale and T is a monad on Set with a lax extension T̂ to the category Q-Rel of sets and
Q-relations.

Examples include:

• Metric spaces can be described as (I,P+, I)-algebras [2].
• Topological spaces can be characterized as (β, 2, β)-algebras [3,4].
• Approach spaces [5] can be viewed as (β,P+, β)-algebras [6].

Here, 2 denotes the two-element quantale, P+ = ([0, ∞]op,+, 0) is the Lawvere quan-
tale, I is the identity monad with the identity extension, and β is the ultrafilter monad with
the Barr extensions β to 2-Rel (Rel for short) and I-Rel, respectively.

To study many-valued topologies within the monoidal topology framework, it is of
importance to determine the counterpart of the filter monad in the many-valued context
and investigate its lax extensions. Extensive studies have been conducted to develop many-
valued filter monads and their lax extensions, including the B-valued filter monad [7],
the >-filter monad with its Kleisli extension to Rel [8], and the saturated prefilter monad
with its Kleisli extension to Rel [9]. The lax algebras for the latter two are both CNS spaces,
which are a kind of many-value topological spaces introduced in [10].

Lax extensions offer rich topological structures. For example, as demonstrated in [11],
there are two lax extensions of the filter monad F to Q-Rel : the canonical one F̂ and the
op-canonical one F̌. When Q = 2, the lax algebras with respect to the canonical extension
are closure spaces, while those associated with the op-canonical extension are topological
spaces. When Q = P+, the lax algebras with respect to the canonical extension are closeness
spaces, while those for the op-canonical extension are approach spaces.

The approach adopted in this paper is motivated by an observation that the filter
monad is the discrete restriction of two composite monads on Ord : up-set-ideal monad
IdeUp and the down-set-filter monad FilDn. Furthermore, the canonical (op-canonical) lax
extension of the filter monad can be induced from the lax extension of IdeUp (FilDn) to Dist.

In Section 2, we introduce the composite monads CP† and C†P and show that the
discrete restriction of them are the conical I-semifilter monad [12], where C is the monad of
I-distributors generated by a forward Cauchy net that plays the role of the ordered-ideal
monad Ide. The canonical and op-canonical extensions of the conical I-semifilter monad
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to I-Rel are also presented in this section. Section 3 focuses on the Kleisli extension of the
conical I-semifilter monad to I-Rel. The lax algebras for the Kleisli extension to I-Rel are
same to those for the Kleisli extension to Rel.

In the remainder of this section, we introduce the many-valued context in which we
work, including the quantale I, I-relations and I-categories.

1.1. Monads

A monad on a category A is a triple T = (T, m, e), where T : A → A is an endfunctor
and m : T2 → T, e : idA → T are natural transformations such that

m · eT = m · Te = idA and m ·mT = m · Tm.

Sometimes, we simply write T for (T, m, e) if no confusion arises.
Given two monads T = (T, m, e) and S = (S, n, d), a morphism σ : T→ S of monads

is a natural transformation σ : T → S such that

d = σ · e and σ ·m = n · (σ ∗ σ),

where ∗ is the horizontal composition of natural transformations.
We let (T, m, e) be a monad on A. A submonad of (T, m, e) is a monad (S, n, d) with a

monad morphism i : (S, n, d) → (T, m, e) such that every component iX is monic. In this
case, i : S→ T is called the inclusion transformation. To keep notations simple, we write
(S, m, e) for submonad (S, n, d).

Given monad T = (T, m, e) on A, an Eilenberg–Moore algebra for T (T-algebra for
short) is a pair (X, a) consisting of an A-object X and an A-morphism a : TX → X subject
to the following:

a · eX = 1X and a ·mX = a · Ta.

(TX, mX) is obviously a T-algebra, which is called the free T-algebra on X.
A T-homomorphism f : (X, a)→ (X′, a′) of T-algebras is an A-morphism f : X → X′

such that a′ · T f = f · a. T-algebras and T-homomorphisms assemble into a category AT

which is called the Eilenberg–Moore category of T.
Given a monad morphism σ : S→ T, there exists a functor Kσ : SetT → SetS induced

by σ, which is identical on morphisms, sends the T-algebra (X, a) to the S-algebra (X, a · σX),
and makes the diagram

AS AT

A

Kσ

GS
GT

commute, where GT, GS are forgetful functors.
For more information on monads, we refer to [13,14]. Monads are useful for encoding

general algebraic structures. The monograph by Plotkin [15] offers a comprehensive
exploration of the algebraic aspects of database theory. Therefore, further research on the
application of monads in the theory of databases is warranted.

Power-Enriched Monads

The powerset monad P is given by the covariant powerset functor P : Set→ Set and
two natural transformations:

{−}X : X → PX, x 7→ {x},⋃
X

: P2X → PX, A 7→
⋃

A.

The Eilenberg–Moore category of the powerset monad is isomorphic to the category Sup of
complete lattices and sup-maps.
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We consider monad T on Set equipped with monad morphism σ : P → T. By the
functor Kσ : SetT → SetP, every T-algebra (X, a) carries an order making X a complete
lattice, and every morphism of T-algebras is a sup-map. In particular, endowed with the
order induced by the free T-algebra structure on X, every set TX becomes a complete
lattice.

If, for any sets X, Y, the map

(−)T : Set(X, TY)→ Set(TX, TY), f 7→ mY · T f

is monotone, where the hom-sets Set(−, TY) are ordered pointwise, then we refer to (T, σ)
as a power-enriched monad. Morphism σ : (T, σ1)→ (S, σ′1) of power-enriched monads is
monad morphism σ : T→ S such that σ′1 = σ · σ1.

1.2. I-Settings
1.2.1. Continuous Triangular Norms

A triangular norm [16] (t-norm for short) is a binary operation & on the unit interval I
subject to the following:

• & is associated;
• & is commutative;
• a&(−) is monotone for any a ∈ I;
• a&1 = a for any a ∈ I.

A t-norm & is called continuous if map &: I2 → I is continuous with respect to
the standard topologies. We denote by I = (I, &, 1) the unit interval I endowed with a
continuous t-norm &.

Example 1. There are three basic continuous t-norms.

(1) The Gödel t-norm a&b = a ∧ b;
(2) The product t-norm a&b = a× b;
(3) The Łukasiewicz t-norm a&b = max{0, a + b− 1}.

For each a ∈ I, since a&(−) : I → I preserves arbitrary joints, then there exists a map
a→ (−) : I → I which is right adjoint to a&(−) and is determined by

a&b ≤ c ⇐⇒ b ≤ a→ c.

A continuous t-norm is said to satisfy condition (S); if it satisfies that, for each a ∈ (0, 1],
map a→ (−) is continuous on the interval [0, a).

The following proposition includes some basic properties of continuous t-norms.

Proposition 1. For any a, b, c ∈ I and {ai}i ⊂ I,

(1) a&(a→ b) ≤ b;
(2) 1→ a = a;
(3) a→ b = 1 ⇐⇒ a ≤ b;
(4) (a&b)→ c = a→ (b→ c);
(5) a→ (

∧
i ai) =

∧
i(a→ ai);

(6) (
∨

i ai)→ a =
∧

i(ai → a).

The reasons why we work with the particular quantale I include:

i. Some important many-valued topological structures are considered as topologies
valued in I = (I, &, 1) with & being certain t-norms. For example, fuzzy topologies
can be seen as topologies valued in (I,∧, 1), and since (I,×, 1) is isomorphic to the
Lawvere quantale P+, approach spaces can be considered as topological spaces valued
in (I,×, 1).
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ii. Many results about topologies valued in Q rely on the structure of Q; due to the
celebrated ordinal sum decomposition theorem [16,17], the structure of I is clear.

1.2.2. I-Relations

An I-relation r : X +→ Y is a map r : X×Y → I. The composition of r : X +→ Y, s : Y +→ Z
is an I-relation (s · r) : X +→ Z given by

(s · r)(x, z) =
∨

y∈Y
r(x, y)&s(y, z).

Sets and I-relations assemble into a category

I-Rel.

Since the composition of I-relations preserves arbitrary joins in each variable, for
each r : X +→ Y and set Z, there are two maps (−) (r : I-Rel(X, Z) → I-Rel(Y, Z) and
r( (−) : I-Rel(Z, Y)→ I-Rel(Z, X) determined by

r · t ≤ s ⇐⇒ t ≤ s (r;

t′ · r ≤ s ⇐⇒ t′ ≤ r( s

for any t ∈ I-Rel(Y, Z) and t′ ∈ I-Rel(Z, X).
For each r : X +→ Y, there is an I-relation rop : Y +→ X given by rop(y, x) = r(x, y). For

each map f : X → Y, graph f◦ : X +→ Y of f is given by

f◦(x, y) =

{
1, f (x) = y;
0, f (x) 6= y.

And the cograph f ◦ of f is given by f ◦ = ( f◦)op. There are two functors:

(−)◦ : Set→ I-Rel and (−)◦ : Set→ I-Relop.

1.2.3. Lax Extensions to I-Rel

We let (T, m, e) be a monad on Set. A lax extension [18] of (T, m, e) to I-Rel is a triple
T̂ = (T̂, m, e), where T̂ is given by a family of maps

T̂X,Y : I-Rel(X, Y)→ I-Rel(TX, TY)

subject to the following conditions:

(1) Every T̂X,Y is monotone;
(2) T̂r · T̂s ≤ T̂(r · s);
(3) (T f )◦ ≤ T̂( f◦) and (T f )◦ ≤ T̂( f ◦);
(4) s · e◦X ≤ e◦Y · T̂s;
(5) T̂T̂s ·m◦X ≤ m◦Y · T̂s

for any sets X, Y, Z, I-relations s : X +→ Y, r : Y +→ Z and every map f : X → Y.
Morphism σ : (Ŝ, n, d)→ (T̂, m, e) of lax extensions is a monad morphism σ : (S, n, d)→

(T, m, e) such that Ŝr ≤ (σY)
◦ · T̂r · (σX)◦ for any I-relation r : X +→ Y.

We let σ : S→ T be a monad morphism and T̂ a lax extension of T to I-Rel. There is a
lax extension of S given by

Ŝr = (σY)
◦ · T̂r · (σX)◦

for any I-relation r : X +→ Y. This lax extension Ŝ is called the initial extension of S induced
by σ.
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1.2.4. I-Categories

An I-category [2,19] is a pair (X, r) consisting of a set X and a transitive and reflexive
I-relation r, that is,

r(x, y)&r(y, z) ≤ r(x, z) and r(x, x) = 1

for all x, y, z ∈ X. For convenience, we simply use X to denote an I-category (X, r) and use
X(−,−) to denote r(−,−).

For every I-category X, the I-relation Xop(x, y) = X(y, x) also gives an I-category,
which is called the dual of X.

Example 2. (1) The singleton {∗} set endowed with (id)◦ is obviously an I-category.
(2) The set IX can be made an I-category via

subX(µ, ν) =
∧

x∈X
µ(x)→ ν(x).

An I-functor f : X → Y is a map f : X → Y between I-categories such that

X(x, y) ≤ Y( f (x), f (y))

for all x, y ∈ X. If the converse of the above inequality also holds, we refer to this I-functor
as fully faithful. I-functors f : X → Y, g : Y → X are called an adjunction f a g if

Y( f (x), y) = X(x, g(y))

for any x ∈ X, y ∈ Y. In this case, we say f is left adjoint to g.

Example 3. Given an I-relation r : X +→ Y, there is an adjunction r∨ a r∧, in which r∧, r∨ are
given by

r∧ : IX → IY, µ 7→
∧

x∈X
r(x,−)→ µ(x);

r∨ : IY → IX , ν 7→
∨

y∈Y
r(−, y)&ν(y).

I-categories and I-functors assemble into a category

I-Cat.

The forgetful functor o : I-Cat→ Set admits a left adjoint:

d : Set→ I-Cat, X 7→ (X, 1◦X).

A locally small category is ordered if every hom-set carries an order such that the
composition maps are monotone. A functor F : A → B between ordered categories is called
a 2-functor if every FA,B : A(A, B) → B(FA, FB) is monotone. A monad on an ordered
category is called a 2-monad if the endfunctor is a 2-functor.

The underlying order of an I-category X is given by

x ≤X y ⇐⇒ X(x, y) = 1.

An I-category X is called separated if its underlying order is a partial order. I-Cat is an
ordered category with I-Cat(X, Y) carrying the pointwise order.

Given an I-category X and p ∈ I, x ∈ X, the tensor of (p, x) is an element p⊗ x of X
such that X(p⊗ x,−) = p→ X(x,−); the cotensor of (p, x) is an element p� x of X such
that X(−, p� x) = p→ X(−, x).
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An I-category X is called tensored (cotensored) if it fulfills that the tensor p ⊗ x
(cotensor p� x) exists for all p ∈ I, x ∈ X.

Proposition 2 ([20]). The following statements are equivalent:

(1) X is tensored, (X,≤X) is complete, and

X(
∨

i
xi, y) =

∧
i

X(xi, y)

for all {xi}i ⊂ X, y ∈ X;
(2) X is cotensored, (X,≤X) is complete, and

X(x,
∧

i
yi) =

∧
i

X(x, yi)

for all {yi}i ⊂ X, x ∈ X.

An I-category is called complete if it satisfies the equivalent conditions stated above.
For a complete I-category, we have p⊗ (−) a p� (−).

Example 4. The I-category (IX, subX) is complete and separated. For any p ∈ I, µ ∈ IX, the
cotensor of (p, µ) is given by p→ µ.

The following proposition is useful in ensuring the existence of adjunctions.

Proposition 3 ([20]). We let f : X → Y, g : Y → X be I-functors between I-categories. Then,
f a g is an adjunction if and only if f a g : (Y,≤Y)→ (X,≤X) is an adjunction.

2. The Lax Extensions from the Laxly Extended Monads on I-Cat
2.1. I-Distributors

Given two I-categories, X and Y, an I-distributor [2] r : X ◦→ Y is an I-relation such that

r · X ≤ r and Y · r ≤ r.

If an I-distributor r : X ◦→ Y is dummy in one variable, that is X = {∗} or Y = {∗}, then
we simply write r(x) for r(x, ∗) or r(∗, x). I-categories and I-distributors give rise to an
ordered category

I-Dist.

The forgetful functor o : I-Dist→ I-Rel admits a left adjoint:

d : I-Rel→ I-Dist, dX = (X, 1◦X), r 7→ r.

There are two 2-functors (−)∗ : I-Cat → I-Distco and (−)∗ : I-Cat → I-Distop defined
on objects and morphisms by

(X)∗ = X, ( f : X → Y) 7→ ( f∗ = (Y · f◦) : X ◦→ Y);

(X)∗ = X, ( f : X → Y) 7→ ( f ∗ = ( f ◦ ·Y) : Y ◦→ X).

We denote the set of I-distributors from an I-category X to {∗} by PX. Then, the set
PX can be made an I-category via

PX(µ, ν) = ν (µ = subX(µ, ν).

Furthermore, P can be made a 2-functor from I-Distop to I-Cat via

(r : X ◦→ Y) 7→ (P(r) : µ 7→ µ · r).
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It is routine to check that (−)∗ is left adjoint to P. The induced 2-monad (P, s, y) on I-Cat is
called the presheaf monad.

Similarly, taking the I-distributors of type {∗} ◦→ X also gives rise to a 2-functor
P† : I-Distco → I-Cat :

X 7→ P†X, (r : X ◦→ Y) 7→ (P†(r) : µ 7→ r · µ),

in which
P†X(µ, ν) = ν( µ = subop

X (µ, ν)

for any µ, ν ∈ P†X. The functor (−)∗ is left adjoint to P†. The induced 2-monad (P†, s†, y†)
on I-Cat is called the copresheaf monad.

The following lemmas present some basic properties of I-distributors.

Lemma 1 (Yoneda Lemma). For any ν ∈ P†X, µ ∈ PX, we have

(yX)∗(−, µ) = µ and (y†
X)
∗(ν,−) = ν.

Lemma 2. We let f : X → Y, g : Z → Y be I-functors. For any µ ∈ PZ, ν ∈ P†X, φ ∈ P†PX,
and ψ ∈ PP†Z, we have the following statements:

(1) (Pg)∗ · (P f )∗(−, µ) = yPX(µ · g∗ · f∗);
(2) (P†g)∗ · (P† f )∗(ν,−) = y†

P†Z(g∗ · f∗ · ν);
(3) (Pg)∗ · (P f )∗ · φ = φ(− · g∗ · f∗);
(4) ψ · (P†g)∗ · (P† f )∗ = ψ(g∗ · f∗ · −).

2.2. Composite Monads on I-Cat

We let T = (T, m, e) and S = (S, n, d) be monads. A distributive law of T over S is a
natural transformation σ : TS→ ST subject to some conditions. A composite monad of T
and S is a monad (ST,m, d ∗ e) such that Se : S→ ST, dT : T → ST are monad morphisms
and m satisfies that m · (SedT) = idST . A distributive law σ yields a composite monad

(ST, (n ∗m) · SσT, d ∗ e).

This correspondence is bijective. Details can be found in [21].
A saturated class of weights is a submonad A of the presheaf monad P. It is easy to

check that it also offers a submonad A† of P† by A†X = (AXop)op for any X.
A distributive law σ : P†A→ A†P of P† over A also offers a distributive law of P over

A† whose components are given by

σ′X : PA†X = (P†AXop)op (AP†Xop)op = A†PX.
σXop

One example of distributive laws is that the copresheaf monad distributes over the
presheaf monad.

Proposition 4 ([22]). There is a distributive law of P† over P, which offers the double presheaf
2-monad PP† on I-Cat.

We let X be an I-category. A forward Cauchy net [23] on X is a net {xi}i∈D such that∨
i∈D

∧
k≥j≥i

X(xj, xk) = 1.

A forward Cauchy net generates an I-distributor µ : X ◦→ {∗} :

µ =
∨

i∈D

∧
j≥i

X(−, xj).



Axioms 2023, 12, 1034 8 of 16

Example 5. A directed set D of (X,≤X) is a forward Cauchy net {xi}i∈D on X. The I-distributor
generated by D is ∨

d∈D

X(−, d).

We denote by CX the set of all I-distributors µ : X ◦→ {∗} generated by forward Cauchy
nets. The proof of that C is a saturated class of weights can be found in [24]. The following
lemma offers a characterization of CX when X is complete and separated.

Lemma 3 (Proposition 4.8 in [25]). We let X be a complete separated I-category. For every
φ ∈ CX, we have that D = {x ∈ X | φ(x) = 1} is a directed set on (X,≤X) and

φ =
∨

d∈D

X(−, d).

The existence of a distributive law of P† over C depends on the structure of quantale I.

Proposition 5 (Theorem 6.4 in [25]). There is a distributive law of P† over C if and only if the
continuous t-norm satisfies the condition (S).

In the remainder of this paper, we always assume that the continuous t-norm &
satisfies the condition (S).

2.3. The Lax Extensions of Composite Monads to I-Dist

We let (T, m, e) be a 2-monad on I-Cat. A lax extension of (T, m, e) to I-Dist is a family
of maps

T̂X,Y : I-Dist(X, Y)→ I-Dist(TX, TY)

subject to the following conditions:

(1) Every T̂X,Y is monotone;
(2) T̂r · T̂s ≤ T̂(r · s);
(3) (T f )∗ ≤ T̂( f∗) and (T f )∗ ≤ T̂ f ∗;
(4) s · e∗X ≤ e∗Y · T̂s;
(5) T̂T̂s ·m∗X ≤ m∗Y · T̂s

for any I-categories X, Y, Z, distributors s : X ◦→ Y, r : Y ◦→ Z and every I-functor f : X → Y.

Theorem 1 (Theorem 8.5 in [26]). We let T be a 2-monad on I-Cat. Then,

T̂r = (T←−r )∗ · (TyX)∗ : TX +→ TY

defines a lax extension of T to I-Dist, where←−r : Y → PX, y 7→ r(−, y).

We let A be a saturated class of weights and assume that there is a distributive law
σ : P†A → AP†. Then, by Theorem 1, there are lax extensions of the monad AP† and A†P
given by

AP†r = (AP†←−r )∗ · (AP†yX)∗;

A†Pr = (A†P←−r )∗ · (A†PyX)∗.

In [27], Lai and Tholen introduced a functor Γ which maps monads (T, m, e) on I-Cat
with a lax extension T̂ to I-Dist to monads on Set with a lax extension to I-Rel :

Γ(T, m, e) = (oTd, omd · oTεTd, oed),

Γ(T̂)r = oT̂d(r),
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in which ε is the counit of the adjunction d a o.
It is routine to check that Γ(A†P) = Γ(AP†). We denote this monad by (UA, n, d).
For the lax extensions, using Lemma 2, we can compute as follows: for any I-relation

r : X +→ Y, φ,∈ AP†X, φ′ ∈ AP†Y, ψ ∈ A†PX, and ψ′ ∈ A†PX,

AP†r(φ, φ′) =
(
(AP†←−r )∗ · (AP†yX)∗

)
(φ, φ′)

= PP†X(φ, φ′ · (P†←−r )∗ · (P†yX)∗)

= PP†X
(
φ, φ′(←−r ∗ · yX∗ · −)

)
and

A†Pr(ψ, ψ′) =
(
(A†PyX)

∗ · (A†P←−r )∗
)
(ψ, ψ′)

= P†PY((P←−r )∗ · (PyX)∗ · ψ, ψ′)

= P†PY(ψ(− ·←−r ∗ · yX∗), ψ′).

Thus, we obtain the following result.

Proposition 6. We let AP† be a composite monad. There are two lax extensions of the monad
(UA, n, d) :

xUAr(φ, ψ) =
∧

µ∈IX

φ(µ)→ ψ((rop)∨(µ)), (canonical)

|UAr(φ, ψ) =
∧

ν∈IY

ψ(ν)→ φ(r∨(ν)), (op-canonical)

where r : X +→ Y is an I-relation, φ ∈ UAX, ψ ∈ UAY.

2.4. The Conical I-Semifilter Monad

A conical I-semifilter [12] on set X is a function φ : IX → I subject to the following:

(F1) φ(1X) = 1;
(F2) φ(µ ∧ ν) = φ(µ) ∧ φ(ν);
(F3) subX(µ, ν) ≤ φ(µ)→ φ(ν);
(F4) φ =

∨
φ(ξ)=1 subX(ξ,−).

Proposition 7. The elements of CP†dX are exactly the conical I-semifilters.

Proof. Given a conical I-semifilter φ on X, it follows from (F2) that {µ | φ(µ) = 1} is a
directed set of P†dX; hence, by (F4), we have φ ∈ CP†dX.

We let φ ∈ CP†dX. Since P†dX is separated and complete, by Lemma 3, it holds that

φ =
∨

φ(ν)=1

P†dX(−, ν) =
∨

φ(ν)=1

subX(ν,−).

Hence, (F1), (F3) and (F4) are obvious. For (F2),

φ(µ1 ∧ µ2) =
∨

φ(ν)=1

(
P†dX(µ1, ν) ∧ P†dX(µ2, ν)

)
= φ(µ1) ∧ φ(µ2),

the last equality holds because {ν | φ(ν) = 1} is directed.

For every set X, o(y ∗ y†)dX maps x ∈ X to P†dX(−, ydX(x)) = (−)(x); (o(s ∗ s†)d · oCσP†d ·
oCP†εCP†d)X maps Φ ∈ UC

2X to the conical I-semifilter

φ : P†dX → I, µ 7→ Φ(µ]),
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where µ] belongs to P†doCP†dX and maps every ψ ∈ doCP†dX to ψ(µ). Therefore, the
monad (UC, n, d) is exactly the conical I-semifilter monad in [12]. We adopt the notation
from [12] and denote (UC, n, d) by (CSF, n, d).

Corollary 1. There are two lax extensions of the conical I-semifilter monad (CSF, n, d):

yCSFr(φ, ψ) =
∧

µ∈IX

φ(µ)→ ψ((rop)∨(µ)), (canonical)

}CSFr(φ, ψ) =
∧

ν∈IY

ψ(ν)→ φ(r∨(ν)), (op-canonical)

where r : X +→ Y is an I-relation, φ ∈ CSFX, ψ ∈ CSFY.

Remark 1. Here, we prove that the continuous t-norm satisfies the condition (S) is a sufficient
condition for conical I-semifilters to give rise to a monad. In fact, it is also a necessary condition;
see [12].

3. The Kleisli Extensions of (UA,n,d)
3.1. The I-Powerset Monad

For each set X, we let PIX = IX. Then, PI can be made a functor from I-Relop to Set
by letting

PI(r)(µ) = r∨(µ) =
∨

y∈Y
µ(y)&r(−, y)

for each I-relation r : X +→ Y and µ ∈ IY. It is routine to check that (−)◦ is left adjoint to PI.
The induced monad is called the I-powerset monad and is denoted by PI = (PI,m, e). We
spell it out here: for any maps f : X → Y and µ ∈ PIX,

PI( f )(µ) : y 7→
∨

f (x)=y

µ(x),

eX : x 7→ 1x,

mX : φ 7→
∨

µ∈PIX
φ(µ)&µ,

where 1A is defined as 1A(x) =

{
1, x ∈ A,
0, x 6∈ A,

and 1x denotes 1{x}.

It is easy to check that the I-powerset monad is power-enriched by

θX : PX → PIX, A 7→ 1A.

It also holds that PI = Γ(P, s, y) = Γ(P†, s†, y†).

3.2. I-Power-Enriched Monads

An I-power-enriched monad is a pair (T, σ) composed of a monad (T, m, e) on Set and
a monad morphism σ : PI → T such that (T, σ · θ) is a power-enriched monad. A morphism
σ : (T, σ1) → (S, σ2) of I-power-enriched monads is a monad morphism σ : T → S such
that σ2 = σ · σ1.

We let AP† be a composite monad. Since there is a monad morphism yP† : P† → AP†,
by applying the functor Γ, we obtain the following Proposition.

Proposition 8. The monad (UA, n, d) is I-power-enriched by κ whose components are given by

κX : PIX → UAX, µ 7→ subX(µ,−).
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An I-action in Sup is a complete lattice X endowed with a map −⊗− : I × X → X
subject to the following: for any p, q ∈ I and x ∈ X

(1) p⊗− and −⊗ x are sup-maps;
(2) (p&q)⊗ x = p⊗ (q⊗ x) and 1⊗ x = x.

A morphism of I-actions is a sup-map f : X → Y such that p⊗Y f (x) = f (p⊗X x) for
any p ∈ I and x ∈ X. I-actions in Sup and their morphisms assemble into a category SupI.

It is shown in [28] that SupI is isomorphic to the Eilenberg–Moore category of the
I-powerset monad and there exists a functor Λ : SetPI → I-Cat.

Explicitly, we let (X, a) be a PI-algebra; by functor Kθ : SetPI → SetP, X can be made a
complete lattice. The I-action on X in Sup is given by

−⊗− : I × X → X, (p, x) 7→ a(p&1x).

Conversely, an I-action (X,−⊗−) yields a PI-algebra structure as follows:

a : PIX → X, µ 7→
∨
x

µ(x)⊗ x.

The functor Λ maps a PI-algebra (X, a) to

Λ(X, a)(x, y) = aa(y)(x),

where a a aa : (X,≤X)→ (PIX,≤PIX) is an adjunction. Furthermore, we have the following
proposition.

Proposition 9. Every I-category Λ(X, a) is complete.

Proof. For every p ∈ I, since p⊗− and a are sup-maps, we have the following adjunctions:

X X PIX.
p�− aa

p⊗− a

` `

To show X is cotensored by�, we can follow these steps:

µ ≤ p→ aa(x) ⇐⇒ p&µ ≤ aa(x)

⇐⇒ a(p&µ) ≤ x

⇐⇒
∨
t
(p&µ(t))⊗ t ≤ x

⇐⇒ p⊗
(∨

t
µ(t)⊗ t

)
≤ x

⇐⇒ p⊗ a(µ) ≤ x

⇐⇒ a(µ) ≤ p� x

⇐⇒ µ ≤ aa(p� x).

Thus, the tensor of Λ(X, a) is given by its I-action, the cotensor is given by the right
adjoint of its I-action. That is the reason why we use the same notations.

Example 6. For a composite monad AP†, since (UAX, nX · κUAX) = Kκ(UAX, nX) is a PI-algebra,
UAX can be made a complete I-category via

UA(φ, ψ) = (nX · κUAX)
a(ψ)(φ) = subIX (ψ, φ) =

∧
µ∈IX

ψ(µ)→ φ(µ).
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The tensor of (p, φ) in UAX is given by

(nX · κUAX)(p&1φ) =
∧

ψ∈UAX

(
p&1φ(ψ)→ ψ

)
= p→ φ.

3.3. Kleisli Extensions

Given an I-power-enriched category (T, σ), for any I-relations r : X → Y, the composite
PI-homomorphism

(TY, mY) (T2X, mTX) (TX, mX)
T(σX ·r[) mX

offers an I-functor rσ : TY → TX, where r[ : Y → PIX, y 7→ r(−, y).
According to Section 4.5 in [18], there is a lax extension T̂ of T to I-Rel named the

Kleisli extension, which is given by

T̂r(φ, ψ) = TX(φ, rσ(ψ))

for any φ ∈ TX, ψ ∈ TY and every I-relation r : X +→ Y.

Proposition 10. For a composite monad AP†, the Kleisli extension of (UA, n, e) is given by

UAr(φ, ψ) = UAX(φ, rκ(ψ)) =
∧

µ∈IX

ψ(r∧(µ))→ φ(µ),

where r : X +→ Y is an I-relation, φ ∈ UAX, ψ ∈ UAY.

Theorem 2. For the monad UP, the op-canonical extension to I-Rel coincides with the Kleisli
extension to I-Rel.

Proof. For any I-relation r : X +→ Y and φ ∈ UPX, by Lemma 2, the I-distributor

∗ PdX P2dX PdY
φ
◦ (PydX)∗◦ (P

←−
dr)∗◦

is given by φ(− · (←−r )∗ · (ydX)∗) = φ(r∨(−)). Thus, mapping φ to φ(r∨(−)) is an I-functor
f : UPX → UPY.

To show the op-canonical extension to I-Rel coincides with the Kleisli extension to
I-Rel, by Proposition 3, it suffices to show that f a rκ : (UPY,≤UPY)→ (UPX,≤UPX) is an
adjunction. For any χ ∈ UPX, ψ ∈ UPY, since r∨ a r∧ we have

(rκ · f )(χ) = χ · r∨ · r∧ ≥UPX χ and ( f · rκ)(ψ) = ψ · r∧ · r∨ ≤UPY ψ.

This completes the proof.

Since

}CSFr(φ, ψ) = |UPr
(
iX(φ), iY(ψ)

)
and CSFr(φ, ψ) = UPr

(
iX(φ), iY(ψ)

)
for any φ ∈ CSFX, ψ ∈ CSFY, r : X +→ Y, where i : CSF → UP is the inclusion transforma-
tion, we have the following corollary.

Corollary 2. For the conical I-semifilter monad, the op-canonical extension to I-Rel coincides with
the Kleisli extension to I-Rel.
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Proposition 11. We let λ : (S, σ)→ (T, σ′) be a morphism of I-power-enriched monads. Then, λ
is a morphism of the Kleisli extensions to I-Rel. Furthermore, every component λX : SX → TX is
fully faithful if and only if the initial extension of S induced by λ is the Kleisli extension of S.

Proof. We denote T = (T, m, e) and S = (S, n, d). By the commutative diagram

S2X SX

STX T2X TX,

S(λX)
(λ∗λ)X

nX

λX

λTX mX

λX : (SX, nX)→ (TX, mX · λTX) is an S-homomorphism; hence, it is an I-functor:

Ŝr(α, β) = SX(α, rσ(β)) ≤ TX
(
λX(α), λX(rσ(β))

)
.

By the commutative diagram

SY SPIX S2X SX

TY TPIX TSX T2X TX,

λY

S(r[)

(λ∗σ)X
λPIX

S(σX)

(λ∗λ)X

nX

λSX λX

T(r[) T(σX) T(λX) mX

we have

TX
(
λX(α), λX(rσ(β))

)
= TX

(
λX(α), rσ′(λY(β))

)
= T̂r(λX(α), λY(β)).

This completes the proof.

An element of IX is called bounded if
∧

µ > 0. A conical I-semifilter φ is called
bounded if φ(µ) < 1 for any unbounded µ. Conical bounded I-semiflters also give rise to a
monad (ConBSF, n, d), and there is a monad morphism η : CSF→ ConBSF

ηX : CSFX → ConBSFX, φ 7→
∨

φ(µ)=1∧
µ>0

subX(µ,−);

see [12] for details.

Example 7.

(1) The Kleisli extension of the conical I-semifilter monad to I-Rel coincides with the initial
extension induced by the inclusion transformation i : CSF→ UP.

(2) The conical bounded I-semifilter monad is I-power-enriched by η · κ, and η : (CSF, κ) →
(ConBSF, η · κ) is a morphism of I-power-enriched monads. Since κ is not fully faithful, the
Kleisli extension CSF does not coincide with the initial extension induced by κ.

3.4. Lax Algebras

Given a lax extension T̂ of T to I-Rel, a (T, I, T̂)-algebra (lax algebra for short) is a pair
(X, a : TX +→ X) so that

(1X)◦ ≤ a · (eX)◦ and a · T̂a ≤ a · (mX)◦.

A morphism f : (X, a)→ (Y, b) of lax algebras is a map f : X → Y subject to

f◦ · a ≤ b · (T f )◦.
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Lax algebras and morphisms of lax algebras form a category denoted by

(T, I, T̂)-Cat.

When the involved lax extension is clear, we simply write (T, I)-Cat.
Lax extensions T̂ of monad T to Rel and lax algebras of (T, 2, T̂) are defined in a

manner similar to those of lax extensions to I-Rel and lax algebras of (T, I, T̂). Given an
I-power-enriched monad (T, σ), it can be extended to Rel via

α(Tr)ψ ⇐⇒ φ ≤TX rσ(ψ),

which is called the Kleisli extension of T to Rel, where r is a 2-relation and rσ is defined by

treating r as the I-relation r(x, y) =

{
1, x r y,
0 otherwise.

The following proposition affirms that, at the level of lax algebras, there is no distinc-
tion between the Kleisli extension to I-Rel and the Kleisli extension to Rel.

Proposition 12 (Proposition 6.1 in [18]). We let (X, σ) be an I-power-enriched category. Then,
there is an isomorphism

(T, I)-Cat ∼= (T, 2)-Cat,

in which the lax extensions are the Kleisli extensions.

In [9], it is proven that
(CSF, 2,CSF)-Cat ∼= CNS,

where CNS is the category of CNS spaces. Therefore, we have the following corollary.

Corollary 3. There is an isomorphism:

(CSF, I,CSF)-Cat ∼= CNS.

When & is the product t-norm, the conical bounded I-semifilter monad is isomorphic
to the functional ideal monad, and by [29], we have

(ConBSF, 2,ConBSF)-Cat ∼= App,

where App is the category of approach spaces and ConBSF is the Kleisli extension to Rel.
Since η : (CSF, κ)→ (ConBSF, η · κ) is a morphism of the I-power-enriched category,

by Theorem 11, it is a morphism of the Kleisli extensions. Hence, it induces an algebraic
functor as follows:

Proposition 13. If & is the product t-norm, there is a functor Aκ : CNS→ App :

(X, (−)◦) 7→ (X,A)

that maps a CNS space X to the approach space (X,A), where the bounded approach system
{A(x)}x∈X is given by

A(x) =
{

µ ∈ [0, ∞]X |
∨

ω◦(x)=1∧
ω>0

subX(ω, e−µ) = 1
}

,

in which (−)◦ is the interior operator of the CNS space X.

4. Conclusions

In order to find the many-valued version of the filter monad, we begin with the
composite monads CP†,C†P on I-Cat and then restrict them to Set to obtain the monad UC.
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This Set-based monad UC is precisely the conical I-semifilter monad. Three lax extensions of
the conical I-semifilter monad to I-Rel are presented: the canonical, op-canonical and Kleisli
extensions. We prove that the op-canonical extension coincides with the Kleisli extension.
Lax algebras of this extension can be described using relations rather than I-relations; hence,
they are CNS spaces.

Problem 1. When considering the canonical extension of the conical I-semifilter monad, what are
the lax algebras?

As for the future research direction, exploring the connections between monoidal
topology and nonstandard analysis [30,31] is of interest.
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