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Abstract: The 4× 4 trace-free complex matrix set is introduced in this study. By using it, we are
able to create a novel soliton hierarchy that is reduced to demonstrate its bi-Hamiltonian structure.
Additionally, we give the Darboux matrix T, whose elements are connected to the spectral parameter
in accordance with the various positions and numbers of the spectral parameter λ. The Darboux
transformation approach has also been successfully applicated to superintegrable systems.
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1. Introduction

Professor Tu [1], as is well known, presents a method for constructing the Lax
equation systematically using Lie algebra as a tool. In this paper, we describe a novel
4× 4 isospectral issue [2] with three potentials, as well as the related hierarchy of nonlinear
evolution equations. A new coupled KdV equation [3] is generated in particular. The
trace identity is also used to explore their generalized bi-Hamiltonian structures [4–9]. Fur-
thermore, the nonlinearization of the associated Lax pair yields a new finite-dimensional
Hamiltonian system.

Soliton equations in nonlinear science have important applications in many fields,
such as nonlinear optics, deep water wave theory, plasma physics, etc. For many soliton
equations, we have many methods to obtain their exact solutions, such as the backscattering
method, bilinear method, Darboux transform method, algebraic geometry method and
so on. Many interesting exact solutions have been found, among which the famous ones
are the pure soliton solution, finite band potential solution and pole expansion solution.
Among these methods, Darboux transformation has been paid more and more attention
and has developed rapidly in the theoretical study of soliton and polarizable systems. In
Refs. [10–13], we know that Darboux transformation is a completely algebraic and powerful
approach for obtaining a new solution to a nonlinear problem from an existing one.

Over the last several decades, many linear and nonlinear equations have been con-
structed and extended via the Darboux transformation, including the Korteweg–de-Vries
equation, nonlinear Schrodinger equations and many others. Darboux transformations of
linear Schrodinger equations all have one thing in common: the solution of an auxiliary
equation must be obtained in order to complete the transformation. Normally, this auxiliary
equation must have the same form as the underlying Schrodinger equation; however, in a
few recent studies, this restriction has been removed. Discrete integrable systems have also
been successfully discretized using the Darboux transformation [5,14–22] technique.

We begin by introducing a 4× 4 complex matrix set, whose trace is zero. As a result of
its application, we gain a soliton hierarchy in Section 2 that is reduced to its Hamiltonian
structures. In addition, in Section 3, we offer the Darboux matrix T for one of the equations
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in the hierarchy, in which each element has a connection to the spectral parameter λ
depending on its position and number. Every element of T is assumed to be polynomial in
terms of λ. This paper aims to examine the use of the Darboux transformation method in
superintegrable systems.

2. A New Soliton Hierarchy
2.1. A Hierarchy of New cKdV Equations

φx = Mφ, M =


0 1 0 0

p− λ 0 r 0
0 0 0 1
q 0 p− λ 0

; (1)

then, the stationary zero curvature equation

Nx = [M, N], N = (Nij)4×4. (2)

Let

N12 + N34 = 2X, N14 = Y, N32 = Z,
X = ∑j≥0 Xj−1λ−j, Y = ∑j≥0 Yj−1λ−j, Z = ∑j≥0 Zj−1λ−j. (3)

Substituting Equation (3) into Equation (2), we have

2N11 = ∂−1(rZ− qY)− Xx, N12 = X,
2N13 = −Yx, N14 = Y,
2N21 = rZ + qY− Xxx + 2(p− λ)X,
2N22 = ∂−1(rZ− qY) + Xx,
2N23 = 2rX + 2(p− λ)Y−Yxx, 2N24 = Yx,
2N31 = −Zx, N32 = Z,
2N33 = ∂−1(qY− rZ)− Xx, N34 = X,
2N41 = 2qX− Zxx + 2(p− λ)Z, 2N42 = Zx,
2N43 = qY + rZ− Xxx + 2(p− λ)X, 2N44 = ∂−1(qY− rZ) + Xx.

Then, substituting the above equations into the following ones,

2N21x = −(p− λ)2N12x + r2N31 − q2N24,
2N23x = −(p− λ)2N14x + r(2N33 − q2N22),
2N41x = −(p− λ)2N32x + q(2N11 − 2N44),
2N43x = −(p− λ)2N34x + q2N13 − r2N42

Equation (2) becomes

(−∂3 + 4p∂ + 2∂p)X + (q∂ + ∂q)Y + (r∂ + ∂r)Z = 4λXx. (4)

2(q∂ + ∂q)X + 2q∂−1qY + (2px + 4p∂− 2q∂−1r− ∂3)Z = 4λZx, (5)

2(r∂ + ∂r)X + (2px + 4p∂− 2r∂−1q− ∂3)Y + 2r∂−1rZ = 4λYx, (6)

Thus, from Equations (4) and (5), we obtain the Lenard gradient sequence

A(2X, Y, Z)T = λB(2X, Y, Z)T , (7)
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where

A =

p∂ + ∂p− 1
2 ∂3 q∂ + ∂q r∂ + ∂r

q∂ + ∂q 2q∂−1q 2p∂ + 2∂p− 2q∂−1r− ∂3

r∂ + ∂r 2p∂ + 2∂p− 2q∂−1r− ∂3 2r∂−1r

,

B =

2∂ 0 0
0 4∂ 0
0 0 6∂

,

Hj = (2Xj, Yj, Zj), j ≥ 0.

Substituting Equation (2) into Equation (7) yields the recursion relation

BH0 = 0, AHj = BHj+1, j ≥ 0. (8)

Using the initial value,
H0 = (2, 0, 0)T .

Hj is defined only by the recursion relation in Equation (8). Particularly, we obtain the
following equations:

H1 =

 p
1
2 r
1
2 q

,

H2 =

− 1
4 pxx +

3
4 p2 + 3

4 qr
− 1

8 rxx +
3
4 pr

− 1
8 qxx +

3
4 pq

.

Make an assumption:

φtn = N(n)φ, N(n) = (λ(n+1)N)+, n ≥ 0, (9)

where the symbol + represents the choice of a non-negative power of λ. The zero-curvature
representation is then produced by the compatibility condition of Equations (1) and (9).

Mtn − N(n)
x + [M, N(n)] = 0,

which is equivalent to p
q
r


tn

= BHn = AHn−1, (10)

where A and B are given by Equation (7), when

n = 1, N(1) =


−px

4 λ + p
2

−rx
2

r
2

α
px
4

rλ
2 −

rx x
4 + pr rx

4−qx
4

q
2

−px
4 λ + p

2
qλ
2 −

qx x
4 + pq qx

4 α
px
4

, (11)

where

α = −λ2 +
pλ

2
− pxx

4
+

p2

2
+

qr
2

.

As a result, a novel coupled KdV equation associated with Equations (1) and (11)
is presented:

pt = − 1
4 pxxx +

3
2 ppx +

3
4 (qr)x,

vt = − 1
4 qxxx +

3
2 (pq)x,

wt = − 1
4 rxxx +

3
2 (pr)x.

(12)
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When p = q = r, Equation (12) is reduced to the KdV equation

pt = −
1
4

pxxx + 3ppx. (13)

2.2. Generalized Hamiltonian Structures

We use the King–Cartan form 〈A, B〉 as tr(A, B)to examine the hierarchy’s generalized
Hamiltonian structures (10). So, we can conclude from direct calculations that〈

N,
∂M
∂λ

〉
= −N12 − N34,

〈
N,

∂M
∂p

〉
= N12 + N34,

〈
N,

∂M
∂q

〉
= N14,

〈
N,

∂M
∂r

〉
= N32. (14)

According to the trace identity

(
δ

δp
,

δ

δq
,

δ

δr
)

〈
N,

∂M
∂λ

〉
= (λ−γ(

∂

∂λ
)λγ)(

〈
N,

∂M
∂p

〉
,
〈

N,
∂M
∂q

〉
,
〈

N,
∂M
∂r

〉
). (15)

Equations (3) and (14) are substituted into it to obtain

(
δ

δp
,

δ

δq
,

δ

δr
)(−2Xj+1) = (γ− j− 1)(2Xj, Yj, Zj), j ≥ 0. (16)

By comparing the coefficient of j = 0 in the previous equation, we can find the constant,
which is γ = 1

2 .
By combining it with Equation (16), we obtain

(
δ

δp
,

δ

δq
,

δ

δr
)Kj = HT

j , Kj =
4Xj+1

2j + 1
. (17)

As a result, we obtain the desired generalized Hamiltonian hierarchy structures of
Equation (10)p

q
r


tn

= A(
δK(n− 1)

δp
,

δK(n− 1)
δq

,
δK(n− 1)

δr
)T = B(

δK(n)
δp

,
δK(n)

δq
,

δK(n)
δr

)T . (18)

where A and B are given by Equation (7).

3. Darboux Transformation
3.1. Spatial Scales of the Darboux Transformation

We introduce the temporal part

φt = Nφ, (19)

where

N =


−px

4 λ + p
2

−rx
2

r
2

−λ2 + pλ
2 −

pxx
4 + p2

2 + qr
2

px
4

rλ
2 −

rx x
4 + pr rx

4−qx
4

q
2

−px
4 λ + p

2
qλ
2 −

qx x
4 + pq qx

4 −λ2 + pλ
2 −

pxx
4 + p2

2 + qr
2

px
4

.

The compatibility condition
φxt = φtx,

give rise to a zero curvature equation

Mt − Nx + [M, N] = 0. (20)
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Consider the Darboux transformation

φ̄ = Tφ, (21)

where T is defined by
Tx + TM = M̄T; (22)

at the same time,
Tt + TN = N̄T, (23)

A novel spectral issue is as follows:

φ̄x = M̄φ̄, φ̄t = N̄φ̄, (24)

where M̄ and N̄ have the same form as M and N, except replacing p, q and r with p̄, q̄
and r̄.

Now, we consider the basic form of T. First of all, we assume that

T = λ(aij)4×4 + (bij)4×4, (25)

in which aij and bij (i,j = 1, 2, 3, 4) are functions of x and t. When Equation (25) is inserted
into Equation (22), the coefficients matrix for λ2 is shown to be

−a12 0 −a14 0
−a22 + a11 a12 −a24 + a13 a14
−a31 0 −a34 0

−a42 + a31 a32 −a44 + a33 a34

. (26)

The following are the simplest non-trivial versions of T:

a21 6= 0, a43 6= 0 and ai,j = 0 in otherwise. (27)

We reinsert Equation (25) into Equation (22) under condition Equation (27), and
compare the coefficients of λj(j = 2, 1, 0). We can easily obtain

a21x = 0, a43x = 0, b12 = −a21, b13 = b24,
b14 = b32 = 0, b11 = b22,
b34 = −a43, b31 = b42, b33 = b44,

(28)

When j = 1, the coefficients matrix of λ is the following:
−b12 − a21 0 −b14 0

a21x − b22 + b11 a21 + b12 −b24 + b13 b14
−b32 0 −b34 − a43 0

−b42 + b31 b32 a43x − b44 + b33 a43 + b34

. (29)

The subsequent equations result from j = 0:

b11x + b12 p + b14q− b21 = 0, (30)

b12x + b11 − b22 = 0, (31)

b13x + b12r + b14 p− b23 = 0, (32)

b14x + b13 − b24 = 0, (33)



Axioms 2023, 12, 1032 6 of 10

b21x + b22 p + b24q− p̄b11 − r̄b31 = 0, (34)

b22x + b21 − p̄b12 − r̄b32 = 0, (35)

b23x + b22r + b24 p− p̄b13 − r̄b33 = 0, (36)

b24x + b23 − p̄b14 − r̄b34 = 0, (37)

b31x + pb32 + qb34 − b41 = 0, (38)

b32x + b31 − b42 = 0, (39)

b33x + b32r + b34 p− b43 = 0, (40)

b34x + b33 − b44 = 0, (41)

b41x + b42 p + b44q− q̄b11 − p̄b31 = 0, (42)

b42x + b41 − q̄b12 − p̄b32 = 0, (43)

b43x + b42r + b44 p− q̄b13 − p̄b33 = 0, (44)

b44x + b43 − q̄b14 − p̄b34 = 0. (45)

Both det(φ) and det(φ̄) are constants since the solutions to Equations (1) and (24) are
two 4× 4 matrices. Tr(M) = Tr(M̄) = 0 indicates that Equation (22) has a constant λ = λ1
and a solution φ = (φ1, φ2, φ3, φ4)

T that satisfies the condition

b11φ1 + b12φ2 + b13φ3 + b14φ4 = 0, (46)

(a21λ + b21)φ1 + b22φ2 + b23φ3 + b24φ4 = 0, (47)

b31φ1 + b32φ2 + b33φ3 + b34φ4 = 0, (48)

b41φ1 + b42φ2 + (a43λ + b43)φ3 + b44φ4 = 0. (49)

Substituting Equations (30), (31), (35), (41) and (34) for (28), we obtain

b11x = b12x = b22x = b34x = 0, (50)

Combining Equation (28) with Equations (46)–(50), we obtain

b11 = 1, b12 = −a21, b13 = 1, b14 = 0,
b21 = −a21 p, b22 = 1, b23 = −a21r, b24 = 1,
b31 = 1, b32 = 0, b33 = 1, b34 = −a43,
b41 = −a43q, b42 = 1, b43 = −a43 p, b44 = 1.

(51)
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The undefined functions p̄, q̄, r̄ can be determined using Equations (45), (42) and (36):

p̄ = p, (52)

q̄ = −a43qx + q, (53)

r̄ = −a21rx + r, (54)

The others of Equations (30)–(45) can be verified to be automatically satisfied.

3.2. Temporal Scales of the Darboux Transformation

The compatibility condition φ̄xt = φ̄tx holds if the transformation Equation (25) maps
Equation (19) into φ̄t=N̄φ̄, in which N̄ has the same form as N in (19) except that p, q and r
have been replaced with p̄, q̄ and r̄:

M̄t − N̄x + [M̄, N̄] = 0. (55)

Note that Equation (19) has a new solution given by ( p̄, q̄, r̄).
The following is the fundamental point of the proof. We need to demonstrate that the

equation φ̄t=N̄φ̄ holds.
Comparing the coefficient of λj (j = 3, 2, 1, 0), when j = 2, the coefficients matrix is

−b12 − a21 0 −b14 0
−b22 + b11 a21 + b12 −b24 + b13 b14
−b32 0 −b34 − a43 0

−b42 + b31 b32 −b44 + b33 a43 + b34

. (56)

From Equation (51), we can easily determine that Equation (56) is correct.
We have the same form as Equation (29) when a21x = 0 and a43x = 0.
The subsequent equations result from j = 1:

b12
p
2
+ b14

q
2
− a21

p̄
2
− b21 = 0, (57)

b11 − b22 = 0, (58)

b12
r
2
+ b14

p
2
− a43

r̄
2
− b23 = 0, (59)

b13−b24 = 0, (60)

a21t − a21
px

4
− b22

p
2
+ b24

q
2
− a21

p̄x

4
− b11

p̄
2
− b31

r̄
2
= 0, (61)

p
2

a21 + b21 − b12
p̄
2
− b32

r̄
2
= 0, (62)

−a21
rx

4
+ b22

r
2
+ b24

p
2
− a43

r̄x

4
− b13

p̄
2
− b33

r̄
2
= 0, (63)

a21
r
2
+ b23 − b14 − b34

r̄
2
= 0, (64)

b32
p
2
+ b34

q
2
− a21

q̄
2
− b41 = 0, (65)
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b31 − b42 = 0, (66)

b32
r
2
+ b34

p
2
− b43 − a43

p̄
2
= 0, (67)

b33 − b44 = 0, (68)

−a43
qx

4
+ b42

p
2
+ b44

q
2
− a21

q̄x

4
− b11

q̄
2
− b31

p̄
2
= 0, (69)

a43
r
2
+ b41 − b12

q̄
2
− b32

p̄
2
= 0, (70)

a43t − a43
px

4
+ b42

r
2
+ b44

p
2
− b43

p̄x

4
− b13

q̄
2
− b33

p̄
2
= 0, (71)

a43
p
2
+ b43 − b14

q̄
2
− b34

p̄
2
= 0. (72)

From Equation (37), we know that

r̄a43 = a21r, (73)

Substituting Equation (51) for Equation (59), and replacing Equation (59) with
Equation (73), Equation (59) is valid. Substituting Equation (51) for Equation (72), we
find that Equation (72) is valid. Equations (57)–(72) can be verified to be correct in a
similar way.

The subsequent equations result from j = 0:

b11t −
px
4 b11 − ( pxx

4 −
p2

2 −
qr
2 )b12 − qx

4 b13

−( qxx
4 − pq)b14 +

p̄x
4 b11 − p̄

2 b21 +
r̄x
4 b31 − r̄

2 b14 = 0,
(74)

b12t +
p
2

b11 +
px

4
b12 +

q
2

b13 +
qx

4
b14 +

p̄x

4
b12 −

p̄
2

b22 +
r̄x

4
b32 −

r̄
2

b42 = 0, (75)

b13t − rx
4 b11 − ( rxx

4 − pr)b12 − px
4 b13

−( pxx
4 −

p2

2 −
qr
2 )b14 +

p̄x
4 b13 − p̄

2 b23 +
rx
4 b33 − r̄

2 b43 = 0,
(76)

b14t +
r
2

b11 + b12
rx

4
+ b13

p
2
+ b14

px

4
+

p̄x

4
b11 −

p̄
2

b24 +
r̄x

4
b34 −

r̄
2

b44 = 0, (77)

b21t −
px
4 b21 − b22(

pxx
4 −

p2

2 −
qr
2 )−

qx
4 b23 − ( qxx

4 − pq)b24

+( p̄xx
4 −

p̄2

2 −
q̄r̄
2 )b11 − p̄x

4 b21 + ( r̄xx
4 − p̄r̄)b31 − r̄x

4 b41 = 0,
(78)

b22t + b21
p
2 + b22

px
4 + b23

q
2 + b24

qx
4 + ( p̄xx

4 −
p̄2

2 −
q̄r̄
2 )b12

− p̄x
4 b22 + ( r̄xx

4 − p̄r̄)b32 − r̄x
4 b42 = 0,

(79)

b23t − rx
4 b21 − ( rxx

4 − pr)b22 − px
4 b23 − ( pxx

4 −
p2

2 −
qr
2 )b24

+( p̄xx
4 −

p̄2

2 −
q̄r̄
2 )b13 − p̄x

4 b23 + ( r̄xx
4 − p̄r̄)b33 − r̄x

4 b43 = 0,
(80)

b24t + b21
r
2 + b22

rx
4 + b23

p
2 + b24

px
4

+( p̄xx
4 −

p̄2

2 −
qr
2 )b14 − p̄x

4 b24 + ( r̄xx
4 − pr)b34 +

r̄x
4 b44 = 0,

(81)

b31t −
px
4 b31 − ( pxx

4 −
p2

2 −
qr
2 )b32 − qx

4 b33

−( qxx
4 − pq)b34 +

q̄x
4 b11 − q̄

2 b21 +
p̄x
4 b31 − p̄

2 b41 = 0,
(82)
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b32t +
p
2

b31 +
px

4
b32 +

q
2

b33 +
qx

4
b34 +

q̄x

4
b12 −

q̄
2

b22 +
p̄x

4
b32 −

p̄
2

b42 = 0, (83)

b33t − rx
4 b31 − ( rxx

4 − pr)b32 − px
4 b33

−( pxx
4 −

p2

2 −
qr
2 )b34 +

q̄x
4 b13 − q̄

2 b23 +
ūx
4 b33 − ū

2 b43 = 0,
(84)

b34t + b31
r
2
+ b32

rx

4
+ b33

p
2
+ b34

px

4
+

q̄x

4
b14 −

q̄
2

b24 +
p̄x

4
b34 −

p̄
2

b44 = 0, (85)

b41t −
px
4 b41 − ( pxx

4 −
p2

2 −
qr
2 )b42 − qx

4 b43 − ( qxx
4 − pq)b44

+( q̄xx
4 − p̄q̄)b11 +

q̄x
4 b21 + ( p̄xx

4 −
p̄2

2 −
q̄r̄
2 )b31 − p̄x

4 b41 = 0,
(86)

b42t +
p
2 b41 +

px
4 b42 +

q
2 b43 +

qx
4 b44 + ( q̄xx

4 − p̄q̄)b12

− q̄x
4 b22 + ( p̄xx

4 −
p̄2

2 −
q̄r̄
2 )b32 − p̄x

4 b42 = 0,
(87)

b43t − rx
4 b41 − ( rxx

4 − pr)b42 − px
4 b43 − ( pxx

4 −
p2

2 −
qr
2 )b44

+( q̄xx
4 − p̄q̄)b13 − q̄x

4 b23 + ( p̄xx
4 −

p̄2

2 −
q̄
r̄ )b33 − p̄x

4 b43 = 0,
(88)

b44t +
r
2 b41 +

rx
4 b42 +

p
2 b43 +

px
4 b44 + ( q̄xx

4 − p̄q̄)b14

− q̄x
4 b24 + ( p̄xx

4 −
p2

2 −
q̄r̄
2 )b34 − p̄x

4 b44 = 0.
(89)

From Equation (43), we know that

a21q̄ = a43q. (90)

Then, we can obtain
a21q̄x = a43qx. (91)

Substituting Equation (51) for Equation (83), and replacing Equation (83) with
Equations (91) and (53), we find that Equation (83) is valid.

Equations (74)–(89) can be verified to be correct in a similar way.

4. Conclusions and Remarks

The related hierarchy of nonlinear evolution equations is presented for a novel isospec-
tral problem with three potentials in a 4× 4 matrix context. Notably, this approach yields
a new coupled KdV equation. The trace identity is used to explore their generalized bi-
Hamiltonian structures. Furthermore, the related Lax pair is subjected to a nonlinearization
process in order to create a new finite-dimensional Hamiltonian system. The Lax operator
generates sufficient conserved integrals that are involutionary and functionally indepen-
dent to ensure the Hamiltonian system’s Liouville integrability. In addition, we offer the
Darboux matrix T for one of the equations in the hierarchy, in which each element has a
connection to the spectral parameter λ depending on its position and number. And, every
element of T is assumed to be polynomial in terms of λ. We have also verified that T is
correct.
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