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Abstract: This paper discusses the problem of the existence and uniqueness of solutions to the
boundary value problem for the nonlinear fractional-order pantograph equation, using the fractional
derivative of variable order of Hadamard type. The main results are proved through the application
of fractional calculus and Krasnoselskii’s fixed-point theorem. Moreover, the Ulam–Hyers–Rassias
stability of the nonlinear fractional pantograph equation is analyzed. To conclude this paper, we
provide an example illustrating our findings and approach.
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1. Introduction

In recent decades, the evolution of fractional calculus has been remarkable (for more
details, see [1–9]) due to its valuable tools for constructing models for many different
phenomena occurring in real life. This has formed a solid foundation for the notion of
fractional operators with variable order (i.e., derivative and integral operators), each with
several different definitions. Indeed, different concepts have been proposed by Grunwald–
Letnikov, Erdlyi–Kober, and Riesz, as well as the widely used Riemann–Liouville and
Caputo notions, and those by Hadamard and Hilfer. We consider general notions represent-
ing fractional-type integral and derivative operators, where the order is no longer constant
but is a function of specific variables (for details, see [10]). These, along with some of
their significant applications, have prompted a thorough analysis focused on the study of
existence and uniqueness problems in equations based on this type of operator.

One of the notations frequently used for pantograph equations involves differential
equations with proportional delays, making them a relevant exemplification of differential
equations with delay. These types of problems have attracted a lot of attention in both pure
and applied fields, such as quantum mechanics, dynamical systems, number theory, etc.
In recent years, numerous researchers have focused on this type of problem [11–14]. An
interesting application was presented by Ockendon and Taylor [15], who considered the
pantograph of an electric locomotive to study the electric current, constituting an important
work in the study of the equations bearing this name.
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In [16], S. Harikrishnan considered the following pantograph equation with fractional
operators of the ψ−Hilfer type, subject to nonlocal initial conditions:

Dα,β;ψ
a+ ϕ(t) = g(t, ϕ(t), ϕ(λt)), 0 < λ < 1, t ∈ J := (a, T], (1)

I1−γ;ψ
a+ ϕ(t)

∣∣∣
t=a

=
n

∑
k=1

Ck ϕ(tk), tk ∈ (a, T], (2)

where Dα,β;ψ
a+ represents the ψ−Hilfer fractional-order derivative with order α, where

α ∈ (0, 1), and type β with β ∈ [0, 1], such that α + β− αβ =: γ. We use R to represent the
real line and let the function f : J ×R×R −→ R be continuous and tk be some predefined
points ordered as follows: a < t1 ≤ · · · ≤ tk < T. The real numbers Ck are fixed.

In [17], the authors used two fixed-point results: one from Krasnoselskii and an-
other involving extended contractive mappings. Their aim was to investigate the stability
properties of the following discrete-type pantograph fractional equation:{

∆β
∗ [K](t) = f (t + β, K(t + β), K(λ(t + β))),

K(0) = p[K],

for t ∈ N1−β, where β ∈ (0, 1], λ ∈ (0, 1), ∆β
∗ represents a Caputo-type difference operator, K

represents the pantograph motion, f : E −→ R is continuous, and p : C([0,+∞),C) −→ R
is Lipschitzian in K. Here, E := [0,+∞) × C([0,+∞),C) × C([0,+∞),C), and Nt :=
{t, t + 1, t + 2, . . .}.

Using the Hilfer operator, stability properties were investigated in [18] for a certain
generalized nonlinear pantograph equation with fractional order and discrete time. In
addition, stability conditions were established using Ulam and Hyers’ results. Recently,
in [19], the authors investigated some properties of positive solutions, such as existence
and uniqueness, for nonlinear pantograph differential equations with fractional operators
of the Caputo–Hadamard type.

The above-mentioned paper was the inspiration for the present work, where we
consider the following boundary value problem for the nonlinear pantograph fractional
differential equation of variable order of the Hadamard type, and study the existence and
uniqueness properties:{

HDψ(t)
1+ ϕ(t) = g(t, ϕ(t), ϕ(λt)), t ∈ [1, T],

ϕ(1) = ϕ(T) = 0,
(3)

where T < +∞, ψ(t) ∈ (1, 2), λ ∈ (0, 1), the function g : [1, T] × R× R −→ R is con-
tinuous, and HDψ(t)

1+ represents the left-hand Hadamard-type fractional derivative with
variable order.

This paper is divided into several sections. Section 2 outlines the notions and previous
auxiliary lemmas that demonstrate interesting properties related to the problem that is
the subject of this study. Section 3 presents the main results concerning the existence and
uniqueness properties of the solutions to the problem (3), using the fixed-point result of
Krasnoselskii as the fundamental tool. Section 4 focuses on the analysis of stability in terms
of Ulam–Hyers–Rassias for the considered problem. Lastly, Section 5 illustrate an example
of the results.

2. Preliminary Results

Here, we introduce some basic concepts and auxiliary preliminary results that are
crucial for the development of the rest of this paper.
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Definition 1 ([20]). Let the constants a, b be such that 1 ≤ a < b < +∞, and consider the
function ψ : [a, b] −→ (0,+∞). The left-hand Hadamard fractional integral of order ψ(t) (variable
order) for a given function ϕ is defined as

H Iψ(t)
1+ ϕ(t) =

1
Γ(ψ(t))

∫ t

1

(
ln

t
s

)ψ(t)−1 ϕ(s)
s

ds, t ∈ (a,+∞).

Definition 2 ([20]). We fix n ∈ N and consider ψ : [a, b] −→ (n− 1, n). The left-hand Hadamard
derivative of order ψ(t) (variable order) for a given function ϕ is defined as

HDψ(t)
1+ ϕ(t) =

tn

Γ(n− ψ(t))
dn

dtn

[∫ t

1

(
ln

t
s

)n−1−ψ(t) ϕ(s)
s

ds

]
, t ∈ (a,+∞).

It is a well-known fact that when we consider a fractional order given by a constant
function ψ(t) ≡ ψ, the Hadamard fractional operators (i.e., integral and derivative) of
variable order are identical to their constant-order counterparts; thus, the semi-group
property yields the following properties

H Iψ1
1+

H Iψ2
1+ = H Iψ2

1+
H Iψ1

1+ = H Iψ1+ψ2
1+ .

Using these properties as a basis, we can transform fractional-order differential equa-
tions into integral equations, and the corresponding transformation is an equivalence. On
the other hand, to prove the existence and uniqueness of solutions to integral equations,
we can apply some fixed-point results. However, recent studies have proved that this
type of semi-group property is not generally true in the case of variable-order fractional
operators. This makes it difficult to transform differential equations into integral equations
in an equivalent way. In addition,

H Iψ1(t)
1+

H Iψ2(t)
1+ 6= H Iψ2(t)

1+
H Iψ1(t)

1+

6= H Iψ1(t)+ψ2(t)
1+ ,

where ψ1(t) and ψ2(t) are general non-negative functions. We provide some examples to
prove these claims.

Example 1. In this example, we prove that

H Iψ1(t)
1+

H Iψ2(t)
1+ ϕ(t) 6= H Iψ1(t)+ψ2(t)

1+ ϕ(t).

Let ψ1(t) =

{
t + 1, t ∈ [1, 3],
1− t, t ∈ (3, 4],

ψ2(t) =

{
1, t ∈ [1, 3],
2, t ∈ (3, 4],

ϕ(t) = 1, 1 ≤ t ≤ 4,

H Iψ1(t)
1+

H Iψ2(t)
1+ ϕ(t) =

1
Γ(ψ1(t))

∫ t

1

1
s

(
ln

t
s

)ψ1(t)−1

×
[

1
Γ(ψ2(s))

∫ s

1

1
h

(
ln

s
h

)ψ2(s)−1
ϕ(h) dh

]
ds

=
1

Γ(ψ1(t))

∫ 3

1

1
s

(
ln

t
s

)ψ1(t)−1[ 1
Γ(1)

∫ s

1

1
h

(
ln

s
h

)1−1
dh
]

ds

+
1

Γ(ψ1(t))

∫ t

3

1
s

(
ln

t
s

)ψ1(t)−1[ 1
Γ(2)

∫ s

1

1
h

(
ln

s
h

)2−1
dh
]

ds.
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Therefore

H Iψ1(t)
1+

H Iψ2(t)
1+ ϕ(t)

∣∣∣
t=3

=
1

Γ(4)

∫ 3

1

(
ln

3
s

)3
ln sds

∣∣∣∣∣
t=3

≈ 0, 06069.

However,

H Iψ1(t)+ψ2(t)
1+ ϕ(t)

∣∣∣
t=3

=
1

Γ(ψ(t) + ψ2(t))

∫ t

1

1
s

(
ln

t
s

)ψ1(t)+ψ2(t)−1
ds

∣∣∣∣∣
t=3

=
1

Γ(4 + 1)

∫ t

1

1
s

(
ln

3
s

)4+1−1
ds

=
1

Γ(6)
(ln 3)5 ≈ 0.01333.

Example 2. In this example, we prove that

HDψ1(t)
1+

HDψ2(t)
1+ ϕ(t) 6= HDψ2(t)

1+
HDψ1(t)

1+ ϕ(t)

6= HDψ1(t)+ψ2(t)
1+ ϕ(t).

Let 0 < ψ1(t) < 1, 0 < ψ2(t) < 1, where ψ1(t) 6= ψ2(t), and let ϕ(t) = 1, t ∈ [1, T]. Then,

HDψ1(t)
1+

HDψ2(t)
1+ ϕ(t) =

t
Γ(1− ψ1(t))

d
dt

∫ t

1

1
s

(
ln

t
s

)−ψ1(t)

×
[

s
Γ(1− ψ2(s))

d
ds

∫ s

1

1
h

(
ln

s
h

)−ψ2(s)
dh
]

ds

=
t

Γ(1− ψ1(t))
d
dt

∫ t

1

(
ln

t
s

)−ψ1(t)

×
[

1
Γ(1− ψ2(s))

d
ds

(
(− ln s)1−ψ2(s)

1− ψ2(s)

)]
ds

=
−t

Γ(1− ψ1(t))
d
dt

∫ t

1

(
ln

t
s

)−ψ1(t) (ln s)−ψ2(s)

sΓ(1− ψ2(s))
ds

= − HDψ1(t)
1+

(
(ln t)−ψ2(t)

Γ(1− ψ2(t))

)
,

HDψ2(t)
1+

HDψ1(t)
1+ ϕ(t) =

t
Γ(1− ψ2(t))

d
dt

∫ t

1

1
s

(
ln

t
s

)−ψ2(t)

×
[

s
Γ(1− ψ1(s))

d
ds

∫ s

1

1
h

(
ln

s
h

)−ψ1(s)
dh
]

ds

=
t

Γ(1− ψ2(t))
d
dt

∫ t

1

(
ln

t
s

)−ψ2(t)

×
[

1
Γ(1− ψ1(s))

d
ds

(
(− ln s)1−ψ1(s)

1− ψ1(s)

)]
ds

=
−t

Γ(1− ψ2(t))
d
dt

∫ t

1

(
ln

t
s

)−ψ2(t) (ln s)−ψ1(s)

sΓ(1− ψ1(s))
ds

= − HDψ2(t)
1+

(
(ln t)−ψ1(t)

Γ(1− ψ1(t))

)
,
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HDψ1(t)+ψ2(t)
1+ ϕ(t) =

t2

Γ(2− ψ1(t)− ψ2(t))
d2

dt2

∫ t

1

1
s

(
ln

t
s

)1−ψ1(t)−ψ2(t)
ϕ(s)ds

=
t2

Γ(2− ψ1(t)− ψ2(t))
d2

dt2

[
−(ln t)2−ψ1(t)−ψ2(t)

2− ψ1(t)− ψ2(t)

]

=
(ψ1(t) + ψ2(t))(ln t)−ψ1(t)−ψ2(t)

Γ(2− ψ1(t)− ψ2(t))
.

In this example, we illustrate that variable-order fractional calculus does not inherit
the semigroup property exhibited by constant-order fractional calculus.

Definition 3. Consider E a Banach space, and let Ω ⊂ E be a subset. We denote the set of
continuous functions as ϕ : Ω −→ E by C(Ω, E), endowed with the usual supremum norm

||ϕ||∞ := sup{|ϕ(t)|, t ∈ Ω},

which ensures a Banach space structure. We also consider L1(Ω, E) as the Banach space of measur-
able functions ϕ : Ω −→ E that are Bochner-integrable, endowed with the norm

||ϕ||L1 :=
∫

Ω
|ϕ(t)|dt, t ∈ Ω.

We can also deduce that PC(Ω, E) := {ψ : Ω −→ E , ψ : (ti−1, ti] −→ E is piecewise continuous
for all i = 1, . . . , n},

ψi : (ti−1, ti] −→ E

t −→ ψi(t) = ψ(t).

PC(Ω, E) also has the structure of a Banach space with the norm

||ψ||PC := sup
i=1,n
||ψi||.

Definition 4 ([21]). Consider a subset S of the space R:

(i) It is said that S is a generalized interval if it is either a standard interval, a point, or ∅.
(ii) If S is a generalized interval, the finite set P consisting of generalized intervals contained in S

is called a partition of S, provided that every x ∈ S belongs to exactly one of the generalized
intervals in the finite set P .

(iii) Obviously, the function ψ : t 7→ R is piecewise constant with respect to the partition P of S.
In other words, for every W ∈ S, ψ is constant on W.

We state the following propositions in order to prove the definition and the continuity
of the left-hand Hadamard variable-order integral.

Proposition 1. Consider ψ ∈ C([1, T], (1, 2]) and the space

Cα([1, T],R) = {ϕ(t) ∈ C([1, T],R), (ln t)α ϕ(t) ∈ C([1, T],R), α ∈ (0, 1)}.

If ϕ ∈ Cα([1, T],R), then the left-hand Hadamard variable-order integral H Iψ(t)
1+ ϕ(t) exists for

every t ∈ [1, T].
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Proof. We take the function Γ(ψ(t)), which is continuous and non-zero on [1, T]. Let

Mψ := max
t∈[1,T]

∣∣∣∣ 1
Γ(ψ(t))

∣∣∣∣ > 0. Thus, for 1 ≤ s ≤ t ≤ T, we have


(

ln
t
s

)ψ(t)−1
≤ 1, if 1 ≤ t

s
≤ e,(

ln
t
s

)ψ(t)−1
≤
(

ln
t
s

)ψmax−1
, if

t
s
> e.

Obviously, for 1 ≤ t
s
< +∞, we obtain

(
ln

t
s

)ψ(t)−1
≤ max

{
1,
(

ln
t
s

)ψmax−1
}

= M∗.

Then, by applying the function (ln(·))α for any α ∈ (0, 1), it is possible to conclude that

∣∣∣H Iψ(t)
1+ ϕ(t)

∣∣∣ = 1
Γ(ψ(t))

∫ t

1

(
ln

t
s

)ψ(t)−1 |ϕ(s)|
s

ds

≤ Mψ

∫ t

1

(
ln

t
s

)ψ(t)−1

(ln s)−α(ln s)α |ϕ(s)|
s

≤ Mψ M∗ sup
t∈[1,T]

|(ln t)α ϕ(t)|
∫ t

1

(ln s)−α

s
ds

≤ Mψ M∗ sup
t∈[1,T]

|(ln t)α ϕ(t)| ln T
1− α

< +∞.

This implies that the fractional variable-order integral H Iψ(t)
1+ is well defined for each

t ∈ [1, T].

Proposition 2. Let ψ ∈ C([1, T], (1, 2]). Then, H Iψ(t)
1+ ϕ(t) ∈ C([1, T],R) for every

ϕ ∈ C([1, T],R).

Proof. For t1, t2 ∈ [1, T], t1 ≤ t2, and ϕ ∈ C([1, T],R), we obtain

∣∣∣H Iψ(t1)
1+ ϕ(t1)− H Iψ(t2)

1+ ϕ(t2)
∣∣∣ =∣∣∣∣∣

∫ t1

1

1
Γ(ψ(t1))

(
ln

t1

s

)ψ(t1)−1 ϕ(s)
s

ds

−
∫ t2

1

1
Γ(ψ(t2))

(
ln

t2

s

)ψ(t2)−1 ϕ(s)
s

ds

∣∣∣∣∣.
Consider the following change of variables: s = τ(ti − 1) + 1, where i = 1, 2:

=

∣∣∣∣∣
∫ 1

0

1
Γ(ψ(t1))

(t1 − 1)
τ(t1 − 1) + 1

(
ln

t1

τ(t1 − 1) + 1

)ψ(t1)−1
ϕ(τ(t1 − 1) + 1)dτ

−
∫ 1

0

1
Γ(ψ(t2))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t2 − 1) + 1)dτ

∣∣∣∣∣
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=

∣∣∣∣∣
∫ 1

0

[
1

Γ(ψ(t1))

(t1 − 1)
τ(t1 − 1) + 1

(
ln

t1

τ(t1 − 1) + 1

)ψ(t1)−1
ϕ(τ(t1 − 1) + 1)

− 1
Γ(ψ(t1))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t1

τ(t1 − 1) + 1

)ψ(t1)−1
ϕ(τ(t1 − 1) + 1)

]
dτ

+
∫ 1

0

[
1

Γ(ψ(t1))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t1

τ(t1 − 1) + 1

)ψ(t1)−1
ϕ(τ(t1 − 1) + 1)

− 1
Γ(ψ(t1))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t1 − 1) + 1)

]
dτ

+
∫ 1

0

[
1

Γ(ψ(t1))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t1 − 1) + 1)

− 1
Γ(ψ(t2))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t1 − 1) + 1)

]
dτ

+
∫ 1

0

[
1

Γ(ψ(t2))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t1 − 1) + 1)

− 1
Γ(ψ(t2))

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1
ϕ(τ(t2 − 1) + 1)

]
dτ

∣∣∣∣∣
≤ sup

t∈[1,T]
|ϕ(t)|

∫ 1

0

1
Γ(ψ(t1))

(
ln

t1

τ(t1 − 1) + 1

)ψ(t1)−1∣∣∣∣ (t1 − 1)
τ(t1 − 1) + 1

− (t2 − 1)
τ(t2 − 1) + 1

∣∣∣∣dτ

+ sup
t∈[1,T]

|ϕ(t)|
∫ 1

0

1
Γ(ψ(t1))

(t2 − 1)
τ(t2 − 1) + 1

×
∣∣∣∣∣
(

ln
t1

τ(t1 − 1) + 1

)ψ(t1)−1
−
(

ln
t2

τ(t2 − 1) + 1

)ψ(t2)−1
∣∣∣∣∣dτ

+ sup
t∈[1,T]

|ϕ(t)|
∫ 1

0

(t2 − 1)
τ(t2 − 1) + 1

(
ln

t2

τ(t2 − 1) + 1

)ψ(t2)−1∣∣∣∣ 1
Γ(ψ(t1))

− 1
Γ(ψ(t2))

∣∣∣∣dτ

+
∫ 1

0

1
Γ(ψ(t2))

(t2 − 1)
τ(t2 − 1) + 1

×
(

ln
t2

τ(t2 − 1) + 1

)ψ(t2)−1

|ϕ(τ(t1 − 1) + 1)− ϕ(τ(t2 − 1) + 1)|dτ.

Since the following functions are continuous (t−1)
τ(t−1)+1 ,

(
ln
(

t
τ(t−1)+1

))ψ(t)−1 1
Γ(ψ(t)) , and ϕ(t),

we deduce that the left-hand Hadamard fractional integral is continuous for all t ∈ [1, T].
Therefore, H Iψ(t)

1+ ϕ(t) belongs to the space C([1, T],R) for each ϕ ∈ C([1, T],R).

The following Lemma is crucial in this paper for establishing the connection between
a differential equation and its integral counterpart.

Lemma 1 ([10]). Let α > 0, and let a and b be constants such that 1 < a < b. Suppose
ϕ ∈ L1(a, b) is such that HDα

a+ ϕ ∈ L1(a, b). Then, we have the following properties:
The fractional differential equation

HDα
a+ ϕ = 0

has, as a solution,

ϕ(t) = C1

(
ln

t
a

)α−1
+ C2

(
ln

t
a

)α−2
+ · · ·+ Cn

(
ln

t
a

)α−n
=

n

∑
i=1

Ci

(
ln

t
a

)α−i
,
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where Ci ∈ R. Additionally,

H Iα
a+(

HDα
a+)ϕ(t) = ϕ(t) +

n

∑
i=1

Ci

(
ln

t
a

)α−i
,

where we have taken n = [α] + 1.
Furthermore,

HDα
a+ (H Iα

a+)ϕ(t) = ϕ(t).

Theorem 1 ([22]). Suppose that X is a non-empty closed and convex subset of a Banach space E.
Let f : X −→ E be a continuous and condensing mapping satisfying either [22] (Equation (1),
p 461) or [22] (Equation (2), p 462). If the range of f is bounded, then it has a fixed point.

Theorem 2 ([10]). Suppose that Ω is a non-empty bounded closed and convex subset of a real Ba-
nach space E, and consider F1, F2 two operators that are defined on Ω and satisfy the
following hypotheses:

(a) F1(Ω) + F2(Ω) ⊂ Ω.
(b) F1 is continuous on Ω, and F1(Ω) is a relatively compact subset of E.
(c) F2 is a (strict) contraction on Ω, that is, there exists a constant k ∈ [0, 1) such that

||F2(x)− F2(y)|| ≤ k||x− y||, for all x, y ∈ Ω.

Then, the equation F1(x) + F2(x) = x admits a solution on Ω.

3. Existence of the Solution

In this section, we include the main results concerning the existence and uniqueness
of the solution.

We consider P = [1, t1], (t1, t2], (t2, t3], . . . , (tn, T] (where n is a fixed natural number)
as a partition of the compact interval [1, T]. We then select a function ψ : [1, T] −→ (1, 2)
that is piecewise constant with respect to the partition P, which means that

ψ(t) =
n

∑
i=1

ψiIi(t), t ∈ [1, T],

where the constants ψi ∈ (1, 2) for all i ∈ {1, 2, . . . , n}, and Ii represents the characteristic
function of [ti−1, ti], for all i ∈ {1, 2, . . . , n}, that is,

Ii(t) =

{
1 t ∈ [ti−1, ti],
0 otherwise.

Hence, we obtain

HDψ(t)
1+ ϕ(t) =

t2

Γ

(
2−

n

∑
i=1

ψiIi(t)

) d2

dt2

∫ t

1

(
ln

t
s

)1−
n

∑
i=1

ψiIi(t) ϕ(s)
s

ds


=

t2

Γ(2− ψ(t))
d2

dt2

[∫ t1

1

(
ln

t
s

)1−ψ1 ϕ(s)
s

ds

]
+

t2

Γ(2− ψ(t))
d2

dt2

[∫ t2

t1

(
ln

t
s

)1−ψ2 ϕ(s)
s

ds

]

+ · · ·+ t2

Γ(2− ψ(t))
d2

dt2

[∫ t

tn

(
ln

t
s

)1−ψn ϕ(s)
s

ds

]

=
t2

Γ(2− ψ(t))
d2

dt2

[
n

∑
i=1

∫ ti

ti−1

(
ln

t
s

)1−ψi ϕ(s)
s

ds +
∫ t

tn

(
ln

t
s

)1−ψn ϕ(s)
s

ds

]
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=
t2

Γ(2− ψ(t))

[
n

∑
i=1

d2

dt2

∫ ti

ti−1

(
ln

t
s

)1−ψi ϕ(s)
s

ds +
d2

dt2

∫ t

tn

(
ln

t
s

)1−ψn ϕ(s)
s

ds

]
.

Thus, the equation of the problem (3) is rewritten in the following way:

HDψ(t)
1+ ϕ(t) =

t2

Γ(2− ψ(t))

[
n

∑
i=1

d2

dt2

∫ ti

ti−1

(
ln

t
s

)1−ψi ϕ(s)
s

ds +
d2

dt2

∫ t

tn

(
ln

t
s

)1−ψn ϕ(s)
s

ds

]
=g(t, ϕ(t), ϕ(λt)).

In particular, if we consider the interval [1, t1], the expression is adapted as

HDψ1
1+ ϕ̂(t) =

t2

Γ(2− ψ1)

d2

dt2

[∫ t

1

(
ln

t
s

)1−ψ1 ϕ̂(s)
s

ds

]
. (4)

Again, in the interval (t1, t2], the expression can be written as

HDψ2
1+ ϕ̂(t) =

t2

Γ(2− ψ1)

[
d2

dt2

∫ t1

1

(
ln

t
s

)1−ψ1 ϕ̂(t)
s

ds +
d2

dt2

∫ t

t1

(
ln

t
s

)1−ψ2 ϕ̂(t)
s

ds

]
. (5)

In the same way, if we consider the particular interval (ti−1, ti], the expression reduces to

HDψi
1+ ϕ̂(t) =

t2

Γ(2− ψi)

[
i−1

∑
k=1

d2

dt2

∫ tk

1

(
ln

t
s

)1−ψk ϕ̂(t)
s

ds +
d2

dt2

∫ t

ti−1

(
ln

t
s

)1−ψi ϕ̂(s)
s

ds

]
. (6)

Consider the set of functions Ei := C([ti−1, ti],R), and define the norm

||ϕ||Ei := sup
t∈[ti−1,ti ]

|ϕ(t)|, i ∈ {1, 2, . . . , n},

which gives Ei the structure of a Banach space.
We consider the function ϕ̂ ∈ Ei, which satisfies the property that ϕ̂(t) = 0 for all

t ∈ [1, ti−1] for each i ∈ {2, . . . , n}. This function serves as a solution to the above equations
for any i = 1, . . . , n. Thus, we consider the following auxiliary boundary value problems
for Hadamard-type constant-order fractional equations

HDψi
t+i−1

ϕ̂(t) =
t2

Γ(2− ψi)

d2

dt2

[∫ t

ti−1

(
ln

t
s

)1−ψi ϕ̂(s)
s

ds

]
= g(t, ϕ̂(t), ϕ̂(λt)), ti−1 < t ≤ ti,

ϕ̂(ti−1) = ϕ̂(ti) = 0.

(7)

Definition 5. It is said that the problem (3) has a solution ϕ if there exist functions ϕi, with
ϕ1 ∈ E1 satisfying Equation (4); ϕ1(1) = ϕ1(t1) = 0; ϕ2 ∈ E2 satisfying Equation (5);
ϕ2(t1) = ϕ2(t2) = 0; ϕi ∈ Ei satisfying Equation (6); and ϕi(ti−1) = ϕi(ti) = 0 (i = 3, . . . , n).

Remark 1. The problem (3) is said to have a unique solution if the above-mentioned functions ϕi
are unique.

By combining all the previous information, we can prove the following results.

Lemma 2. Suppose that i ∈ {1, . . . , n} is a natural number, and suppose that there exists
α ∈ (0, 1) such that (ln t)αg ∈ C((ti−1, ti] × R× R,R). Then, the function ϕ̂ is a solution
to (7) if and only if ϕ̂ is the solution to the following integral equation

ϕ̂(t) = −
(

ln
ti

ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1(
H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti))

)
+ H Iψi

t+i−1
g(t, ϕ̂(t), ϕ̂(λt)).
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Proof. Supposing that ϕ̂ satisfies (7). Then, we can transform (7) into an equivalent
integral equation. For t ∈ (ti−1, ti], according to Lemma 1, we have

H Iψi
t+i−1

HDψi
t+i−1

ϕ̂(t) = H Iψi
t+i−1

g(t, ϕ̂(t), ϕ̂(λt)),

ϕ̂(t) +
2

∑
k=1

Ck

(
ln

t
ti−1

)ψi−k
= H Iψi

t+i−1
g(t, ϕ̂(t), ϕ̂(λt)),

ϕ̂(t) =
2

∑
k=1

Ck

(
ln

t
ti−1

)ψi−k
+ H Iψ

t+i−1
g(t, ϕ̂(t), ϕ̂(λt)).

From the boundary conditions ϕ̂(ti) = ϕ̂(ti−1) = 0, we deduce that

C1 = −
(

ln
ti

ti−1

)1−ψi
[

C2

(
ln

t
ti−1

)ψi−2
+H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti))

]
,

0 = C2

[
−
(

ln
ti

ti−1

)ψi−2
H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti))

]
.

Therefore, we obtain
C2 = 0,

C1 = −
(

ln
ti

ti−1

)1−ψi
H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti)).

In conclusion, the expression of the solution for the auxiliary boundary value problem (7) is

ϕ̂(t) = −
(

ln
ti

ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1
H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti))

+H Iψi
t+i−1

g(t, ϕ̂(t), ϕ̂(λt)), ti−1 < t ≤ ti.

In order to prove the most relevant results in this section, we establish some hypotheses.

Hypothesis 1. For 0 ≤ α ≤ 1, let (ln(·))αg : [1, T]×R×R −→ R be continuous, such that
there exists L > 0, which satisfies

(ln t)α|g(t, x1, y1)− g(t, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|),

for every x1, x2, y1, y2 ∈ R.

Hypothesis 2. Suppose that

4L
(1− α)Γ(ψi)

[
(ln ti)

1−α − (ln ti−1)
1−α
](

ln
ti

ti−1

)1−α

≤ 1.

Theorem 3. Suppose that Hypothesis 1 and Hypothesis 2 hold. Under these circumstances, the
boundary value problem (3) has exactly one solution in the space C([1, T],R).

Proof. Define the following mapping F : Ei −→ Ei, which is well defined and given by

(Fϕ̂)(t) = −
(

ln
ti

ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1
H Iψi

t+i−1
g(ti, ϕ̂(ti), ϕ̂(λti)) +

H Iψi
t+i−1

g(t, ϕ̂(t), ϕ̂(λt)). (8)
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Let the ball BRi =
{

ϕ ∈ Ei : ||ϕ||Ei ≤ Ri
}

, where

Ri ≥

2
Γ(ψi + 1)

sup
t∈[1,T]

|g(t, 0, 0)|
(

ln
ti

ti−1

)ψi

1− 4L
(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)α−1 − (ln ti−1)α−1]

.

Note that BRi is a non-empty, closed, bounded, and convex subset of the space Ei. We split
the mapping F into the mappings F1 and F2 defined on BRi in the following way(F1 ϕ)(t) = −

(
ln

ti
ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1
H Iψi

t+i−1
g(ti, ϕ(ti), ϕ(λti)),

(F2 ϕ)(t) = H Iψi
t+i−1

g(t, ϕ(t), ϕ(λt)).

Step 1: F1(BRi ) + F2(BRi ) ⊂ BRi .

|F1(ϕ)(t) + F2(ϕ)(t)| =
∣∣∣∣∣−
(

ln
ti

ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1
H Iψi

t+i−1
g(ti, ϕ(ti), ϕ(λti))

+ H Iψi
t+i−1

g(t, ϕ(t), ϕ(λt))
∣∣∣∣

≤
∣∣∣∣H Iψi

t+i−1
g(ti, ϕ(ti), ϕ(λti)) +

H Iψi
t+i−1

g(t, ϕ(t), ϕ(λt))
∣∣∣∣

≤
∣∣∣∣H Iψi

t+i−1
g(ti, ϕ(ti), ϕ(λti))

∣∣∣∣+ ∣∣∣∣H Iψi
t+i−1

g(t, ϕ(t), ϕ(λt))
∣∣∣∣

≤ 1
Γ(ψi)

∫ ti

ti−1

(
ln

ti
s

)ψi−1 |g(s, ϕ(s), ϕ(λs))|
s

ds

+
1

Γ(ψi)

∫ t

ti−1

(
ln

t
s

)ψi−1 |g(s, ϕ(s), ϕ(λs))|
s

ds

≤ 2
Γ(ψi)

∫ ti

ti−1

(
ln

ti
s

)ψi−1
(ln s)−α(ln s)α

× |g(s, ϕ(s), ϕ(λs))− g(s, 0, 0)|
s

ds

+
2

Γ(ψi)

∫ ti

ti−1

(
ln

ti
s

)ψi−1 |g(s, 0, 0)|
s

ds

≤ 2
Γ(ψi)

(
ln

ti
ti−1

)ψi−1 ∫ ti

ti−1

(ln s)−α

s
L(|ϕ(s)|+ |ϕ(λs)|) ds

+
2

Γ(ψi)
sup

t∈[ti ,ti−1]

|g(t, 0, 0)|
∫ ti

ti−1

(
ln

ti
s

)ψi−1
ds

≤
4L||ϕ||Ei

Γ(ψi)

(
ln

ti
ti−1

)ψi−1 (ln s)1−α

1− α

∣∣∣∣ti

ti−1

+
2

Γ(ψi + 1)
sup

t∈[ti−1,ti ]

|g(t, 0, 0)|
(

ln
ti

ti−1

)ψi

≤
4L||ϕ||Ei

(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)

1−α − (ln ti−1)
1−α]
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+
2

Γ(ψi + 1)
sup

t∈[ti−1,ti ]

|g(t, 0, 0)|
(

ln
ti

ti−1

)ψi

≤ Ri.

Step 2: F1 is a contraction:

|F1(ϕ1)(t)− F1(ϕ2)(t)| ≤

(
ln

ti
ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1

Γ(ψi)

×
[∫ ti

ti−1

(
ln

ti
s

)ψi−1 |g(s, ϕ1(s), ϕ1(λs))|
s

ds

−
∫ ti

ti−1

(
ln

ti
s

)ψi−1 |g(s, ϕ2(s), ϕ2(λs))|
s

ds

]

≤ 1
Γ(ψi)

(
ln

ti
ti−1

)ψi−1

×
∫ ti

ti−1

1
s
(ln s)−α[L(|ϕ1(s)− ϕ2(s)|+ |ϕ1(λs)− ϕ2(λs)|)]ds

≤
2L||ϕ1(t)− ϕ2(t)||Ei

(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)

1−α − (ln ti−1)
1−α].

Therefore, the mapping F1 is a contraction mapping thanks to Hypothesis 2.
Step 3: F2 is continuous and F2(BR) is relatively compact:

1. F2 is a continuous mapping.
We consider a sequence {ϕn} with ϕn −→ ϕ in BR. Then, for every t ∈ [ti−1, ti],
i ∈ {1, 2, . . . , n}, we have

|F2(ϕn)(t)− F2(ϕ)(t)| ≤ 1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

t
ti−1

)ψi−1

× |g(s, ϕn(s), ϕn(λs))− g(s, ϕ(s), ϕ(λs))|ds

≤ L
Γ(ψi)

(
ln

ti
ti−1

)ψi−1 ∫ ti

ti−1

(ln s)−α

s

× (|ϕn(s)− ϕ(s)|+ |ϕn(λs)− ϕ(λs)|)ds

≤ 2L
Γ(ψi)

(
ln

ti
ti−1

)ψi−1 (ln s)1−α

(1− α)

∣∣∣∣ti

ti−1

||ϕn − ϕ||Ei

≤ 2L
Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)

1−α − (ln ti−1)
1−α]||ϕn − ϕ||Ei .

This implies that

||F2(ϕn)(t)− F2(ϕ)(t)||Ei −→ 0 as n→ +∞.

2. F2 is equicontinuous:

|F2(ϕ)(t2)− F2(ϕ)(t1)| =
∣∣∣∣∣ 1
Γ(ψi)

∫ t2

ti−1

1
s

(
ln

t2

s

)ψi−1
g(s, ϕ(s), ϕ(λs))ds

− 1
Γ(ψi)

∫ t1

ti−1

1
s

(
ln

t1

s

)ψi−1
g(s, ϕ(s), ϕ(λs))

∣∣∣∣∣ds
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=
1

Γ(ψi)

∫ t1

ti−1

g(s, ϕ(s), ϕ(λs))
s

[(
ln

t2

s

)ψi−1
−
(

ln
t1

s

)ψi−1
]

ds

+
1

Γ(ψi)

∫ t2

t1

1
s

(
ln

t2

s

)ψi−1
g(s, ϕ(s, ϕ(λs)))ds.

Provided that t1 −→ t2, the right-hand term in the previous inequality tends to zero.

As a consequence, F2 is an equicontinuous mapping, and it is also uniformly bounded by
Step 1.

Therefore, F2(BRi ) is relatively compact according to the Ascoli–Arzelà theorem.
From Theorem 2, we know that the auxiliary boundary value problem (7) has at least

one solution in the set BRi for every i ∈ {1, 2, . . . , n}.
To conclude, the boundary value problem (3) has at least one solution in the space

C([1, T],R), which is defined as

ϕ(t) =



ϕ1(t) = ϕ̂1(t), for t ∈ [1, t1],

ϕ2(t) =

{
0, for t ∈ [1, t1],
ϕ̂2(t), for t ∈ (t1, t2],

...

ϕn(t) =

{
0, for t ∈ [1, tn−1],
ϕ̂n(t), for t ∈ (tn−1, T].

With the help of the Grönwall Lemma, we can deduce the uniqueness of this solution.
Indeed, let ϕi, ϕ∗i be two solutions to problem (7). Therefore, for every i ∈ {1, 2, . . . , n},
we obtain

|ϕi(t)− ϕ∗i (t)| =
∣∣∣ H Iψ(t)

1+ g(ti, ϕi(ti), ϕi(λti)) +
H Iψ(t)

1+ g(t, ϕi(t), ϕi(λt))

− H Iψ(t)
1+ g(ti, ϕ∗i (ti), ϕ∗i (λti))− H Iψ(t)

1+ g(ti, ϕ∗i (t), ϕ∗i (λt))
∣∣∣

≤ 2
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
|g(s, ϕi(s), ϕi(λs))− g(s, ϕ∗i (s), ϕ∗i (λs))|ds

≤ 2L
Γ(ψi)

(
ln

ti
ti−1

)ψi−1 ∫ ti

ti−1

1
s
(ln s)−α(|ϕi(s)− ϕ∗i (s)|+ |ϕi(λs)− ϕ∗i (λs)|)ds

≤ 4L
(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1 ∫ ti

ti−1

1
s
(ln s)−α|ϕi(s)− ϕ∗i (s)|ds.

Therefore,

0 ≤ |ϕi(t)− ϕ∗i (t)| ≤ 0, which guarantees that ϕi(t) = ϕ∗i (t) for every t ∈ [ti−1, ti].

This provides the uniqueness of ϕi. Now, according to Remark 1, the uniqueness of the
solution to (3) is derived.

4. Stability of the Solutions in Terms of Ulam–Hyers–Rassias

When analyzing the solutions to boundary value problems for differential equations,
one of the most relevant qualitative results is the study of the stability of the solutions.
Therefore, we consider here the boundary value problem of interest and investigate the
stability of its solutions in terms of Ulam–Hyers–Rassias.
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Definition 6 ([23]). The boundary value problem (3) is considered stable from the perspective of
Ulam–Hyers–Rassias with respect to the function Φ ∈ C([1, T],R+) if there exists ζg ∈ R such
that ∀ξ > 0 and ∀Ψ ∈ C([1, T],R) that satisfies

| HDψ(t)
1+ Ψ(t)− g(t, Ψ(t), Ψ(λt))| ≤ ξΦ(t), t ∈ [1, T],

there exists ϕ ∈ C([1, T],R), which is a solution to the boundary value problem (3) such that

|Ψ(t)− ϕ(t)| ≤ ζgξΦ(t), t ∈ [1, T].

Theorem 4. Let Hypothesis 1 and Hypothesis 2 be satisfied, and we assume that:
Hypothesis 3. There exists Φ ∈ C([ti−1, ti],R+) an increasing mapping, and there exists µΦ > 0,
such that for all t ∈ [ti−1, ti],

H Iψi
t+i−1

Φ(t) ≤ µΦ(t)Φ(t).

Then, the boundary value problem (3) is stable in terms of Ulam–Hyers–Rassias with respect to Φ.

Proof. Consider ε > 0 and Ψ ∈ C([ti−1, ti],R), such that

|HDψi
t+i−1

Ψ(t)− g(t, Ψ(t), Ψ(λt))| ≤ ξΦ(t), t ∈ [ti−1, ti]. (9)

For every i ∈ {1, 2, . . . , n}, let us propose the following definitions

Ψi(t) =

{
0, t ∈ [1, ti−1],
Ψ(t), t ∈ (ti−1, ti].

By integrating both sides of the Equation (9), for t ∈ (ti−1, ti], we obtain∣∣∣∣H Iψi
t+i−1

[
HDψi

t+i−1
Ψi(t)− g(t, Ψi(t), Ψi(λt))

]∣∣∣∣
=

∣∣∣∣∣Ψi(t)−
1

Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, Ψi(s), Ψi(λs))ds

+

(
ln

ti
ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1 1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, Ψi(s), Ψi(λs))ds

∣∣∣∣∣
≤ ξ

1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
Φi(s)ds.

Similarly to previous arguments, the boundary value problem (3) admits a solution ϕ
defined as

ϕ(t) =



ϕ1(t) = ϕ̂1(t), for t ∈ [1, t1],

ϕ2(t) =

{
0, for t ∈ [1, t1],
ϕ̂2(t), for t ∈ (t1, t2],

...

ϕn(t) =

{
0, for t ∈ [1, tn−1],
ϕ̂n(t), for t ∈ (tn−1, T].
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Then, for every t ∈ (ti−1, ti], i ∈ {1, . . . , n}, we have

|Ψ(t)− ϕ(t)| = |Ψi(t)− ϕ̂i(t)|

=

∣∣∣∣∣Ψi(t) +
(

ln
ti

ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1

× 1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, ϕ̂i(s), ϕ̂i(λs))ds

− 1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, ϕ̂i(s), ϕ̂i(λs))ds

∣∣∣∣∣
≤
∣∣∣∣∣Ψi(t) +

(
ln

ti
ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1

× 1
Γ(ψi)

∫ tl

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, Ψi(s), Ψi(λs))ds

− 1
Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1
g(s, Ψi(s), Ψi(λs))ds

∣∣∣∣∣
+

1
Γ(ψi)

∫ t

ti−1

1
s

(
ln

t
s

)ψi−1
|g(s, Ψi(s), Ψi(λs))− g(s, ϕ̂i(s), ϕ̂i(λs))|ds

+
1

Γ(ψi)

(
ln

ti
ti−1

)1−ψi
(

ln
t

ti−1

)ψi−1

×
∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1

|g(s, Ψi(s), Ψi(λs))− g(s, ϕ̂i(s), ϕ̂i(λs))|ds

≤ µΦ(t)ξΦ(t)

+
1

Γ(ψi)

∫ t

ti−1

L
s

(
ln

t
s

)ψi−1

(ln s)−α(|Ψi(s)− ϕ̂i(s)|+ |Ψi(λs)− ϕ̂i(λs)|)ds

+
1

Γ(ψi)

∫ ti

ti−1

1
s

(
ln

ti
s

)ψi−1

(ln s)−αL(|Ψi(s)− ϕ̂i(s)|+ |Ψi(λs)− ϕ̂i(λs)|)ds

≤ µΦ(t)ξΦ(t) +
1

Γ(ψi)

(
ln

ti
ti−1

)ψi−1

×
∫ ti

ti−1

L
s
(ln s)−α(|Ψi(s)− ϕ̂i(s)|+ |Ψi(λs)− ϕ̂i(λs)|)ds

+
1

Γ(ψi)

(
ln

ti
ti−1

)ψi−1

×
∫ tl

ti−1

1
s
(ln s)−αL(|Ψi(s)− ϕ̂i(s)|+ |Ψi(λs)− ϕ̂i(λs)|)ds

≤ µΦ(t)ξΦ(t) +
4L||Ψi − ϕ̂i||Ei

(1− α)Γ(vi)

(
ln

ti
ti−1

)vt−1[
(ln ti)

1−α − (ln ti−1)
1−α
]

≤ µΦ(t)ξ Φ(t) + ρ||Ψ− ϕ||,
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where

ρ = max
i∈{1,2,...,n}

4L
(1− α)Γ(ψi)

(
ln

ti
ti−1

)vi−1[
(ln ti)

1−α − (ln ti−1)
1−α
]
.

Thus,
(1− ρ)||Ψ− ϕ|| ≤ µΦ(t)ξΦ(t).

Therefore, for every t ∈ [1, T], we obtain

|Ψ(t)− ϕ(t)| ≤
µΦ(t)ξΦ(t)

1− ρ
= ζgξ Φ(t).

Then, the boundary value problem (3) is stable in terms of Ulam–Hyers–Rassias with
respect to Φ.

5. Example

In the final section, we provide an example to illustrate the theoretical results included
in this paper. We consider the following boundary value problem

HDψ(t)
1+ ϕ(t) =

tan t
7 3
√

π
cosh(t)ψ(t) +

(ln t)−
1
3

t3 + 7
[ϕ(t) + ϕ(λt)], 1 ≤ t ≤ e,

ϕ(1) = ϕ(e) = 0,
(10)

where

ψ(t) =


13
10

, for t ∈ [1, 2],

17
10

, for t ∈ (2, e],

(ln t)
1
3 |g(t, ϕ1(t), ϕ1(λt))− g(t, ϕ2(t), ϕ2(λt))|

=

∣∣∣∣ 1
t3 + 7

[ϕ1(t) + ϕ1(λt)]− 1
t3 + 7

[ϕ2(t) + ϕ2(λt)]
∣∣∣∣

≤ 1
t3 + 7

(|ϕ1(t)− ϕ2(t)|+ |ϕ1(λt)− ϕ2(λt)|)

≤ 1
8
(|ϕ1(t)− ϕ2(t)|+ |ϕ1(λt)− ϕ2(λt)|).

We consider the following auxiliary boundary value problems
HD

13
10
1+ ϕ1(t) =

tan t
7 3
√

π
cosh(t)

13
10 +

(ln t)−
1
3

t3 + 7
[ϕ1(t) + ϕ1(λt)], 1 ≤ t ≤ 2,

ϕ1(1) = 0, ϕ1(2) = 0,
HD

17
10
1+ ϕ2(t) =

tan t
7 3
√

π
cosh(t)

17
10 +

(ln t)−
1
3

t3 + 7
[ϕ2(t) + ϕ2(λt)], 2 < t ≤ e,

ϕ2(2) = 0, ϕ2(e) = 0.
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Simply, one can check that Hypothesis 2 is valid for L =
1
8

, α =
1
3

, i ∈ {1, 2}:



4L
(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)

1−α − (ln ti−1)
1−α]

=
1

2
(

2
3

)
Γ
(

13
10

)(ln
2
1

) 13
10−1

[(ln 2)
2
3 − (ln 1)

2
3 ]

≈ 0.77662 < 1,
4L

(1− α)Γ(ψi)

(
ln

ti
ti−1

)ψi−1
[(ln ti)

1−α − (ln ti−1)
1−α]

=
1

2
(

2
3

)
Γ
(

17
10

)(ln
e
2

) 17
10−1

[1− (ln 2)
2
3 ]

≈ 0.36102 < 1.

As a result, according to Theorem 3, the above-mentioned boundary value problem for
Hadamard-type fractional equations has exactly one solution given by

ϕ(t) =


ϕ1(t) = ϕ̂1(t), for t ∈ [1, 2],

ϕ2(t) =

{
0, for t ∈ [1, 2],
ϕ̂2(t), for t ∈ (2, e].

Let Φ(t) =
√

ln t,

H Iv1
1+ Φ(t) =

1

Γ
(

13
10

) ∫ t

1

1
s

(
ln

t
s

) 13
10−1√

ln sds

≤ 1

Γ
(

13
10

) ∫ t

1

1
s

(
ln

t
s

) 3
10

ds

≤ 1

Γ
(

23
10

)√ln t := µΦΦ(t).

Thus, Hypothesis 3 is satisfied for Φ(t) =
√

ln t and µΦ(t) =
1

Γ
(

23
10

) ,

H Iv2
2+ Φ(t) =

1

Γ
(

17
10

) ∫ t

2

1
s

(
ln

t
s

) 17
10−1√

ln sds

≤ 1

Γ
(

17
10

) ∫ t

2

1
s

(
ln

t
s

) 7
10

ds

≤ 1

Γ
(

27
10

)√ln t := µΦΦ(t).

Thus, Hypothesis 3 holds for Φ(t) =
√

ln t and µΦ(t) =
1

Γ
(

27
10

) .



Axioms 2023, 12, 1028 18 of 19

Therefore, the variable-order Hadamard pantograph boundary value problem (10)
satisfies the stability property in terms of Ulam–Hyers–Rassias with respect to Φ.

6. Results and Discussion

The variable-order fractional pantograph equation represents a generalized version
of the classical pantograph equation, where the differentiation operator is changed to a
variable-order fractional derivative operator. This equation has gained significant attention
in recent years since it can be used in modeling various real phenomena with complex
dynamics and memory effects.

When comparing the results obtained for the variable-order pantograph fractional
equation with previous ones, several aspects can be considered. Firstly, the inclusion of
non-constant-order fractional derivatives allows more flexibility in modeling systems with
non-local characteristics. Additionally, it provides a richer mathematical framework for
analyzing the behavior of dynamical systems.

Overall, the utilization of variable-order fractional calculus yields a more comprehen-
sive and accurate modeling framework compared to previous approaches. It provides
enhanced capabilities for capturing complex dynamics, accounting for memory effects, and
advancing our understanding of systems with intricate behaviors.

7. Conclusions

The results in this paper are connected to the existence, uniqueness, and stability of
the solutions to a class of boundary value problems associated with nonlinear pantograph
equations with fractional derivatives of the Hadamard type and variable order. In particular,
we have derived the main existence results from the properties of the fractional operators
and Krasnoselskii’s fixed-point theorem. Following this, we have developed some stability
results in terms of Ulam–Hyers–Rassias for the considered boundary value problem. Due
to the importance of variable-order fractional calculus, both from a theoretical and an
applied perspective, we think that the results obtained can be of interest to the research
pursuits of many readers.
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5. Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences;

Springer: Singapore, 2021.

http://doi.org/10.3390/axioms11120742
http://dx.doi.org/10.3934/math.20221071
http://dx.doi.org/10.3390/fractalfract5040178
http://dx.doi.org/10.3390/axioms11110634


Axioms 2023, 12, 1028 19 of 19

6. Etemad, S.; Rezapour, S.; Sakar, F.M. On a fractional Caputo–Hadamard problem with boundary value conditions via different
orders of the Hadamard fractional operators. Adv. Differ. Equ. 2020, 2020, 272. [CrossRef]

7. Stojiljkovic, V.; Ramaswamy, R.; Alshammari, F.; Ashour, O.A.; Alghazwani, M.L.H.; Radenović, S. Hermite–Hadamard Type
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