
Citation: Rodrigues, G.M.; Ortega,

E.M.M.; Cordeiro, G.M. New

Partially Linear Regression and

Machine Learning Models Applied to

Agronomic Data. Axioms 2023, 12,

1027. https://doi.org/10.3390/

axioms12111027

Academic Editors: Stelios Zimeras

and Delfim F. M. Torres

Received: 22 September 2023

Revised: 24 October 2023

Accepted: 30 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

New Partially Linear Regression and Machine Learning Models
Applied to Agronomic Data
Gabriela M. Rodrigues 1 , Edwin M. M. Ortega 1,* and Gauss M. Cordeiro 2

1 Department of Exact Sciences, University of São Paulo, Piracicaba 13418-900, Brazil; gabrielar@usp.br
2 Department of Statistics, Federal University of Pernambuco, Recife 50670-901, Brazil; gauss@de.ufpe.br
* Correspondence: edwin@usp.br

Abstract: Regression analysis can be appropriate to describe a nonlinear relationship between the
response variable and the explanatory variables. This article describes the construction of a partially
linear regression model with two systematic components based on the exponentiated odd log-logistic
normal distribution. The parameters are estimated by the penalized maximum likelihood method.
Simulations for some parameter settings and sample sizes empirically prove the accuracy of the
estimators. The superiority of the proposed regression model over other regression models is shown
by means of agronomic experimentation data. The predictive performance of the new model is
compared with two machine learning techniques: decision trees and random forests. These methods
achieved similar prediction performance, i.e., none stands out as a better predictor. In this sense, the
objective of the research is to choose the best method. If the objective is only predictive, the decision
tree can be used due to its simplicity. For inference purposes, the regression model is recommended,
which can provide much more information regarding the relationship of the variables under study.

Keywords: agronomic experimentation; cross validation; decision tree; maximum likelihood estimation;
random forest; residual analysis

MSC: 62J02; 62G08; 68T05

1. Introduction

Regression analysis is an important statistical tool to investigate the relationship
between two or more variables. This relationship can be linear or nonlinear, which should
be verified adequately. The incorrect assumption of linearity can compromise the reliability
of the hypothesis tests and lead to poorly specified models. Semiparametric models are
an interesting alternative for real data since they can access this relationship with more
flexibility by means of nonparametric functions without imposing stringent conditions such
as the commonly used nonlinear regression models. They enable the investigation of linear
and nonlinear effects of the covariates simultaneously and can access this relationship.
Because of these advantages, these models are receiving more attention in the literature.

Normal linear regression models are generally applied in different areas to model
real data. However, it is known that several phenomena are not always in accordance
with the normal model due to the lack of symmetry of the distribution or the presence
of heavy tails. Another standard assumption in regression analysis is the homogeneity
of error variability. Violation of this assumption may have adverse consequences for the
efficiency of the estimators. Therefore, it becomes important to check heteroscedasticity.
In this paper, we propose a partial linear regression model, where the mean and dispersion
parameters vary across the observations through regression structures, assuming that the
model response follows the exponentiated odd log-logistic normal (EOLLN) distribution.
A special feature of this regression model is that it can model symmetric, asymmetric, and
bimodal data.
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Some models for nonparametric functions can be cited: a semiparametric model for
the median and skewness [1], a skew-normal semiparametric model [2], an exponentiated
sinh Cauchy model [3], and a log-sinh Cauchy model with cure fraction [4]. In the Bayesian
context, the following can be cited: a semiparametric regression model in microbiology [5],
a semiparametric model for tea productivity [6], an extended Maxwell semiparametric
model [7], and an exponentiated power exponential regression [8].

Other alternatives that have been gaining popularity are machine learning
models ([9–12]). Models based on decision trees (DTs) and random forests (RFs), which are
nonlinear and nonparametric techniques, can be more flexible than the usual regression
models. Since nonparametric methods are free of assumptions and do not require prior
knowledge of the functional form of the relation between the response variable and the
covariates, they are also robust to the presence of outliers and can be used with asymmetric
data [13].

Articles related to plantain varieties are important for farmers, researchers, and profes-
sionals in the field. There are several variations of agronomic potential among varieties,
which have been minimally explored ([14–16]). The knowledge of this potential can help to
obtain more sustainable and profitable practices, which are the patterns of growth, a basic
knowledge. Given the scarcity of these studies, we define a new regression model for the
pseudostem height in the planting–flowering period of banana varieties.

Figure 1a displays the scatterplot between the pseudostem height and planting–
flowering period, where these variables do not have a linear relationship. The second
covariate related to the response variable is a variety (a factor with nine levels). The re-
lationship of this variable with the response variables in Figure 1b shows that there is a
heterogeneity of variances and several discrepant points (outliers). In view of these facts,
two statistical tools may be appropriate.

First, a heterogeneous semiparametric partially linear regression model can be a
suitable alternative. This model can adequately study the nonlinear relationship of the
covariate period (continuous) with the response through nonparametric functions together
with the linear effect of the covariate variety (factor). Further, we verify the effects of these
covariates on the dispersion parameter.

Second, the DT and RF machine learning algorithms can be alternatives to predict the
pseudostem height in terms of the covariates. The choice of these algorithms is based on
their simplicity since they do not require prior knowledge of the functional form of the
relation between these covariates and the response variable. Due to their easy interpretation
and computational implementation, models based on decision trees are very attractive
to researchers in areas other than statistics, although they are less precise than the usual
regression models.
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Figure 1. Plantain data: (a) Scatterplot between the pseudostem height and planting–flowering
period and (b) Boxplot of the pseudostem height by variety.
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This article is summarized as follows. Section 2 defines the EOLLN distribution [17],
which can model bimodal data and/or data with positive or negative asymmetry, and
proposes a partially linear regression using P-splines based upon this distribution. The
machine learning methodology is briefly addressed in Section 3. Some simulations are
carried out in Section 4. The utility of the new regression model is illustrated through
agronomic data in Section 5. Some conclusions are addressed in Section 6.

2. The EOLLN Model

The probability density function (pdf) of the EOLLN model is determined from [17]
by taking the normal as baseline

f (y) = f (y; ν, τ, µ, σ) =
ν τφ

(
y−µ

σ

)[
Φ
(

y−µ
σ

)]ντ−1[
1−Φ

(
y−µ

σ

)]ν−1

σ
{

Φ
(

y−µ
σ

)ν
+
[
1−Φ

(
y−µ

σ

)]ν}τ+1 , (1)

where y ∈ R, µ ∈ R is a location, σ > 0 is a scale, and Φ(·) and φ(·) are the cumulative
distribution function (cdf) and pdf of the standard normal, respectively.

Hereafter, let Y ∼ EOLLN(ν, τ, µ, σ) be a random variable with density function (1).
The three special EOLLN models are: OLLN [18] when τ = 1, exponentiated normal
(Exp-N) [19]) when ν = 1, and clearly, normal when ν = τ = 1.

Figure 2 shows the flexibility of the EOLLN density such as bimodality and positive
and negative asymmetry.
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Figure 2. Plots of the EOLLN (ν, τ, µ, σ) density.

The quantile function (qf) of Y is given by (for 0 < u < 1)

Q(u) = QN

{
u1/(ν τ)

u1/(ν τ) + (1− u1/τ)1/ν

}
, (2)

where QN(·) = G−1(·; µ, σ) is the normal qf.

The EOLLN Partially Linear Regression Model

Consider independent observations Y1, · · · , Yn, and the systematic components (for
i = 1, . . . , n)

g1(µi) = ηi1 = xi1
>β1, and g2(σi) = ηi2 = xi2

>β2, (3)

where (for k = 1, 2) xik = (1, xik1, · · · , xikpk
)> is the explanatory variable vector, βk =

(βk0, · · · , βkp)
> is a pk + 1 vector of unknown coefficients, and ηik is the linear predictor.

The strictly monotone functions g1 and g2 are defined from R→ R and R→ R+, respectively.
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The logarithm of the likelihood function for θ = (ν, τ, β>1 , β>2 )
> can be expressed as

l(θ) = n log
(ντ

σ

)
+

n

∑
i=1

log
[

φ

(
yi − µi

σi

)]
+ (ντ − 1)

n

∑
i=1

log
[

Φ
(

yi − µi
σi

)]
+

(ν− 1)
n

∑
i=1

log
[

1−Φ
(

yi − µi
σi

)]
− (4)

(τ + 1)
n

∑
i=1

log
{

Φ
(

yi − µi
σi

)ν

+

[
1−Φ

(
yi − µi

σi

)]ν}
.

We maximize (4) using R (GAMLSS) [20] or (OPTIM), SAS (Proc NLMixed). The initial
coefficients are the values from the fitted normal regression.

The EOLLN partially linear regression model is constructed using P-splines [21] for
the nonlinear effects, and changing Equations (3) by

g1(µi) = ηi1 = xi1
>β1 + h(ti), and g2(σi) = ηi2 = xi2

>β2, (5)

where h(ti) is a smooth function of the explanatory variable ti in an interval [a, b].
Let ω = (θ>, h>)> be the full parameter vector, where h = (h(t0

1), · · · , h(t0
q))
> is the

vector of nonlinear effects. The maximum likelihood estimates (MLEs) are calculated by
maximizing the penalized log-likelihood

lp(ω) = l(θ)− λ

2
h> K h, (6)

where l(θ) is given by (4), λ > 0 is the unknown smoothing parameter, and K is a symmetric
matrix depending on smoothing parameters (for details, see [22]).

The total degrees of freedom of the model is the sum of the degrees of freedom
adopted to all additive and parametric terms as reported in [23]. We use the Penalized
Quasi-Likelihood (PQL) method [24] to estimate the smoothing parameters and the degrees
of freedom of the P-Spline smooth functions. We use the RS algorithm implemented in
the gamlss package in R to maximize (6). The function pb(·) assigns additive terms to
explanatory variables. The PQL method is described in [25].

The residuals can identify the discrepancy between the fitted model and the data, and
the construction of an envelope to better interpret them is reported in [26]. The quantile
residuals (qrs) for the proposed regression model are

qri = Φ−1


Φν̂ τ̂

(
yi−µ̂i

σ̂i

)
{

Φν̂
(

yi−µ̂i
σ̂i

)
+
[
1−Φ

(
yi−µ̂i

σ̂i

)]ν̂
}τ̂

, (7)

where µi and σi follow from Equation (5).

3. Machine Learning Methods

Machine learning is a sub-area of artificial intelligence. It involves supplying machines
with data so that they learn and are able to predict new results when new data are presented.
In this process, different models are fitted to a dataset (training dataset), applied to a
validation dataset (or testing dataset), and compared according to a performance criterion
with the objective of forecasting future units. In traditional regression analysis, the goal is
also to study the relationship between the variables, while assuming that the available data
belong to a random sample.

There are two classes of machine learning: supervised and unsupervised. In the first
class, predictor variables are used to forecast one or more response variables (called labeled
variables). For qualitative responses, this problem is known as classification, while for
quantitative responses it is called prediction. In turn, in unsupervised learning, all of the



Axioms 2023, 12, 1027 5 of 18

variables of the dataset are considered without distinction between predictor and response
variables, and the objective is to describe associations and patterns among them. This study
is focused on regression problems using two supervised algorithms, as described below.

3.1. Decision Trees

The use of decision trees is a nonparametric method that leads to easily interpreted
results. The tree is constructed by recursively subdividing the space generated by the
predictor variables. Each partition is called a node and each final result is called a leaf
(terminal node). This method is based on Classification and Regression Trees (CARTs) [27],
according to the following strategy:

1. Partition the space generated by the predictor variables (X1, · · · , Xp) into m regions
R1, · · · , Rm.

2. For each element belonging to Rj, the predictor of Y (called ŶRj ) will be the mean
between the points with values of X1, · · · , Xp in Rj.

However, the division into many partitions is computationally unfeasible, and besides
this, multiple divisions can rapidly fragment the data, making the dataset insufficient for
the next levels and hampering the learning of the algorithm. In light of this situation, the
decision tree algorithm utilizes a recursive binary splitting (top-down) approach. If the
optimality criterion is to minimize the sum of the square errors (SSE), the steps follow as:

1. Let the predictor variables Xj and their possible cutoff points be t, and consider the
regions, for all pairs (j, t),

R1(j, t) = {X : Xj < t}, R2(j, t) = {X : Xj ≥ t}.

2. Select the pair (j, t) that gives the smallest SSE:

SSE = ∑
i:xi∈R1(j,t)

(yi − ŷiR1)
2 + ∑

i:xi∈R2(j,t)
(yi − ŷiR2)

2.

3. Repeat the procedure only with the data partition until some criterion is satisfied (e.g.,
obtaining a fixed minimum number of elements in each region).

One of the problems associated with decision trees is overfitting, which consists of
obtaining the terminal nodes equal to the number of observations, i.e., each element of
the dataset used is perfectly predicted. The pruning of the trees can resolve this problem,
generating fewer nodes with lower variance and greater interpretability, although this can
slightly increase the bias. A way to prune the tree is to examine the complexity parameter
(CP), which serves to control the size of the tree and corresponds to the smallest increment
in the cost of the model necessary to consider a new subdivision. In general, the goal is to
find the level for which the CP is minimized.

3.2. Random Forests

Random forests (RFs) [28] are generalizations of models based on trees with the objec-
tive of reducing the variability and bias [29] by the insertion of two forms of randomness
in their construction. Various trees are constructed with different bootstrap samples of the
data and each tree is cultivated using a random subset of predictor variables. The trees are
cultivated without pruning and all of the responses of individual trees are combined by
the average to obtain the forecasts of the final output. This combination of results charac-
terizes the algorithm as an ensemble and can be more precise than any single-constituent
model. The RF classifies the predictor variables in decreasing order and evaluates them
simultaneously, but it behaves like a “black box”, because the trees cannot be examined
separately ([30,31]).

Start with a training set with n elements, (xi, yi), i = 1, . . . , n, where xi is a vector of p
predictor variables associated with the ith response variable. Consider the following steps:
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1. Obtain B bootstrap samples with a replacement of size n based on the training data.
In general, the number of elements chosen in each sample is the order 2/3 of the n
elements of the set provided for training. The remaining elements are called out-of-bag
(OOB) samples;

2. Select m < p predictor variables randomly;
3. In the construction of each node of the tree, choose the best predictor among the

selected m;
4. For each unpruned tree, determine the predictor of Y, ŷb(x), where b = 1, . . . , B;
5. Aggregate all of the predictors as ŷB

RF(x) = 1
B ∑B

b=1 ŷb(x).

3.3. Cross-Validation

Cross-validation has the objective of avoiding problems like overfitting and bias, and
of verifying the capacity for the generalization of a model, i.e., its prediction performance
with new data. The aforementioned division of the dataset into two disjoint subsets
(training and testing) is the simplest cross-validation technique, called hold-out. Since
the partition is performed randomly, high variability can be obtained depending on the
training set utilized. The k-fold method [32] can be an interesting alternative.

In this method, n observations from the original sample D are divided into K disjoint
subsets of observations, namely D1, · · · ,DK, each one having approximately equal size mk
such that n = ∑K

k=1 mk. The validation sample is composed of the partition Dk, while the
training sample consists of the other K− 1 partitions not including the kth partition, i.e., the
training set is given by D(−k) = {D1, · · · ,Dk−1,Dk+1, · · · ,DK}. This process is repeated
iteratively K times until each of k = 1, . . . , K partitions is considered a validation sample.
A general recommendation is to use K = 5 or K = 10, where greater values of K imply
larger training samples, and, hence, greater variances and higher computational costs, but
can also generate smaller biases [33].

4. Simulation Study

A Monte Carlo simulation study (for sample sizes n = 50, 150, and 450) evaluates
the consistency of the estimates in the proposed regression model, and the empirical
distribution of the qrs is determined by the RS algorithm in the gamlss package. We
generate r = 1000 samples from Equation (2) with two covariates x1 ∼ Binomial(1, 0.5) and
t ∼ Uniform(0, 1) under two scenarios:

Scenario 1 (homogeneous variance and cubic relationship): The first systematic com-
ponent is µ = β11x1i + h(ti), where h(ti) = 2ti + sin(2πti) to obtain a cubic relationship.
The true values for the generation process are β11 = 0.4, log(σ) = −1.6, log(ν) = 0.5 and
log(τ) = 0.6.

Scenario 2 (heterogeneous variance and quadratic relationship): The second systematic
component is µ = β11x1i + h(ti) and σ = exp(β20 + β21x1i + β22ti), respectively, where
h(ti) = sin(πti) to obtain a quadratic relationship. The true values in the generation process
are β11 = 0.6, β20 = −1.3, β21 = 1.1, β22 = 0.9, log(ν) = 0.4 and log(τ) = 0.5.

The following steps are carried out:

(i) Obtain x1i ∼ Binomial(1, 0.5) and ti ∼ Uniform(0, 1);
(ii) Calculate µ and σ from their respective systematic components in each scenario;
(iii) Set ui ∼ Uniform(0, 1);
(iv) Calculate the observations from Equation (2) using the previous steps;
(v) Determine the qrs.

The average estimates (AEs), biases, and mean squared errors (MSEs) are found
for each replication. Table 1 confirms that the AEs converge to the true parameters and
the biases and the MSEs decay if n increases. So, the estimators are consistent. The
plots in Figures 3 and 4 reveal that the generated smoothed curves approximate the true
curve when n increases, i.e., the estimator of the nonparametric part is also consistent.
We emphasize that the quadratic and cubic forms are only used to illustrate possible
relationships between variables. The model has the flexibility to accommodate different
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nonlinear relationships without the need to restrictively define its format. The normal
probability plots in Figures 5 and 6 reveal that the empirical distribution of the qrs tends to
the standard normal distribution.

Table 1. Findings from the simulated new regression model.

Scenario 1 n = 50 n = 150 n = 450

ω True AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

β11 0.4 0.40 −0.00 0.00 0.40 −0.00 0.00 0.40 −0.00 0.00
log(σ) −1.6 −1.71 −0.11 0.04 −1.64 −0.04 0.01 −1.62 −0.02 0.00
log(ν) 0.5 0.54 0.04 0.04 0.51 0.01 0.00 0.50 0.00 0.00
log(τ) 0.6 0.63 0.03 0.15 0.61 0.01 0.02 0.61 0.01 0.00

Scenario 2 n = 50 n = 150 n = 450

ω True AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

β11 0.6 0.59 −0.01 0.04 0.59 −0.01 0.01 0.60 −0.00 0.00
β20 −1.3 −1.50 −0.20 0.15 −1.37 −0.07 0.03 −1.32 −0.02 0.01
β21 1.1 1.21 0.11 0.08 1.13 0.03 0.02 1.11 0.01 0.01
β22 0.9 0.96 0.06 0.20 0.92 0.02 0.05 0.90 0.00 0.02

log(ν) 0.4 0.40 −0.00 0.03 0.40 −0.00 0.01 0.39 −0.01 0.00
log(τ) 0.5 0.53 0.03 0.11 0.52 0.02 0.02 0.50 0.00 0.01

(a) (b) (c)

Figure 3. Scenario 1: (a) n = 50, (b) n = 150, (c) n = 450.

(a) (b) (c)

Figure 4. Scenario 2: (a) n = 50, (b) n = 150, (c) n = 450.
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(a) (b) (c)

Figure 5. Normal probability plots for Scenario 1: (a) n = 50, (b) n = 150, (c) n = 450.

(a) (b) (c)

Figure 6. Normal probability plots for Scenario 2: (a) n = 50, (b) n = 150, (c) n = 450.

Predictive Performance

For Scenarios 1 and 2, we verify the predictive capacity of the EOLLN model, decision
trees, and random forests. Each of the 1000 samples is divided into training and validation
sub-samples, BY approximately 70% and 30%, respectively. The models are fitted to the
training data, and the coefficient of determination (R2), root mean square error (RMSE),
and variance accounted for (VAF) are calculated using the test data. The coefficient R2

evaluates the accuracy of the model fitting with values between 0 and 1, where the higher
values mean the stronger explanatory power. The RMSE indicates the prediction errors, i.e.,
it shows discrepancies between predicted and observed values, where values closer to zero
are considered adequate. The VAF is typically adopted to verify if the predictive model is
rigorous [34]. The more accurate the prediction is, the VAF of the predictive model will be
closer to 100 (i.e., lower variance). These metrics are:

R2 =
∑n

i=1 y2
i −∑n

i=1(yi − ŷi)
2

∑n
i=1 y2

i
, (8)

RMSE =

[
1
n

n

∑
i=1

(yi − ŷi)
2

]1/2

, (9)

VAF = 100×
[

1− var(yi − ŷi)

var(yi)

]
, (10)

where yi’s are the observed values for the validation set, n is its size, and ŷi’s are the
predicted values.

These values can be noted in the boxplots for the 1000 replicates of each sample size in
Figures 7–9. The results are given below:

• All models perform worse for Scenario 2, which can be justified by the presence of
heterogeneous variance;

• All metrics improve for larger sample sizes, for all models, and in both scenarios;
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• For the first scenario, better performance of the EOLLN regression model is notable,
i.e., higher R2s, lower RMSEs, and higher VAFs;

• On the other hand, for the second scenario, we can observe similar results for both models.
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Figure 7. Boxplots of coefficient of determination for Scenarios: (a) 1 and (b) 2.
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Figure 8. Boxplots of RMSE for Scenarios: (a) 1 and (b) 2.
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Figure 9. Boxplots of VAF for Scenarios: (a) 1 and (b) 2.

5. Application: Pseudostem Height Data

Consider a dataset from a homogeneous experimental design of 3000 m2 conducted in
the African Center for Banana and Plantain Researches (CARBAP) experimental station
in Cameroon by plantain researchers, where nine varieties of plantain-like hybrids are
found interesting and promising based on characteristics such as the structure of the
bunch or tolerance to disease; they are: Batard (BA)—Natural and Giant; Big Ebanga
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(BE)—Natural and Medium; CRBP39 (CR)—Hybrid-a and Medium; D248 (DD)—Hybrid-a
and Medium; D535 (DC)—Hybrid-a and Medium; Essong (ES)—Natural and Giant; French
Clair (FC)—Natural and Medium; FHIA21 (FH)—Hybrid-b and Medium; and Mbouroukou
no. 3 (MB)—Natural and Medium, where hybrid-a was obtained from the CIRAD-CARBAP
breeding collaborative program and hybrid-b from the FHIA breeding program.

The experiment was conducted from the plantation (on 29 July 2009) on the harvest of
the first crop cycle of each variety; the last mother plants were harvested in February 2011.
So, this is mostly mother-plant data.

The completely randomized experimental design described in [35] has the pseudostem
height as the response and variety as a single factor. Five replicates of each variety were
considered, totaling 45 plants per variety. Cropping conditions such as mineral nutrition,
fertilization, and irrigation are not taken into account. The pseudostem height was mea-
sured between the soil and the bottom of the “V” formed by the two leaves last emitted in
the stage “complete flowering” or “flowering”, i.e., the day when the latest fertile hand has
appeared. The dataset includes n = 355 observations of height, so not all varieties have
records of the flowering period. So, the variables under study are:

• yi: pseudostem height (in cm);
• ti: planting–flowering period (in days);
• xi1: varieties (i = 1, . . . , 355).

The covariate xi1 has nine levels, and then eight dummy variables (dij, j = 1, . . . 8)
are defined.

Complementing the descriptive analysis shown in the introduction (Figure 1), Figure 10
displays the scatter plot of the pseudostem height as a function of days per variety.
The varieties achieved complete flowering on different days, especially the ES variety.
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Figure 10. Scatterplot of the pseudostem height and planting–flowering period by variety.

5.1. The EOLLN Partially Linear Regression Model

The proposed regression model is compared with three sub-models (OLLN, Exp-
N, and Normal) and the partially linear regression model based on the skew-normal
distribution [2], whose pdf is (y ∈ R)

f (µ, σ, ν) =
2
σ

φ
(

y−µ
σ

)
Φ
(

ν
y−µ

σ

)
, (11)

where µ ∈ R, σ > 0 and ν ∈ R.
The following systematic components are defined (for i = 1, . . . , 355):

µi = β10 +
8

∑
j=1

β1jdij + h(ti) and σi = exp

(
β20 +

8

∑
j=1

β2jdij

)
. (12)
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Note that the covariate x1 (varieties) has nine levels (BA, BE, CR, DC, DD, ES, FC,
FH, MB). Then, we create eight dummy variables (d1, · · · , d8) taking the first level of
the BA variety as a reference. For example, the dummy variable d1 measures the effect
of the BA variety level in relation to the BE level. The other dummy variables have
similar interpretations.

Two well-known statistics (denoted by acronyms) and the global deviance (GD) are
reported in Table 2. The new regression model gives the lowest values of these statistics,
and then it can be chosen as the most appropriate to explain the pseudostem height.
The likelihood ratio (LR) test for nested models provides p-values < 0.001, thus confirming
our findings.

Table 2. Adequacy measures.

Model AIC BIC GD

EOLLN 3244.21 3339.18 3195.17
OLLN 3262.07 3349.77 3216.77
Exp-N 3258.24 3339.55 3216.24

Normal 3285.22 3362.66 3245.22
Skew-Normal 3287.28 3368.60 3245.28

We move up to the analysis from the fitted EOLLN partially linear regression model,
where the maximum likelihood estimates (MLEs), standard errors (SEs), and p-values are
given in Table 3. The nonlinear effects (ti) will be interpreted at the end through Figure 11a.
Figure 11 shows the partial effects of the day variable on the parameters µ and σ. We
conclude that the average of the pseudostem height is constant until (approximately) day
300. After this day, this average grows as the days go by; see Figure 11a. The variability of
the pseudostem height grows when the days pass; see Figure 11b.

Table 3. Findings from the new fitted regression model.

ω MLEs SEs p-Values ω MLEs SEs p-Values

β10 399.1348 13.0847 <0.01 β20 3.2329 0.4815 <0.01
β11 −46.6931 5.6440 <0.01 β21 0.2657 0.1917 0.1667
β12 −80.6066 5.4382 <0.01 β22 0.3085 0.2379 0.1955
β13 −50.6933 6.0629 <0.01 β23 0.4544 0.2568 0.0776
β14 −133.6910 4.7972 <0.01 β24 −0.2778 0.2134 0.1939
β15 11.3575 4.5705 0.0134 β25 −0.7994 0.2888 <0.01
β16 −73.0926 5.0582 <0.01 β26 0.1906 0.2222 0.3916
β17 −104.5167 4.8448 <0.01 β27 −0.0084 0.2068 0.9674
β18 −42.5077 4.9276 <0.01 β28 0.0087 0.1826 0.9621

log(ν) 1.9281 0.0447 <0.00001
log(τ) −0.7528 0.0493 <0.00001
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Figure 11. The terms of the new fitted regression model for (a) µ and (b) σ.

The qrs for the fitted regression models are compared by worm plots in Figure 12,
thus supporting that our proposal yields the best fit. Figure 13 shows that the qrs are
randomly distributed around zero and the majority of them are in the interval [−3,3].
In turn, Figure 13b indicates that nearly all points are within the simulated envelope.
So, the new regression model is adequate. Further, Figure 14 provides the histograms with
the marginally adjusted densities, and Figure 14b displays the estimated and empirical
cumulative functions for each level of the variety. Hence, the proposed regression model
suitably captures the distribution of this response variable.
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Figure 12. Worm plots: (a) EOLLN, (b) OLLN, (c) Exp-N, (d) Normal.
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Figure 14. (a) Histogram of the pseudostem height with estimated densities and (b) Empirical and
estimated cumulative functions by variety.

Finally, some conclusions can be inferred from Table 3:

• Interpretations for µ:

– All varieties are significant in terms of mean pseudostem height compared to
BA variety.

– Only the ES variety (β15) has positive effects in relation to the BA variety, i.e., its
mean is higher. Therefore, the other varieties have negative effects.

– From Table 4, referring to the multiple comparisons, we note that there is no
significant difference between the varieties DC-BE, FC-CR, and MB-DC for a
5% significance level. For other varieties, there is a significant difference. These
results can be visualized graphically in Figure 14b.

• Interpretations for σ:

– Only the ES variety (β25) is significant at a 5% level of significance, i.e., its vari-
ability differs from the BA variety.

– From the multiple comparisons in Table 4, it is noted that there is a signifi-
cant difference between the DD-BE, ES-BE, DD-CR, ES-CR, DD-DC, ES-DC, MB-
DC, FC-DD, FC-ES, FH-ES, and MB-ES varieties in relation to the pseudostem
height variability for a 5% significance level. For other varieties, there is no
significant difference.

– Again, these results are consistent with the descriptive analysis.

Table 4 reveals comparisons between all varieties from which similar interpretations
to these can be made.

Table 4. Comparing varieties according to the new regression model.

Hypotheses H0
Tests for the Location µ Tests for the Scale σ

MLEs SEs p-Values MLEs SEs p-Values

BE-BA −46.693 5.644 <0.01 0.266 0.192 0.167
CR-BA −80.607 5.438 <0.01 0.309 0.238 0.195
DC-BA −50.693 6.063 <0.01 0.454 0.257 0.078
DD-BA −133.691 4.797 <0.01 −0.278 0.213 0.194
ES-BA 11.357 4.570 0.013 −0.799 0.289 <0.01
FC-BA −73.093 5.058 <0.01 0.191 0.222 0.392
FH-BA −104.517 4.845 <0.01 −0.008 0.207 0.967
MB-BA −42.508 4.928 <0.01 0.009 0.183 0.962
CR-BE −33.913 5.194 <0.01 0.043 0.203 0.833
DC-BE −4.000 6.011 0.506 0.189 0.232 0.417
DD-BE −86.998 4.476 <0.01 −0.543 0.174 <0.01
ES-BE 58.051 5.943 <0.01 −1.065 0.316 <0.01
FC-BE −26.399 5.046 <0.01 −0.075 0.192 0.696
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Table 4. Cont.

Hypotheses H0
Tests for the Location µ Tests for the Scale σ

MLEs SEs p-Values MLEs SEs p-Values

FH-BE −57.824 5.017 <0.01 −0.274 0.180 0.128
MB-BE 4.185 5.009 0.404 −0.257 0.141 0.070
DC-CR 29.913 5.615 <0.01 0.146 0.266 0.584
DD-CR −53.084 3.854 <0.01 −0.586 0.213 <0.01
ES-CR 91.964 5.862 <0.01 −1.108 0.364 <0.01
FC-CR 7.514 4.580 0.102 −0.118 0.231 0.610
FH-CR −23.910 4.596 <0.01 −0.317 0.224 0.158
MB-CR 38.099 4.563 <0.01 −0.300 0.191 0.116
DD-DC −82.998 4.956 <0.01 −0.732 0.245 <0.01
ES-DC 62.051 6.356 <0.01 −1.254 0.357 <0.01
FC-DC −22.399 5.485 <0.01 −0.264 0.258 0.307
FH-DC −53.823 5.463 <0.01 −0.463 0.248 0.063
MB-DC 8.186 5.453 0.134 −0.446 0.223 0.046
ES-DD 145.048 5.295 <0.01 −0.522 0.348 0.135
FC-DD 60.598 3.746 <0.01 0.468 0.206 0.024
FH-DD 29.174 3.776 <0.01 0.269 0.198 0.174
MB-DD 91.183 3.731 <0.01 0.286 0.159 0.073
FC-ES −84.450 5.379 <0.01 0.990 0.336 <0.01
FH-ES −115.874 5.074 <0.01 0.791 0.312 0.012
MB-ES −53.865 5.204 <0.01 0.808 0.316 0.011
FH-FC −31.424 4.366 <0.01 −0.199 0.212 0.348
MB-FC 30.585 4.359 <0.01 −0.182 0.180 0.313
MB-FH 62.009 4.300 <0.01 0.017 0.168 0.919

5.2. Machine Learning Models

The R software is also employed for the machine learning models. The decision trees
are found with the rpart function of the rpart package and the random forests with the
randomForest function of the randomForest package by defining the hyperparameters
ntree = 500 and mtry = 1. The argument ntree denotes the number of trees to be culti-
vated in the forest, and mtry is the number of predictor variables to be considered in the
construction of each node in the tree.

We perform the cross-validation method, described in Section 3.3, for K = 5 and
K = 10. The K partitions are generated and the DT, RF, and EOLLN partially linear
regression models are fitted to the training set.

For each model and K value, the average performance metrics (Equations (8)–(10)) are
reported in Table 5, from which the results follow:

1. Regression model ×machine learning models: there are small improvements of the
DT and RF models regarding R2 and RMSE, but no improvement with regard to VAF;

2. DT × RF: comparison of the two machine learning models reveals no significant
improvements when changing from DT to RF;

3. K = 5× K = 10: with regard to the values of K, no significant difference occurred in
the values of these metrics.

For both comparisons, these only slightly varying results can be related to the small
number of covariates. The values of p and n influence the performance of the machine
learning models, as noted by [36], who studied the performance of the models based on
trees according to the sizes of these quantities.

The OOB error rates stabilized quickly, i.e., with a few trees for both values of K.
This fact is again related to the small number of covariates, since one of the forms of
randomness of the algorithm is to consider arbitrary variables at each node of the tree.
An interesting result that can be obtained with RF is the importance plot. An increase in
the percentage of the mean squared error (MSE) indicates greater importance. Figure 15
shows the importance of the variables planting–flowering days and varieties in terms of
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plantain pseudostem height. It can be seen that the variable variety is most important in
predicting pseudostem height.

Further, we fit the complete decision tree model shown in Figure 16. Each node of the
tree indicates the corresponding value of its function and the percentage of data in that
node. The initial node gives the general average of the response variable. The need for
pruning through the CP is checked, but it turns out not necessary in practice. We obtain six
decision rules:

1. If varieties = DD or FH and days < 236 then ŷi = 304.1667;
2. If varieties = DD or FH and days ≥ 236 then ŷi = 329.8936;
3. If varieties = CR or FC then ŷi = 358.9438;
4. If varieties = BE or DC or MB then ŷi = 388.6283;
5. If varieties = BA or ES and days < 369.5 then ŷi = 440.5636;
6. If varieties = BA or ES and days ≥ 369.5 then ŷi = 496.9333.

We note that these rules agree with the descriptive analysis of the data. The scatterplot
in Figure 10 shows that these rules hold for the variables and values of the days. Figure 14b
also shows the agreement between the rules and the empirical cumulative functions of the
varieties.

Table 5. Predictive performance of the EOLLN models, decision tree, and random forest according to
the metrics: R2, RMSE, and VAF.

Model RMSE R2 VAF Model RMSE R2 VAF

DT (K = 5) 25.395 0.763 76.75 DT (K = 10) 25.672 0.752 75.918
RF (K = 5) 26.055 0.749 75.535 RF (K = 10) 25.977 0.742 74.904

EOLLN (K = 5) 29.089 0.683 76.359 EOLLN (K = 10) 28.667 0.685 76.714

(a) (b)

Figure 15. Plots of the variable importance for (a) K = 5 and (b) K = 10.

The objectives of the two proposed methods are very different, so the researcher’s
purpose should be considered in choosing the best model. If the objective is to make
predictions, the decision tree model can be the best, since it is much simpler. The decision
rules for the prediction can be obtained easily and consulted rapidly. The RF is not
recommended due to its greater complexity and absence of significant improvement in
relation to the DT.

On the other hand, for researchers interested in making inferences along with pre-
dictions, we recommend the proposed regression model. The EOLLN partially linear
regression model has the potential to supply information with regard to the variables
studied, unlike the machine learning model. Besides this, it obtains equally satisfactory
prediction results, so it can be used for both objectives.
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Figure 16. Decision tree for Pseudostem height data.

6. Conclusions

This paper introduced a new partially linear regression model with the exponenti-
ated odd log-logistic normal (EOLLN) distribution. It was motivated by an agronomic
experiment involving banana varieties, where a nonlinear relationship occurred between
the days from planting–flowering and the height of the pseudostem (response variable).
Further, we noted heterogeneous variances for the covariable plant variety. The new
EOLLN partially linear regression model was a suitable alternative to study the nonlinear
relationship between the variables through nonparametric functions, and also to verify the
effect of the variability of the varieties on the plant height through the parameter related to
the variance of the distribution. We compared its predictive capacity with two machine
learning algorithms: decision trees and random forests.

Additionally, the machine learning models were interesting alternatives to predict
the response variable, because they did not need prior knowledge of the functional form
between the response variable and the covariates. All of the methods obtained similar
prediction performance, i.e., none stood out as the best predictor. The random forests
achieved a stable OOB error rate with only a few trees, and the covariable variety stood out
as the most important predictor of the plantain pseudostem height. However, although it
is more robust than the decision tree model, it did not obtain better results regarding the
predictive capacity of new values.

In this respect, for those wanting to make predictions, the decision tree model is
recommended due to its simplicity. In turn, for researchers wanting to make inferences,
we recommend the new regression model, which provides more information regarding
the relationship of the variables under consideration, besides also having good prediction
performance. The EOLLN partially linear regression model provides good inferences such
as which varieties are significant regarding the mean and variance of the response, besides
comparisons between the varieties, i.e., which of them differs from each other.

We carried out a simulation study under two scenarios that supply cubic and quadratic
relations between the variables. The results showed that the new regression model was
adequate to capture different nonlinear forms and provided consistent maximum likelihood
estimators (MLEs).

In future works, we recommend analyzing other banana plant response variables
due to the scarcity of studies related to this plant. We also suggest this model to analyze
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other datasets and problems in other areas of knowledge, where variables have a nonlinear
relationship or the response variable is bimodal and/or skewed. Finally, we suggest
comparing the new model with those of the machine learning methods to analyze datasets
with a larger number of covariates (high-dimensional datasets).
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