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Abstract: In this study, we utilize the properties of the Sumudu transform (SuT) and combine it
with the homotopy perturbation method to address the time fractional Navier-Stokes equation. We
introduce a new technique called the homotopy perturbation Sumudu transform Strategy (HPSuTS),
which combines the SuT with the homotopy perturbation method using He’s polynomials. This
approach proves to be powerful and practical for solving various linear and nonlinear fractional
partial differential equations (FPDEs) in scientific and engineering fields. We demonstrate the
efficiency and simplicity of this method through examples, showcasing its ability to approximate
solutions for FPDEs. Additionally, we compare the numerical results obtained using this technique
for different values of alpha, showing that as the value moves from a fractional order to an integer
order, the solution becomes increasingly similar to the exact solution. Furthermore, we provide the
tabular representations of the solution for each example.

Keywords: homotopy perturbation strategy; Sumudu transform; approximate solution; fractional
Caputo derivatives
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1. Introduction

Fractional calculus (Fc), an extension of traditional integer-order calculus, has gained
significant attention across various scientific and engineering disciplines due to its capa-
bility to model complex phenomena with long-range memory and anomalous diffusion.
This mathematical discipline dates back to the 17th century, with pioneers like L’Hôpital
and Leibniz exploring the idea of Fractional derivative (Fd). However, it was Liouville and
Riemann in the late 19th century who laid the rigorous foundations of Fc [1,2]. Fc finds
applications in various scientific and engineering fields, including physics, engineering,
finance, biology, and signal processing. It allows the modeling of complex phenomena
with long-range memory and anomalous diffusion, which cannot be adequately captured
by traditional integer-order calculus [1,3–5]. Fc has emerged as a robust mathematical
framework that extends the conventional integer-order calculus to accommodate deriva-
tives and integrals of non-integer orders. This extension allows for the description and
analysis of complex dynamical systems and processes that exhibit behaviors beyond the
scope of traditional calculus. Over the past few decades, Fc has found applications in
various scientific and engineering disciplines, such as physics, biology, economics, and
engineering, enabling researchers to model intricate phenomena with long-range memory
and anomalous diffusion [3,6–8].

The study of FPDEs has gained significant attention in recent years. These equations
are frequently encountered in various fields such as fluid mechanics, viscoelasticity, biology,
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engineering, and physics [9,10]. However, most of these equations do not have exact
analytical solutions, necessitating the use of approximation and numerical techniques.
Several numerical methods have been developed to tackle these equations, including the
Adomain decomposition method [11], Homotopy analysis method [12], Variational iteration
method [13], and Homotopy perturbation method [14–17]. The homotopy perturbation
method [18] proposed by He, has proven to be a useful tool for obtaining exact and
approximate solutions for both linear and nonlinear FPDEs.

One of the main advantages of the homotopy perturbation method is that it does
not require a small parameter or linearization. The solution procedure is straightforward
and only a few iterations are needed to achieve highly accurate solutions that are valid
for the entire solution domain. Moreover, the solution is expressed as the summation
of an infinite series, which is expected to converge to the exact solution. The Sumudu
transform (SuT) introduced by Watugala in 1994, has emerged as a valuable mathematical
tool for transforming a wide range of integral and DEs into algebraic equations and thus
simplifying their solution process [19]. This transform has proven particularly useful in the
context of Fc, where it enables the conversion of FDEs into algebraic forms, facilitating the
application of various solution methods. The SuT has gained prominence recently due to its
versatility and effectiveness in handling complex mathematical problems across different
scientific and engineering disciplines. The SuT, known for its scale and unit-preserving
properties, eliminates the need for introducing a new frequency domain. It has been
demonstrated that the SuT maintains the units of the original problem, making it a valuable
tool for solving problems without relying on the frequency domain [20]. One of the notable
strengths of the SuT is its applicability to problems involving physical dimensions. This
transform, being linear in nature, possesses the ability to preserve linear functions, thereby
ensuring that units remain unchanged. This characteristic is particularly advantageous
when solving problems that involve physical dimensions [19,21]. When integrated with
the HPS, the resulting HPSuTS offers a comprehensive approach for solving FDEs. The
SuT aids in simplifying the Fc operations, and the HPS provides an iterative framework
for obtaining accurate approximate solutions. This combination of the SuT and the HPS
has gained recognition for its ability to handle complex problems involving Fc, enabling
researchers to explore a wide range of scientific and engineering applications [19].

In [22], Hamed, Yousif, and Arbab presented a novel approach for solving Schrödinger
space-time fractional equations through the integration of the HPS with the SuT. The
researchers aimed to obtain both analytic and approximate solutions for these complex
equations. The proposed method demonstrated its efficacy in providing accurate solutions,
highlighting its potential in handling the challenges posed by Schrödinger space-time
fractional equations. In his work, Khader explored the application of the HPSuTS to solve
nonlinear heat-like fractional equations. The study aimed to address the challenges posed
by these intricate equations by combining the HPS with the SuT technique. By doing so,
the researcher sought to derive approximate solutions that capture the nonlinear dynamics
of the equations [23]. By exploring the domain of mathematical challenges, recent studies
have showcased innovative approaches to overthrow the complexities of nonlinear FPDEs.
Many researchers have solved different equations with the help of HPSuTS, such as heat
and wave-like equations [24], Black-Scholes European option pricing equations [25] and
references therein.

Recently, El-Shahed and Salem generalized the traditional Navier-Stokes equations by
introducing a fractional derivative of order α in place of the classical time derivative. They
utilized Laplace transform, Fourier sine transform, and finite Hankel transforms to derive
approximate solutions for three specific cases [26]. The most important advantage of using
fractional differential equations in these and other applications is their non-local property.
It is well known that the integer order differential operator is a local operator but the
fractional order differential operator is non-local. This means that the next state of a system
depends not only upon its current state but also upon all of its historical states. This is more
realistic and it is one of the main reason why fractional calculus has become more and more
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popular. However, due to the nonlinearity of the Navier-Stokes Time-Fractional Equation
(NS-TFEs), there is currently no universally known method for analytically solving this
equations. Obtaining an exact solution for this equations is rare and typically requires
assumptions about the fluid’s state and consideration of a simple flow pattern configuration.
Subsequently, various numerical methods have been employed to study this equation,
such as the Adomian decomposition method [27], Homotopy analysis method [28], and
Modified Laplace decomposition method [29].

In this paper, we will focus on the unsteady flow of a viscous fluid in a tube. The
main objective of this research is to expand the applications of the HPS in combination
with the SuT to investigate the approximate solution of NS-TFEs in cylindrical frame
of reference. Additionally, to demonstrate the accuracy of this suggested technique, we
have compared our results with already established results. The results indicates that
as the values of α approaches to 1, the solution becomes more similar to exact solution.
Moreover, we have provided the tabular representation of the approximate solution for
various fractional order.

The structured of this study is as follows. A comprehensive discussion of the essential
concepts of Fc is provided in Section 2. The model formulation and applicability are
addressed in detail in Section 3. The implementation of the suggested technique and its
numerical solution is discussed in Section 4. Finally, concluding remarks are given in
Section 5.

2. Revealing Fundamental Notions

Fc, a branch of mathematics extending traditional calculus to non-integer orders, has
gained prominence for its ability to model complex phenomena with long-range memory
and anomalous diffusion. This section explores the concept of fractional Caputo derivatives
(FCd), introduces the SuT as a powerful mathematical tool, and discusses their interplay
with related properties.

2.1. Definition

A mathematical function known as the “Gamma function” generalizes the factorial
sense to real and complex numbers. It is denoted by Γ(z), where z is a complex number.
The gamma function is defined as an integral over the positive real numbers [1,2,30]:

Γ(z) =
∫ ∞

0
ηz−1e−η dη, (1)

where the real part of z must be greater than zero for the integral to converge.

2.2. Definition

The Riemann–Liouville (R–L) integral operator of fractional order is a mathematical
operation that extends the concept of integration to non-integer orders. Given a real
function f (ξ) and a parameter α > 0, the R–L integral operator of fractional order 0 Iα is
defined as follows [2,30,31]:

0 Iα f (ξ) =
1

Γ(α)

∫ ξ

0
(ξ − η)α−1 f (η)dη,

where Γ(α) is the gamma function, and the integral is taken from η = 0 to η = ξ.

2.2.1. Properties of Riemann–Liouville Fractional Integral Operator
2.2.2. Linearity: [20,30,31]

For any real constants a and b, and functions f (ξ) and g(ξ), we have

0 Iα(a f (ξ) + bg(ξ)) = a 0 Iα f (ξ) + b 0 Iαg(ξ). (2)
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2.2.3. Scaling Property: [20,30,31]

0 Iα(ξβ f (ξ)) =
Γ(β + 1)

Γ(β + α + 1) 0 Iα+β f (ξ), where β > −1 (3)

2.2.4. Connection with Derivatives

If f (ξ) has n continuous derivatives on (0, ξ) and n− 1 continuous derivatives at ξ = 0,
then 0 In f (ξ) is the nth derivative of the nth R–L integral of fractional order of f (ξ) [1,2,30].

2.2.5. Inverse Property

The R–L integral of fractional order is invertible, and its inverse is given by [1,2,30],

0 I−α f (ξ) =
1

Γ(α)

∫ ∞

ξ
(η − ξ)α−1 f (η)dη, where α > 0 (4)

2.2.6. Composition Rule: [2,30]

If α > β > 0, then
0 Iα(0 Iβ f (ξ)) = 0 Iα+β f (ξ) (5)

The R–L integral of fractional order is a fundamental tool in Fc, allowing the extension
of traditional calculus concepts to non-integer orders and enabling the study of various
complex systems and phenomena.

2.3. Definition

The FCd is a mathematical notion that extends the concept of classical derivative to
fractional orders. It is often used in Fc to describe the behavior of functions involving Fd.
The FCd of a function f (ξ) of order α, denoted by CDα f (ξ), is defined as follows [2,30]:

CDα
f (ξ) =

1
Γ(n− α)

∫ ξ

a
(ξ − η)n−α−1 dn

dηn f (η) dη, n− 1 < α ≤ n (6)

where n is the smallest integer greater than α, a is a lower limit of integration, and Γ
represents the gamma function. The FCd has an important relation to ordinary derivatives.
When we take α as a positive integer, i.e., α = n. In this case, the FCd reduces to the nth
ordinary derivative:

CDn
f (ξ) =

dn

dxn f (ξ).

However, for non-integer values of α, the FCd involves both the fractional order and an
integral of the ordinary derivatives. This integral term accounts for the “memory” of the
function f (ξ), capturing the effect of past values of the function up to n-th order in the
fractional differentiation process.

2.4. Definition

The Mittag-Leffler function (M-LF) is a special function that arises in various areas of
mathematics, including Fc, complex analysis, and probability theory. It is represented as
Eα,β(z) and is defined by the following infinite series [2,30]:

Eα,β(z) =
∞

∑
m=0

zm

Γ(αm + β)
, (7)

where z is a complex number, α and β are real or complex parameters, and Γ is the gamma
function. The M-LF generalizes the exponential function and is closely related to Fc. It
exhibits behavior that interpolates between exponential decay and algebraic decay, making
it suitable for modeling processes with memory or anomalous diffusion.
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2.5. Some Properties of the Mittag-Leffler Function
2.5.1. Fractional Derivatives: [2,30]

The M-LF is often used to represent Fd in Fc. Specifically, DαEα,β(z) = z−αEα,α(−z),
where Dα represents a Fd of order α.

2.5.2. Series Convergence: [2,30]

The M-LF converges for all complex z and α, β such that Re(α) > 0 and Re(β) ≥ 0.

2.5.3. Special Cases: [2,30]

When α = 1 and β = 1, the M-LF reduces to the ordinary exponential function,
E1,1(z) = ez.

2.6. Definition

The SuT [19,22,32] of a function f (η) defined for η ≥ 0 is denoted as Fs(ν). It involves
integrating f (η) multiplied by an exponential term exp

(
− η

ν

)
over the entire non-negative

time domain:

S [ f (η)](ν) = Fs(ν) =
∫ ∞

0

1
ν

exp
(
−η

ν

)
f (η)dη, (8)

This transform provides insight into the function’s behavior in a new parameter ν-domain,
aiding in the solution of various mathematical problems, including integral and differential
equations, with applications across diverse fields. Now, let us recall some interesting
special properties of the Sumudu Transform that are necessary in the further development
of this study.

2.6.1. Constant Function

The SuT of the constant function f (η) = 1 is equal to 1 [33,34]:

S [1](ν) = 1.

2.6.2. Exponential Function: [33,34]

For positive n, the SuT of the function f (η) = ηn is given by:

S [ηn](ν) = νnΓ(n + 1).

2.6.3. Exponential Decay: [33,34]

The SuT of the exponential decay function f (η) = eaη is given by:

S [eaη ](ν) =
1

1− aν
.

2.6.4. Linearity: [25,33,34]

The SuT obeys the linearity property:

S [α f (ξ) + βg(ξ)](ν) = αS [ f (ξ)](ν) + βS [g(ξ)](ν).

For further properties and details about the SuT, see [20,31] and references therein. These
properties are useful tools in applying the SuT to various mathematical problems and functions.

2.6.5. Sumudu Transform and Fractional Caputo Derivative

The SuT of the FCd CDα f (η), where α is within the range (m− 1 < α ≤ m), is denoted
as S [CDα f (η)] and is calculated as follows [33,34]:

S [CDα
f (η)](ν) = ν−αS [ f (η)](ν)−

n−1

∑
m=0

ν−α+m f (m)(0+)
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Here, S [ f (η)] is the SuT of the function f (η), f (m)(0+) represents the m-th derivative of
f (η) evaluated at η = 0+. This SuT of the FCd aids in analyzing and solving FDEs involving
the FCd, providing insights into the transformed function’s properties and contributing to
the mathematical solutions of various problems.

In the subsequent section, we will provide a comprehensive explanation of how the
SuT and the HPS can be utilized to address FDEs in detail.

3. Homotopy Perturbation Sumudu Transform Strategy

In this section, we present a comprehensive formulation of a novel approach termed
“Homotopy Perturbation Sumudu Transform Strategy” (HPSuTS). This approach is applied
to address complex FDEs, which have significant applications in various scientific and
engineering domains.

The problem at hand is represented by the following equation:

CDα
u(ξ, η) +<[u(ξ, η)] +N [u(ξ, η)] = Ψ(ξ, η), (9)

with the initial condition (I.C):
u(ξ, 0) = Φ(ξ), (10)

where u(ξ, η) represents a function of two variables, CDα
= ∂α

∂ηα denotes a FCd of order
α ∈ (0, 1], < signifies the second part of a linear operator, N represents a non-linear
operator, and Ψ(ξ, η) is a non-homogeneous term. Applying the linearity of the SuT, the
equation can be rewritten as:

S [CDα
u(ξ, η)](ν) +S [<[u(ξ, η)]](ν) +S [N [u(ξ, η)]](ν) = S [Ψ(ξ, η)](ν). (11)

Alternatively, the equation can be expressed as:

S [CDα
u(ξ, η)](ν) = S [Ψ(ξ, η)](ν)−S [<[u(ξ, η)]](ν)−S [N [u(ξ, η)]](ν) (12)

By applying definition (Section 2.6.5), the following expression is derived:

S [u(ξ, η)](ν) = u(ξ, 0) + ναS [Ψ(ξ, η)]− ναS [N (u(ξ, η)) +<(u(ξ, η))]. (13)

Incorporating the initial condition, the equation becomes:

S [u(ξ, η)](ν) = Φ(ξ) + ναS [Ψ(ξ, η)]− ναS [N (u(ξ, η)) +<(u(ξ, η))]. (14)

Finally, by applying the inverse SuT, we obtained the above expression as:

u(ξ, η) = Θ(ξ, η)−S −1
[

ναS [N (u(ξ, η)) +<(u(ξ, η))]

]
, (15)

where Θ(ξ, η) represents the contribution from the source term and I.C. To effectively
address the problem, the HPSuTS introduces a novel technique for decomposing the
solution u(ξ, η) into an infinite series of components:

u(ξ, η) =
∞

∑
m=0

pmum(ξ, η). (16)

Similarly, the non-linear term N (u(ξ, η)) is decomposed as:

N (u(ξ, η)) =
∞

∑
m=0

pmHm(u). (17)
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Here, the He’s polynomials [18], denoted byHm(u0, u1, . . . , un), are defined as follows:

Hm(u0, u1, , . . . , un) =
1

m!
∂m

∂pm

[
N (

∞

∑
i=0

piui)

]
p=0

, m = 0, 1, 2, 3, . . . (18)

With the utilization of the previously presented equations, the HPSuTS transforms the
problem into a series of iterative equations for um(ξ, η). Utilizing Equations (16) and (17),
we elegantly transform Equation (15) to yield the following insightful expressions:

∞

∑
m=0

pmum(ξ, η) = Θ(ξ, η)− p

(
S −1

[
ναS

[
<
(

∞

∑
m=0

pmum(ξ, η)

)
+N

(
∞

∑
m=0

pmHm(ν)

)]])
. (19)

Through a series of consecutive iterations and evaluation of well-established components
of p, we uncover the following pattern:

p0 : u0(ξ, η) = Θ(ξ, η)

p1 : u1(ξ, η) = −S −1

[
ναS

[
<
(
u0(ξ, η)

)
+N

(
u0(ξ, η)

)]]

p2 : u2(ξ, η) = −S −1

[
ναS

[
<
(
u1(ξ, η)

)
+N

(
u1(ξ, η)

)]]

p3 : u3(ξ, η) = −S −1

[
ναS

[
<
(
u2(ξ, η)

)
+N

(
u2(ξ, η)

)]]
...

(20)

Consequently, the solution to the intricate FDEs emerges as the sum of these terms:

u(ξ, η) =
∞

∑
m=0

un(ξ, η) = u0(ξ, η) + u1(ξ, η) + u2(ξ, η) + . . . (21)

This method adeptly harnesses the concept of successive iterations and mathematical
scrutiny to unveil a holistic solution for the complex FDEs, effectively showcasing the skills
of mathematical techniques in tackling intricate equations.

In the forthcoming sections, we will explore the practical implementation of the
HPSuTS and assess its efficacy in resolving NS-TFEs.

4. Implementation of the Proposed Technique

Let us consider the NS-TFEs in general form as [29,35]:

CDα
u(r, η) = P + m(Drru +

1
r
Dru), 0 < α ≤ 1. (22)

where P = − ∂p
ρ∂z , p denotes the pressure, m the kinematics viscosity, and ρ is the density of

a viscous fluid of unsteady flow. When α = 1, the Equation (22) becomes the classical NSEs.

4.1. Case: 1

Let us first consider the NS-TFEs (22) [35] as:

CDα
u(r, η) = P +Drru +

1
r
Dru, 0 < α ≤ 1. (23)

with I.C:
u(r, 0) = 1− r2
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By applying SuT on both sides of (23), the equation can be rewritten as:

S [CDα
u(r, η)](ν) = S [P +Drru +

1
r
Dru](ν). (24)

By applying definition Section 2.6.5, the following expression is derived:

S [u(r, η)](ν) = u(r, 0) + ναS [P] + ναS [Drru +
1
r
Dru]. (25)

Incorporating the I.C, the above equation becomes:

S [u(r, η)](ν) = 1− r2 + ναS [P] + ναS [Drru +
1
r
Dru]. (26)

Finally, by taking the inverse SuT, we obtain:

u(r, η) = 1− r2 + P
ηα

Γ(α + 1)
+S −1

[
ναS

[
Drru +

1
r
Dru

]]
, (27)

By implementing the HPS to the above equation we get:

∞

∑
m=0

pmum(r, η) = 1− r2 + P
ηα

Γ(α + 1)
+ p

(
S −1

[
ναS

[ ∞

∑
m=0

pmDrrum +
1
r

∞

∑
m=0

pmDrum
]])

(28)

The coefficients of the powers p are equated as follows:

p0 : u0(r, η) = 1− r2 + P
ηα

Γ(α + 1)
,

p1 : u1(r, η) = S −1
[

ναS
[
Drru0 +

1
r
Dru0

]]
=
−4ηα

Γ(α + 1)
,

p2 : u2(r, η) = S −1
[

ναS
[
Drru1 +

1
r
Dru1

]]
= 0,

p3 : u3(r, η) = S −1
[

ναS
[
Drru2 +

1
r
Dru2

]]
= 0,

and so on. By substituting the above values into the equation, we have:

u(r, η) = u0(r, η) + u1(r, η) + u2(r, η) + u3(r, η) + u4(r, η) + . . .

= 1− r2 + (P− 4)
ηα

Γ(α + 1)
+ 0 + 0 + . . .

(29)

When α = 1 the solution becomes,

u(r, η) = 1− r2 + (P− 4)η.

which is the required solution as in [29,35]. The approximate solutions for different values of
α under two distinct scenarios i.e., for P = 1 and P = 5 are shown in the Figure 1a and 1b
respectively. Moreover, the 3D representation of the solution is provided in Figure 2.
Also, the tabular representation of the solution for various fractional order is provided in
Tables 1 and 2 for the parameter P = 1 and P = 5 respectively.
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Table 1. Approximate solution of (23) at P = 1.

η r α = 0.7 α = 0.8 α = 0.9 α = 1

0.0 0.341235 0.489503 0.607308 0.700000
0.2 0.301235 0.449503 0.567308 0.660000

0.1 0.4 0.181235 0.329503 0.447308 0.540000
0.6 −0.018764 0.129503 0.247308 0.340000
0.8 −0.298764 −0.150496 −0.032691 0.060000
1.0 −0.658764 −0.510496 −0.392691 −0.300000

Table 2. Approximate solution of (23) at P = 5.

η r α = 0.7 α = 0.8 α = 0.9 α = 1

0.0 1.219588 1.170165 1.130897 1.100000
0.2 1.179588 1.130165 1.090897 1.060000

0.1 0.4 1.059588 1.010165 0.970897 0.940000
0.6 0.859588 0.810165 0.770897 0.740000
0.8 0.579588 0.530165 0.490897 0.460000
1.0 0.219588 0.170165 0.130897 0.100000

(a) Approximate Solution when P = 1 (b) Approximate Solution when P = 5

Figure 1. Numerical Comparison of solution.
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Figure 2. Approximate analytical solution.

4.2. Case: 2

Let us consider the NS-TFEs (22) [35] as:

CDα
u(r, η) = Drru +

1
r
Dru, 0 < α ≤ 1. (30)

with I.C:
u(r, 0) = r

By taking SuT on both sides of the above equations, the equations becomes:

S [CDα
u(r, η)] = S [Drru +

1
r
Dru]. (31)

By applying definition Section 2.6.5, the following expression is derived:

S [u(r, η)](ν) = u(r, 0) + ναS [Drru +
1
r
Dru]. (32)

Incorporating the I.C, the equation becomes:

S [u(r, η)](ν) = r + ναS [Drru +
1
r
Dru]. (33)

Finally, by using the inverse SuT, we obtain:

u(r, η) = r +S −1
[

ναS
[
Drru +

1
r
Dru

]]
, (34)
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By implementing the HPS to the above equation we get:

∞

∑
m=0

pmum(r, η) = r + p
(
S −1

[
ναS

[ ∞

∑
m=0

pmDrrum +
1
r

∞

∑
m=0

pmDrum
]])

(35)

The coefficients of the powers p are equated as follows:

p0 : u0(r, η) = r,

p1 : u1(r, η) = S −1
[

ναS
[
Drru0 +

1
r
Dru0

]]
=

1
r

ηα

Γ(α + 1)
,

p2 : u2(r, η) = S −1
[

ναS
[
Drru1 +

1
r
Dru1

]]
=

1
r3

η2α

Γ(2α + 1)
,

p3 : u3(r, η) = S −1
[

ναS
[
Drru2 +

1
r
Dru2

]]
=

32

r5
η3α

Γ(3α + 1)
,

and so on. By substituting the above values into the equation, we have:

u(r, η) = u0(r, η) + u1(r, η) + u2(r, η) + u3(r, η) + . . .

= r +
1
r

ηα

Γ(α + 1)
+

1
r3

η2α

Γ(2α + 1)
+

32

r5
η3α

Γ(3α + 1)
+ . . .

= r +
∞

∑
m=1

12 × 32 × 52 × · · · × (2m− 3)2

r2m−1
ηmα

Γ(mα + 1)
.

(36)

When α = 1 the solution becomes,

u(r, η) = r +
∞

∑
m=1

12 × 32 × 52 × · · · × (2m− 3)2

r2m−1
ηm

Γ(m + 1)
.

which is the required solution as in [29,35]. The approximate solutions for different values
of α are shown in the Figures 3 and 4. Moreover, tabular representation of solution is
provided in Table 3.

Table 3. Approximate solution of (30).

η r α = 0.7 α = 0.8 α = 0.9 α = 1

0.1 3.3847e4 2.3455e4 1.5334e4 9.5311e3

0.2 273.0877 190.5927 125.8219 79.2547
0.1 0.4 3.3648 2.5651 1.9244 1.4468

0.6 1.1488 1.0235 0.9221 0.8426
0.8 1.1102 1.0421 0.9872 0.9438
1.0 1.2314 1.1805 1.1397 1.1074

Figure 3. Numerical Comparison of Solution.
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Figure 4. Approximate analytical solution.

5. Conclusions

This study introduces the HPSuT method, which is a semi-analytical technique used
to solve NS-TFEs. By combining the SuT and HPS techniques, we were able to successfully
solved the NS-TFEs and obtained an approximate solution. The proposed solution is
supported by graphical results in both 2D and 3D, which depict the solution for different
values of α. Furthermore, numerical results obtained using the suggested technique for
various values of α are compared, demonstrating that as the value transitions from a
fractional order to an integer order, the solution becomes increasingly similar to the exact
solution. The results presented in Tables 1–3 also indicate that the series solution rapidly
converges to the exact solution as the non-integer order approaches an integer order.

The HPSuT method offers several advantages that contribute to its effectiveness
and interactivity. Firstly, it provides series solutions that converge quickly and exhibit
a high degree of accuracy, enabling reliable numerical results to be efficiently obtained.
Additionally, this method significantly reduces the computational workload compared to
other traditional methods, which is particularly beneficial for complex problems and large
datasets. Moreover, the HPSuT method is not limited to specific types of FDEs, as it can
be applied to both linear and non-linear FDEs. This versatility makes it a valuable tool
applicable in various scientific and engineering fields.

To summarize, the HPSuT method has been demonstrated to be an interactive and
efficient approach for solving NS-TFEs. Its accuracy, computational efficiency, and applica-
bility to different types of FDEs make it a valuable tool for researchers and practitioners in
various domains.
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