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Abstract: This paper explores the concept of residual extropy as an uncertainty measure for order
statistics. We specifically derive the residual extropy for the ith-order statistic and establish its
relationship with the residual extropy of the ith-order statistic from a random sample generated from
a uniform distribution. By employing this approach, we obtain a formula for the residual extropy of
order statistics applicable to general continuous distributions. In addition, we offer two lower bounds
that can be applied in situations where obtaining closed-form expressions for the residual extropy
of order statistics in diverse distributions proves to be challenging. Additionally, we investigate the
monotonicity properties of the residual extropy of order statistics. Furthermore, we present other
aspects of the residual extropy of order statistics, including its dependence on the position of order
statistics and various features of the underlying distribution.
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1. Introduction

Information theory is a key tool for measuring the uncertainty of a probability distribution.
The entropy measure, originally introduced by Shannon [1], has found numerous

applications in various fields, including information sciences, physics, probability, statistics,
communication theory, and economics. In information sciences, entropy is extensively used
in data compression [2] and cryptography [3]. In physics, it plays a crucial role in thermo-
dynamics and statistical mechanics, aiding the understanding of energy distribution and
system behavior [4]. In probability and statistics, entropy is employed for characterizing
uncertainty and measuring information gain in decision-making processes [2]. Commu-
nication theory relies on entropy for analyzing channel capacity and coding schemes [5].
Furthermore, entropy has found applications in economic modeling, such as measuring
market concentration and economic inequality. If X is a non-negative random variable
(rv) with an absolutely continuous density function (pdf) f (x), the Shannon differential
entropy is defined as H(X) = H( f ) = −E[log f (X)], if the expectation exists. Recently, Lad
et al. [6] proposed a new measure of uncertainty, called extropy, as the dual complement
of entropy. For an absolutely continuous non-negative random variable X with pdf f (x),
cumulative distribution function (cdf) F and a survival function S(x) = P(X > x) on [0, ∞),
the extropy of X is defined as

J(X) = −1
2

∫ ∞

0
f 2(x)dx,

J(X) = −1
2
E[ f (F−1(U))], (1)

where E(·) denotes the expectation, U is a uniform random variable on [0, 1], and F−1(u) =
inf{x; F(x) ≥ u}, for u ∈ [0, 1], is the quantile function of F. Unlike Shannon’s measure,
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which has been a fundamental question since its inception, extropy can take negative values
in general.

The extropy J(X) measures the uncertainty of the lifetime X of a new system. However,
sometimes operators know the current age of the system. For example, they may know that
the system is working at time t and want to assess the uncertainty of its remaining lifetime,
given by Xt = [X − t | X > t]. In these cases, the extropy J(X) is not suitable. Therefore,
Qiu and Jia [7] have introduced a new measure called the residual extropy (REX), which is
defined as follows:

J(X; t) = −1
2

∫ ∞

0

(
f (x + t)

S(t)

)2

dx = −1
2

∫ ∞

t

(
f (x)
S(t)

)2

dx, (2)

J(X; t) = −1
2
E[ ft(S−1

t (U))], (3)

where S−1
t (u) = inf{x; St(x) ≥ u} is the quantile function of St(x) = S(x)/S(t); x ≥ t > 0.

The work by Lad et al. [6] provides a comprehensive and insightful motivation for
understanding the concept of differential entropy and its complement, differential extropy.
They delve into the intricacies of these measures, highlighting their significance in various
contexts. Building upon this foundation, Qiu [8] conducted a thorough investigation into
the characterization results, lower bounds, and notable properties such as monotonicity
and symmetry of extropy pertaining to order statistics and record values. Moreover, Qiu
and Jia [9] have made notable contributions in exploring the concept of residual extropy for
order statistics. In particular, they established that the residual extropy of a random variable
can be uniquely determined by its failure rate function, which led to the characterization
of several distributions. They also investigated the monotone properties associated with
the residual extropy of the first-order statistic. In addition to the previously mentioned
studies, Qiu and Jia [7] have made significant contributions by proposing two estimators
for estimating the extropy of an absolutely continuous random variable with a known
support. They demonstrated the consistency of these estimators and established that their
mean square errors are shift invariant. Notably, they highlighted the superior performance
of the proposed extropy-based estimator by comparing its statistical power with that
of other tests for uniformity. More recently, Toomaj et al. [10] conducted an in-depth
investigation into the concept of extropy, exploring its meaning and its connection to aging
notions. Their research showcased the ability of extropy information to rank the uniformity
of various families of absolutely continuous distributions. Additionally, they discussed
several theoretical advantages of extropy and provided a closed-form expression for finite
mixture distributions. The study also delved into dynamic versions of extropy, specifically
the residual extropy and past extropy measures. Building upon these previous works,
the objective of this paper is to delve into the analysis of the REX of order statistics from
continuous distributions. This study aims to establish bounds and explore the monotonic
properties of the REX, providing valuable insights into this particular aspect of extropy. In
fact, we consider a random sample of size n from a distribution F, denoted as X1, X2, . . . , Xn.
The order statistics are the sorted sample values, denoted as X1:n ≤ X2:n ≤ . . . ≤ Xn:n.

Order statistics are important in reliability theory, especially for studying the lifetime
properties of coherent systems and life testing with censored data. For a comprehensive
review of order statistics, we refer readers to David and Nagaraja [11]. Many researchers
have explored the information properties of ordered data, such as Wong and Chen [12],
Park [13], Ebrahimi et al. [14], Zarezadeh and Asadi [15], and Baratpour et al. [16]. In the
realm of engineering reliability theory, extropy has recently found practical applications.
Notably, Qiu et al. [17] delve into the information properties of mixed systems by utilizing
extropy as a measure. Moreover, Kayid and Alshehri [18] focus on exploring the extropy
of the excess lifetime in mixed systems with n components. They employ the system
signature, a useful criterion for predicting the residual lifetime of the system, to investigate
the extropy of the excess lifetime. Their study sheds light on the analysis of mixed systems
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and provides practical implications for assessing system reliability. The aforementioned
studies exemplify the growing interest in applying extropy in engineering reliability theory.

Our study contributes to this field by exploring the properties of the REX of order statis-
tics. This paper contributes to the understanding of order statistics and their uncertainty
measures by investigating REX and its properties.

This paper is organized as follows: Section presents the REX of order statistics, Xi:n,
from a continuous distribution F. We show how to express this REX in terms of the REX of
order statistics from a uniform distribution. We also derive upper and lower bounds for
the REX of order statistics, as closed-form expressions are often difficult to obtain for many
distributions. We illustrate the applicability and usefulness of these bounds with several
examples. Moreover, we study the monotonicity properties of the REX of the minimum and
maximum of a sample under mild conditions. We prove that the REXs of the minimum and
maximum increase or decrease as the sample size increases. However, we also provide a
counterexample that shows the nonmonotonic behavior of the REX of other order statistics
Xi:n with respect to the sample size. Furthermore, we examine the REX of order statistics
Xi:n in terms of the index i. We find that the REX of Xi:n is not a monotonic function of i
over the whole support of F.

Throughout this paper, “≤st”, “≤hr”, “≤lr”, and “≤d” stand for stochastic, hazard rate,
likelihood ratio, and dispersive orders, respectively; for more details on these orderings,
we refer readers to Shaked and Shanthikumar [19].

2. Residual Extropy of Order Statistics

In this section, we derive a formula for the residual extropy of the order statistics of
a random sample in terms of the residual extropy of the order statistics from a uniform
distribution. We use fi:n(x) and Si:n(x) to denote the probability density function and the
survival function of the i-th-order statistic Xi:n, where i = 1, . . . , n. So, we have

fi:n(x) =
1

I(i, n− i + 1)
(F(x))i−1(S(x))n−i f (x), x > 0, (4)

Si:n(x) =
i−1

∑
k=0

(
n
k

)
(1− S(x))k(S(x))n−k, x > 0, (5)

where

I(a, b) =
∫ 1

0
xa−1(1− x)b−1dx, a > 0, b > 0,

is known as the complete beta function; see, e.g., David and Nagaraja [11]. Furthermore,
we can express the survival function Si:n(x) as follows:

Si:n(x) =
IF(x)(i, n− i + 1)

I(i, n− i + 1)
, (6)

where

Ix(a, b) =
∫ 1

x
ua−1(1− u)b−1du, 0 < x < 1,

is known as the upper incomplete beta functions. We use the symbol Y ∼ It(a, b) to indicate
that the random variable Y has a truncated beta distribution with the following pdf:

fY(y) =
1

It(a, b)
ya−1(1− y)b−1, t ≤ y ≤ 1. (7)

We study the REX of Xi:n, which shows how uncertain the density of [Xi:n − t|Xi:n > t] is
about the system’s remaining lifetime. We consider (n− i + 1)-out-of-n systems, which
work if at least (n− i + 1) out of n components work. The components have independent
and identical lifetimes X1, X2, . . . , Xn. The system’s lifetime is Xi:n, where i is the position.
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For i = 1, it is a series system, and for i = n, it is a parallel system. The REX of Xi:n tells us
the extropy of the system’s residual lifetime at time t. This helps system designers to know
the extropy of (n− i + 1)-out-of-n systems at any time t.

We show a lemma that links the REX of order statistics from a uniform distribution to
the incomplete beta function. This is important for the next purposes and makes the REX
easier to compute. The proof of this lemma is simple and follows from the REX definition,
so we skip it here.

Lemma 1. If Ui:n denotes the it-th-order statistic based on a random sample of size n from uniform
distribution on (0,1), then

J(Ui:n; t) = − It(2i− 1, 2(n− i) + 1)
2I2

t (i, n− i + 1)
, 0 < t < 1,

This lemma makes it easy to compute the REX of order statistics from a uniform
distribution with the incomplete beta function. This helps to use the REX in different
situations. We plotted J(Ui:n; t) for different values of i = 1, 2, · · · , 5 for n = 5 in Figure 1.
The graph shows that J(Ui:n; t) is decreasing in t.

−100

−50

0

0.00 0.25 0.50 0.75 1.00
t

J(
X

i:n
, t

)

i = 1 i = 2 i = 3 i = 4 i = 5

Figure 1. The exact values of J(Ui:n; t) with respect to time 0 < t < 1.

The upcoming theorem establishes a relationship between the REX of order statistics
Xi:n and the REX of order statistics from a uniform distribution.

Theorem 1. Let Xi:n denote the it-th-order statistic based on n independent and identically dis-
tributed random variables X1, . . . , Xn with the common cdf F and pdf f . Then, the residual extropy
of Xi:n can be expressed as follows:

J(Xi:n; t) = J(Ui:n; F(t))E[ f (F−1(Yi))], t > 0, (8)

where Yi ∼ IF(t)(2i− 1, 2(n− i) + 1).
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Proof. By using the change of u = F(x), from (2), (4) and (6), we obtain

J(Xi:n; t) = −1
2

∫ ∞

t

(
fi:n(x)
Si:n(t)

)2

dx

= −1
2

∫ ∞

t

(
Fi−1(x)Sn−i(x) f (x)

IF(t)(i, n− i + 1)

)2

dx

= −
IF(t)(2i− 1, 2(n− i) + 1)

2I2
F(t)(i, n− i + 1)

∫ ∞

t

F2(i−1)(x)S2(n−i)(x) f 2(x)
IF(t)(2i− 1, 2(n− i) + 1)

dx

= −
IF(t)(2i− 1, 2(n− i) + 1)

2I2
F(t)(i, n− i + 1)

∫ 1

F(t)

u2(i−1)(1− u)2(n−i) f (F−1(u))
IF(t)(2i− 1, 2(n− i) + 1)

du

= J(Ui:n; F(t))E[ f (F−1(Yi))], t > 0.

The last equality is obtained from Lemma 1 and this completes the proof.

The specialized version of this result for t = 0 is given by

J(Xi:n) = J(Ui:n)E[ f (F−1(Yi))],

where Yi ∼ Beta(2i − 1, 2(n− i) + 1). The next theorem immediately can be derived in
terms of the aging properties of the components of the systems. We recall that X has
increasing failure rate (IFR) property if hX(t) = f (t)/S(t) is increasing in t. The subsequent
corollary can be immediately obtained from Theorem 5.3 of Toomaj et al. [10].

Corollary 1. Let X be a non-negative random variable having an IFR distribution. Then, J(Xi:n; t)
is decreasing in t.

However, if the components have decreasing failure rates, i.e., hX(t) = f (t)/S(t) is
decreasing in t, then the series system has a decreasing residual extropy, which can be seen
in the next corollary. Its proof is removed, being the immediate consequence of Theorem 5.3
of Toomaj et al. [10].

Corollary 2. Let X be a non-negative random variable having a DFR distribution. Then, J(X1:n; t)
is decreasing in t.

Below, we provide an example for illustration.

Example 1. Let us consider the random variable X with the following cdf

F(x) = 1− e−xk
, x, k > 0. (9)

We remark that Equation (9) represents a special case of pdf of the Weibull distribution, specifically
when the scale parameter λ is set to 1. Our choice of this specific form was indeed motivated by the
fact that the IFR or DFR property of this distribution is solely dependent on the shape parameter k,
rather than the scale parameter λ.

By applying the inverse transformation method, we can obtain f (F−1(u)) = k(1−
u)(− log(1− u))

k−1
k , 0 < u < 1. After some manipulation, we have

J(Xi:n; t) = − k
2I2

1−e−tk
(i, n− i + 1)

∫ 1

1−e−tk
u2(i−1)(1− u)2(n−i)+1(− log(1− u))

k−1
k du. (10)

To analyze the relation between the entropy of J(Xi:n; t) and the time t, we use nu-
merical methods, since deriving an explicit expression is challenging. Figure 2 shows how
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the entropy changes with respect to t for different values of k = 0.2, k = 1 and k = 2. The
parameter k determines whether X has a DFR or IFR property. When 0 < k < 1, X has
DFR, and when k ≥ 1, X has IFR. Consistent with Theorem 1, we observe that the entropy
of J(Xi:n; t) increases with t when k = 2, which corresponds to the IFR case. In the special
case i = k = 1, we have

J(X1:n; t) = −n
4

, and J(X; t) = −1
4

, t > 0.

Therefore, we have

J(X1:n; t)− J(X; t) =
1− n

4
≤ 0, t > 0.

This finding reveals an intriguing characteristic: the discrepancy between the REX of the
lifetime of a series system and the REX of each component is not influenced by time. Instead,
it solely relies on the number of components within the system in the exponential case.

−1.00

−0.75

−0.50

−0.25

0.00

0 1 2 3 4
t

J(
X

i:n
, t

)

i=1 i=2 i=3 i=4 i=5

k = 0.2

−1.25

−1.00

−0.75

−0.50

−0.25

0 1 2 3 4
t

J(
X

i:n
, t

)

i=1 i=2 i=3 i=4 i=5

k = 1

−10.0

−7.5

−5.0

−2.5

0.0

0 1 2 3 4
t

J(
X

i:n
, t

)

i=1 i=2 i=3 i=4 i=5

k = 2

Figure 2. The exact values of J(Xi:n; t) with respect to time t for some values of k for the Weibull
distribution given in Example 1.

Obtaining closed-form expressions for the REX of order statistics in various distribu-
tions can be challenging in several cases. So, we look for other ways to describe the REX of
order statistics. We suggest finding bounds for the REX of order statistics. We prove this
in the following theorem, which tells us about these bounds and how they work in real
situations.

Theorem 2. Consider a non-negative continuous random variable X with pdf f and cdf F. Let us
denote the REXs of X and the i-th-order statistic Xi:n as J(X; t) and J(Xi:n; t), respectively.

(a) Let Mi = fYi (mi), where mi = max{F(t), i−1
n−1} is the mode of the distribution of Yi, then we

have
J(Xi:n; t) ≥ −2J(Ui:n; F(t))J(X; t)MiS2(t).

(b) Let M = f (m) < ∞, where m = sup{x : f (x) ≤ M} is the mode of the pdf f . Then, for
2 > 0, we have

J(Xi:n; t) ≥ J(Ui:n; F(t))M.

Proof. (a) It is enough to obtain a bound for E[ f (F−1(Yi))]. To this aim, we have

E[ f (F−1(Yi))] =
∫ 1

F(t)

u2(i−1)(1− u)2(n−i)

IF(t)(2i− 1, 2(n− i) + 1)
f (F−1(u))du

≤ Mi

∫ 1

F(t)
f (F−1(u))du

= Mi

∫ ∞

t
f 2(x)dx

= −2Mi J(X; t)S2(t).
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The result now is easily obtained by recalling (8).

(b) Since f (F−1(u)) ≤ M, 0 < u < 1, one can write

E[ f (F−1(Yi))] ≤ M.

The result now is easily obtained from relation (8), and this completes the proof.

The theorem has two parts. The first part, (a), gives a lower bound for the REX of
Xi:n, written as J(Xi:n; t). This bound uses the incomplete beta function and the REX of
the original distribution. The second part, (b), gives another lower bound for the REX of
Xi:n, written as J(Xi:n; t). This lower bound depends on the REX of order statistics from
a uniform distribution and the mode, denoted by m, of the base distribution. This result
shows interesting information about Xi:n and gives a measurable lower bound for the REX
based on the mode of the distribution. We apply Theorem 2 to obtain the RRE bounds of
the order statistics for some common distributions. The results are shown in Table 1.

Table 1. Bounds on J(Xi:n; t) derived from Theorem 2 (parts (a) and (b)).

Probability Density Function Bounds

Standard half-Cauchy distribution
f (x) = 2

π(1+x2)
, x > 0, ≥ 2Mi

π2 J(Ui:n; F(t))I t2
1+t2

( 3
2 , 1

2 )

≥ J(Ui:n; F(t))
( 2

π

)
Standard half-normal distribution

f (x) = 2
σ
√

2π
e−(x−µ)2/2σ2

, x > µ > 0, ≥ Mi
√

2
σπ J(Ui:n; F(t))Φ(

√
2( t−µ

σ ))

≥ J(Ui:n; F(t))
(

2
σ
√

2π

)
Generalized exponential distribution

f (x) = λ
β e−

(x−µ)
β (1− e−

(x−µ)
β )λ−1, x > µ > 0, ≥ Miλ

2

β J(Ui:n; F(t))I
1−e

− (x−µ)
β

(2(λ− 1) + 1, 2)

≥ J(Ui:n; F(t))β−1(1− 1
λ )

λ−1

Generalized gamma distribution
f (x) = bc

Γ(c) xc−1e−bx, x > 0, ≥ Mib2

(Γ(c))222c−1 J(Ui:n; F(t))Γ(2c− 1, 2bt)

≥ J(Ui:n; F(t))( I(c−1)c−1e1−c

Γ(c) )

3. Stochastic Orders

We now present some findings on how the order statistics of a random sample affect
its residual extropy, which is a measure of uncertainty and information. We also show
how different types of distributions have different ordering properties that influence the
residual extropy of their order statistics. First, we recall that for two random variables X
and Y with cdfs F and G, we say that X is less than Y in the dispersive order, denoted as
X ≤d Y, if F−1(u)− F−1(v) ≤ G−1(u)− G−1(v), 0 < v < u < 1.

Theorem 3. If X ≤d Y and X or Y is IFR, then J(X; t) ≤ J(Y; t) for all t > 0.

Proof. By (3), we only need to show that Xt ≤d Yt. Since we assume that X ≤d Y and X or
Y is IFR, we can use Theorem 5 of Ebrahimi and Kirmani [20] to conclude that Xt ≤d Yt,
and this completes the proof.
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Let X1, . . . , Xn be a random sample from a distribution with cdf F and pdf f . The
sample order statistics are X1:n ≤ X2:n ≤ · · · ≤ Xn:n. Similarly, let Yi:n, i = 1, 2, . . . , n
be the order statistics of Y. It is a widely recognized fact that the order statistics of a
sample preserve the IFR property. Furthermore, as per Theorem 3.B.26 in Shaked and
Shanthikumar [19], if X ≤d Y, then Xi:n ≤d Yi:n holds true for i = 1, 2, . . . , n. Consequently,
by employing Theorem 3, we can readily derive the following corollary.

Corollary 3. If X ≤d Y and X or Y is IFR, then J(Xi:n; t) ≤ J(Yi:n; t) for all t > 0.

The next theorem shows that if the components have decreasing failure rates, i.e.,
hX(t) = f (t)/S(t) is decreasing in t, then the series system has the lowest residual extropy
among the i-out-of-n systems. Since a series system preserves the DFR property, the
following corollary can be directly derived from Theorem 5.2 of Toomaj et al. [10].

Corollary 4. Let X be a non-negative random variable having a DFR distribution. We have

J(X1:n; t) ≤ J(Xi:n; t), t > 0,

for i = 1, 2, · · · , n.

The following lemma investigates the monotone behavior of the REX of order statistics.
We begin with a key lemma that is essential for our analysis.

Lemma 2. Consider two non-negative functions, q(x) and sβ(x), where q(x) is an increasing
function of x. Let t and c be real numbers such that 0 ≤ t < c < ∞. Let us define the random
variables Z1 and Z2 with pdfs f1(z) and f2(z) as

f1(z) =
qm(z)s1(z)∫ c

t qm(x)s1(x)dx
and f2(z) =

q2m(z)s2(z)∫ c
t q2m(x)s2(x)dx

, z ∈ (t, c). (11)

Let m be real-valued, and define function K as follows:

K(m) = −1
2

∫ c
t q2m(x)s2(x)dx(∫ c
t qm(x)s1(x)dx

)2 . (12)

(i) If Z2 ≤st Z1, then K(m) is an increasing function of m.

(ii) If Z2 ≥st Z1, then K(m) is a decreasing function of m.

Proof. We only prove Part (i), as Part (ii) follows a similar argument. Under the assumption
that K(m) is differentiable in m, we have

∂K(m)

∂m
= −1

2
∂g(m)

∂m
,

where

g(m) =

∫ c
t q2m(x)s(x)dx(∫ c

t qm(x)s1(x)dx
)2 .

It is evident that
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∂g(m)

∂m
=

2(∫ c
t qm(x)s1(x)dx

)3

×
[∫ c

t
log q(x)q2m(x)s(x)dx

∫ c

t
qm(x)s1(x)dx−

∫ c

t
log q(x)qm(x)s1(x)dx

∫ c

t
q2m(x)s(x)dx

]
=

2
∫ c

t qm(x)s1(x)dx
∫ c

t q2m(x)s(x)dx(∫ c
t qm(x)s1(x)dx

)3

(
E[log q(Z2)]−E[log q(Z1)]

)
≤ 0. (13)

Since log(·) is an increasing function, we have E[log q(Z2)] ≤ E[log q(Z1)] due to assump-
tion Z2 ≤st Z1 by implementing of Theorem 1.A.3 of Shaked and Shanthikumar [19]. This
means that (13) is nonpositive, and therefore K(m) is an increasing function of m.

Corollary 5. Under the assumptions of Lemma 2, it can be proven that when q(x) is
decreasing, the following holds:

(i) If Z2 ≤st Z1, then K(m) is a decreasing function of m.

(ii) If Z2 ≥st Z1, then K(m) is a increasing function of m.

Due to Lemma 2, we can prove the following corollary for (n− i + 1)-out-of-n systems
with components having uniform distributions.

Lemma 3. (i) When considering a parallel (series) system consisting of n components with a
uniform distribution over the unit interval, the REX of the system lifetime decreases as the
number of components increases.

(ii) If i1 ≤ i2 ≤ n are integers, then J(Ui1 :n; t) ≤ J(Ui2 :n; t) for t ≥ i2−1
n−1 .

Proof. (i) We focus on the parallel system case. The series system case can be verified
similarly. By Lemma 1, we obtain

J(Un:n; t) = −
∫ 1

t x2(n−1)dx

2
(∫ 1

t xn−1dx
)2 , 0 < t < 1.

We can write J(Ui:n; t) as (12) with q(x) = x, s1(x) = x and s2(x) = x2. Without loss of
generality, we assume that n ≥ 1 is a continuous variable. Since the ratio

SZ2(z)
SZ1(z)

∝

∫ 1
z x2(n−1)dx∫ 1

z xn−1dx
,

is increasing in z; therefore, we have Z2 ≥hr Z1, which implies that Z2 ≥st Z1. Then, by
Lemma 2, we can infer that the REX of the parallel system is a decreasing function of the
number of components.
(ii) To begin, we observe that

J(Ui:n; t) = −1
2

∫ 1
t x2(i−1)(1− x)2(n−i)dx(∫ 1

t xi−1(1− x)n−idx
)2 = −1

2

∫ 1
t
( x

1−x
)2i (1−x)2n

x2 dx(∫ 1
t
( x

1−x
)i (1−x)n

x dx
)2 , t > 0.

Using Lemma 2, we can express J(Ui:n; t) as (12) by setting q(x) = x/(1− x), s1(x) =

(1− x)n/x2 and s2(x) = (1− x)2n/x2. Then, we can see that for 1 ≥ z ≥ t ≥ i2−1
n−1 , we have

Z2 ≤st Z1. Therefore, for i1 ≤ i2 ≤ n, we can conclude that
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J(Ui1 :n; t) ≤ J(Ui2 :n; t), t ≥ i2 − 1
n− 1

,

which completes the proof.

Theorem 4. Consider a parallel (series) system consisting of n independent and identically dis-
tributed random variables X1, . . . , Xn representing the lifetime of the components. Assume that the
common distribution function F has a pdf f that is increasing (decreasing) in its support. Then, the
REX of the system lifetime is decreasing in n.

Proof. We focus on the parallel system case. The series system case can be verified similarly.
Let Yn ∼ IF(t)(2n− 1, 1), where fYn(y) is the pdf of Yn. We can see that

fYn+1(y)
fYn(y)

=
IF(t)(2n− 1, 1)
IF(t)(2n + 1, 1)

y2, F(t) < y < 1,

is increasing in y. This implies that Yn ≤lr Yn+1, and thus Yn ≤st Yn+1. Moreover, f (F−1(x))
is increasing in x, which implies that

E[ f (F−1(Yn))] ≤ E[ f (F−1(Yn+1)]. (14)

By Theorem 1, we have

J(Xn:n; t) = J(Un:n; F(t))E[ f (F−1(Yn))]

≥ J(Un:n; F(t))E[ f (F−1(Yn+1))]

≥ J(Un+1:n+1; F(t))E[ f (F−1(Yn+1))]

= J(Xn+1:n+1; t).

The first inequality follows from the fact that J(Un:n; F(t)) is nonpositive. The second
inequality follows from Part (i) of Lemma 3. Hence, we can conclude that J(Xn:n; t) ≥
J(Xn+1:n+1; t) for all t > 0. This completes the proof.

Some distributions have pdfs that decrease, such as exponential, Pareto, and their
mixtures. Others have pdfs that increase, like the power distribution with its density
function. We can use Part (i) of Lemma 3 to prove a theorem for these kinds of distributions.
However, this theorem does not apply to all (n− i + 1)-out-of-n systems, as the following
example demonstrates.

Example 2. Suppose the system works only if at least (n− 1) out of its n components work. Then,
the system’s lifetime is the second smallest component lifetime, X4:n. The components are uniformly
distributed on (0, 1). In Figure 3, we can see the effect of n on the REX of X4:n when t = 0.02. The
graph clearly shows that the REX of the system is not a monotone function of n. In fact, we can see
that the REX of X4:4 is lower than that of X4:5.

We can think of a case in reliability theory where the pdf decreases; so, the RRE of
a series system decreases as the system has more components. This happens when we
have a lifetime model with a failure rate (h(t) = f (t)/S(t)) that decreases over time. Then,
the data distribution must have a density function that decreases too. Some examples of
lifetime distributions in reliability with this property are the Weibull distribution with a
shape parameter of less than one and the Gamma distribution with shape parameter of less
than one. So, the REX of a series system with components that follow these distributions
decreases as the number of components goes up.

Now, we want to see how the REX of order statistics Xi:n changes with i. We use Part
(ii) of Lemma 3, which gives us a formula for the REX of Xi:n in terms of i.
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Figure 3. The REX values for different n in a (n− 1)-out-of-n system with a uniform parent distribu-
tion when t = 0.02.

Theorem 5. Suppose X is a continuous random variable that is always positive. Its distribution
function is F and its pdf is f . The pdf f decreases over the range of possible values of X. Let i1 and i2
be two whole numbers such that i1 ≤ i2 ≤ n. Then, the REX of the i1-th smallest value of X among
n samples, Xi1 :n, is less than or equal to the REX of the i2-th smallest value, Xi2 :n, for all values of
X that are greater than or equal to the F−1( i2−1

n−1 )th percentile of F.

Proof. For i1 ≤ i2 ≤ n, it is easy to verify that Yi1 ≤lr Yi2 , and hence Yi1 ≤st Yi2 . Now,
we have

J(Xi1 :n; t) = J(Ui1 :n; t)E[ f (F−1(Yi1))]

≤ J(Ui1 :n; t)E[ f (F−1(Yi2))]

≤ J(Ui1 :n; t)E[ f (F−1(Yi2))]

= J(Xi2 :n; t),

The first inequality follows from the fact that J(Ui1 :n; F(t)) is nonpositive. Now, the result
follows using Part (ii) of Lemma 3 and the same arguments as used to prove Theorem 4.

Now, we can obtain a useful result from Theorem 5.

Corollary 6. Suppose X is a non-negative continuous random variable that is always positive with
cdf F and pdf f . The pdf f decreases over the range of possible values of X. Let i be a whole number
that is less than or equal to half of n + 1. Then, the REX of Xi:n is increasing in i for values of t
greater than the median of distribution.

Proof. Suppose i1 ≤ i2 ≤ n+1
2 . This means that

m ≥ F−1(
i2 − 1
n− 1

),

where m = F−1( 1
2 ) is the middle value of F. By Theorem 5, we obtain for t ≥ m that

J(Xi1 :n; t) ≤ J(Xi2 :n; t).
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4. Conclusions

This paper explored the REX of order statistics from a continuous distribution. We
proposed a novel method to express the REX of order statistics in terms of the REX of order
statistics from a uniform distribution.

It is worth pointing out that Equation (8) demonstrates how the REX of [Xi:n − t|Xi:n > t]
can be expressed as the product of two distinct terms, both of which are dependent on time
t. However, the first term is influenced by the REX of order statistics from a uniform distri-
bution, while the second term is dependent on the distribution of the component lifetimes.
By explicitly acknowledging this decomposition, we provide a deeper understanding of
the factors influencing the entropy and shed light on the role of the REX and component
lifetimes in the analysis.

This link reveals the properties and behavior of REX for different distributions. We also
derived bounds for the REX of order statistics, which provide useful approximations and
insights into their characteristics. These bounds can be used to analyze and compare REX
values in various situations. Moreover, we studied the effect of the order statistic’s index, i,
and the sample size, n, on the REX. We showed how the REX changes concerning i and n, as
well as how it relates to the extropy of the overall distribution. We illustrated our findings
and approach with examples from different distributions. These examples demonstrate the
practical implications and versatility of our method. In summary, this paper contributes
to the understanding of REX for order statistics by establishing connections, deriving
bounds, and examining the impact of index and sample size. The results of this paper offer
valuable insights for researchers and practitioners working with extropy-based analysis
and statistical inference.
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