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Abstract: The boundary integral equation defining the interface function for a curved solid/liquid
phase transition boundary is analytically solved in steady-state growth conditions. This solution
describes dendrite tips evolving in undercooled melts with a constant crystallization velocity, which
is the sum of the steady-state and translational velocities. The dendrite tips in the form of a parabola,
paraboloid, and elliptic paraboloid are considered. Taking this solution into account, we obtain
the modified boundary integral equation describing the evolution of the patterns and dendrites in
undercooled binary melts. Our analysis shows that dendritic tips always evolve in a steady-state
manner when considering a kinetically controlled crystallization scenario. The steady-state growth
velocity as a factor that is dependent on the melt undercooling, solute concentration, atomic kinetics,
and other system parameters is derived. This expression can be used for determining the selection
constant of the stable dendrite growth mode in the case of kinetically controlled crystallization.

Keywords: boundary integral equation; moving boundary problem; phase transition; curved
solid–liquid interface; undercooled liquid; dendrite
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1. Introduction

Phase transformations from nonequilibrium and metastable states to the solid form
are widespread in nature (the freezing of water, the solidification of magma, etc.) and
are often used in technological processes and laboratory facilities to obtain alloys with
certain structures and properties, as well as for the synthesis of various compounds in the
chemical and pharmacological industries. This explains extensive studies of directional
and bulk crystallization in the phase transformation region consisting of simultaneous
liquid and solid phases [1–6]. As this takes place, the evolution of the solid/liquid phase
interface in an undercooled or supersaturated liquid is responsible for the processes of
impurity redistribution between the growing solid phase elements, pattern development,
and microstructure formation. Therefore, the problem of the mathematical description of
a phase transformation can be reduced to the problem of the evolution of a solid/liquid
phase interface.

A single integral differential equation defining its evolution in an undercooled one-
component liquid was derived for the first time by Nash and Glicksman [7,8]. This
equation for the interface function was then extended for binary systems solidifying in
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local-equilibrium and local-nonequilibrium conditions [9,10], as well as for convective ther-
modiffusion problems [11–13]. An important point is that the boundary integral equation
(BIE) represents the basis for the morphological stability analysis of dendritic crystals and
the selection of their stable growth modes [14–22]. Moreover, the BIE is a formal solution
of various Stefan-like problems and can be used for the numerical modeling of pattern
formation and evolution [23]. In addition, the BIE can also be used for the verification
of crystal growth theories and the comparison of model conclusions with computations
carried out, for example, by the phase-field and enthalpy-based methods or by using direct
simulations of moving-boundary problems [24–28].

It is well known that dendritic crystals reach steady-state growth very quickly [29–33].
Moreover, the solid–liquid interface may reach the kinetic regime of growth when approach-
ing the steady state. Only the attachment/detachment of particles (atoms and molecules) at
the interface controls the intensity of the interface migration. Special interest in the analysis
of the kinetic mode of growth is also seen in the following:

- the explanations of the sharp transition from thermally controlled to kinetically limited
regimes of growth [34–37];

- the interpretation of the data of molecular dynamics where the interface is governed
by interfacial undercooling, i.e., by “kinetic undercooling” [38–41].

Taking a special interest in the study of stationary kinetic modes into account, we
analyze the BIE for a unidirectional stationary crystallization scenario with a steady-state
velocity Vss and show that the crystal tip evolves with a constant velocity V = Vss + Vtr
in the same reference frame (here, Vtr is a constant translational velocity in the moving
reference frame). The theory under question is formulated for two- and three-dimensional
problems describing a stable growth mode of dendritic crystals whose tips represent a
parabola, paraboloid and elliptic paraboloid.

2. Two-Dimensional BIE for Solidifying Pure Liquid

Let us first consider the simplest case of dendritic growth in a single-component
undercooled liquid with a constant (steady-state) velocity Vss in a laboratory reference
frame (see Figure 1). We introduce a characteristic spatial scale ρ and time scale ρ/Vss,
where ρ can be the diameter of the crystal tip or the doubled radius of the curvature. Let
us write down the two-dimensional BIE for the solidification of the pure (chemically one-
component) liquid with the interface function ζ(x, t) by assuming these scales as follows [9]
(see also the Appendix A):

∆− dc

ρ
K(x, t)− βVss − βVss

∂ζ(x, t)
∂t

= IT
ζ (x, t), IT

ζ (x, t) =
PT
2π

∞∫
0

dτ

τ

∞∫
−∞

dx1

×
(

1 +
∂ζ(x1, t− τ)

∂t

)
exp

[
−PT

2τ

(
(x− x1)

2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2
)]

.

(1)

Here, ∆ = cp(T0 − T∞)/Q is the dimensionless undercooling, cp is the thermal capacity,
Q is the latent crystallization heat, T0 is the phase transition temperature, T∞ is the liquid
temperature far from the solid/liquid interface ζ, K is the interface curvature, dc is the
capillary length, β is the kinetic coefficient, PT = ρVss/(2DT) is the Péclet number, DT
is the thermal diffusivity, and x and t are the dimensionless spatial and time variables,
respectively. Equation (1) describes the interface motion, with velocity Vss defining the
driving force ∆, interface curvature K ∝ ρ−1, and the heat transport outgoing the interface;
see the r.h.s. of Equation (1). Note that ∆, dc, ρ, β, Vss, and PT in Equation (1) are assumed
to be constant. The interface function ζ(x, t) should be found as a solution of this equation.
Equation (1) must be supplemented with appropriate initial and boundary conditions.
As an initial condition, one should choose a certain shape of the interface function ζ(x, t),
e.g., a parabola, as is done below. It is also necessary to set boundary conditions reflecting
the geometry of solidification region.
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Figure 1. A scheme of a dendritic tip evolving in a steady-state manner along the spatial axis z.

In the present work, we consider the special case of negligible heat transport to govern
the interface motion. This situation is well known in atomistic simulations where the
interface motion in melting and crystallization is dictated by the atomistic kinetics at the
interface, and the computational domain has (almost) uniform temperature [38–41]. In this
case, the r.h.s. of the BIE (1) can be omitted. Additionally, we only consider the motion of
the crystal tip, where the interface curvature is K ≈ −∂2ζ/∂x2.

Taking this into account, we rewrite Equation (1) as

(∆− βVss)
ρ

dc
+

∂2ζ

∂x2 −
βVssρ

dc

∂ζ

∂t
= 0.

We solve this equation using the Laplace integral transform with respect to the time variable
t. By introducing the Laplace variable p and Laplace image ζ∗(x, p) = ζ∗(x) of the interface
function ζ(x, t) as

ζ∗(x) =
∞∫

0

exp(−pt)ζ(x, t)dt,

we obtain the following equation in the Laplace image space:

∆− βVss

p
ρ

dc
+

d2ζ∗

dx2 −
βVss pρ

dc
ζ∗ +

βVssρ

dc
ζ(x, 0) = 0. (2)

Here, we have taken into account the following Laplace transform formula:

ζ(x, t)→ pζ∗(x)− ζ(x, 0), const.→ const.
p

.

The solution of Equation (2) reads as

ζ∗(x) =
√

A
2
√

p
exp

(
−
√

pAx
) ∞∫

0

(ζ(x1, 0)− ζ(−x1, 0))dx1 +
∆ρ− Adc

p2 Adc

+

√
A

2

 ∞∫
x

exp
[
−
√

pA(x1 − x)
]

√
p

ζ(x1, 0)dx1 +

x∫
−∞

exp
[√

pA(x1 − x)
]

√
p

ζ(x1, 0)dx1

,

(3)

where A = βVssρ/dc.
Let us assume ζ(x, 0) = −x2/2 as the initial condition for the interface function in the

form of a parabola. By substituting ζ(x, 0) into (3), we arrive at
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ζ∗(x) =
∆ρ− Adc

p2 Adc

−
√

A
4
√

p

 +∞∫
x

exp
(√

pA(x− x1)
)

x2
1dx1 +

x∫
−∞

exp
(√

pA(x1 − x)
)

x2
1dx1

.
(4)

By integrating the r.h.s. of Equation (4), we obtain

ζ∗(x) =
(

∆ρ− Adc

Adc
− 1

A

)
1
p2 −

x2

2p
. (5)

By calculating the inverse Laplace transform of Equation (5), we come to [42,43]

ζ(x, t) =
(

∆ρ− Adc

Adc
− 1

A

)
t− x2

2
. (6)

Expression (6) shows that the dendrite grows in a moving reference frame with the
following constant translational velocity:

Vtr = Vss

(
∆− βVss

βVss
− dc

βVssρ

)
. (7)

This means that the dendrite evolves with the velocity V = Vss + Vtr in the laboratory
reference frame. As is easily seen, the contribution of Vtr is caused by atomic kinetics
(parameter β). Figure 2 shows the interface function ζ(x, t) versus the rescaled undercooling
∆/(βV) (panel (a)) and spatial coordinate x (panel (b)). As is easily seen, this function
increases with an increasing driving force ∆/(βV) and time t. This is explained by the
growth of the dendritic tip in the reference frame moving with the steady-state velocity Vss.
As can be easily understood, the velocity of this growth is constant and equal to Vtr.

Figure 2. (a) The interface function ζ versus ∆/βV at fixed x = 1 and t. (b) The interface function
ζ versus spatial coordinate x at fixed ∆/βV = 1 and t. The calculations are made according to
Equation (6).
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3. Two-Dimensional BIE for Solidifying Pure and/or Binary Liquid

Let us now consider the case of crystal growth in a binary undercooled liquid with a
solute concentration Cl∞ in the binary liquid or solution far from the solid/liquid interface.
In this case, the BIE takes the following form [9] (see also the Appendix A):

− Q
mcp

[
∆− dc

ρ
K− βVss − βVss

∂ζ

∂t
− IT

ζ

]
− Cl∞ = IC

ζ ,

IC
ζ =

(1− k0)PC
2π

∞∫
0

dτ

τ

∞∫
−∞

dx1Ci(x1, t− τ)

(
1 +

∂ζ(x1, t− τ)

∂t

)

× exp
[
−PC

2τ

(
(x− x1)

2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2
)]

.

(8)

Here, m and k0 are the equilibrium liquid’s slope and partition coefficient, respectively,
PC = ρVss/(2DC), DC is the diffusion coefficient, and Ci is the interfacial concentration.

Again, let us assume kinetically limited crystal growth with K ≈ −∂2ζ/∂x2. This leads
to IT

ζ → 0 and IC
ζ → 0. In this case, Equation (8) transforms to

∆ +
mcpCl∞

Q
+

dc

ρ

∂2ζ

∂x2 − βVss − βVss
∂ζ

∂t
= 0. (9)

Equation (9) can be solved using the Laplace transform by analogy with the aforemen-
tioned problem for a pure liquid. By omitting all mathematical manipulations, let us write
out the final result as follows:

ζ(x, t) =
(

∆Q + mcpCl∞

QβVss
− 1− dc

βVssρ

)
t− x2

2
. (10)

This means that the translational velocity for a binary system becomes

Vtr = Vss

(
∆Q + mcpCl∞

QβVss
− 1− dc

βVssρ

)
. (11)

As is easily seen, expression (11) transforms into expression (7) in the absence of a solute
concentration, i.e., Cl∞ = 0.

4. Three-Dimensional BIE for a Paraboloid of Revolution and Elliptic Paraboloid
Growing from Undercooled Binary Liquid

We now consider three-dimensional crystal growth in an undercooled binary melt or
solution. Again, considering kinetically controlled interface motion (neglecting heat and
mass transport), we write out the corresponding BIE in the form of

∆ +
mcpCl∞

Q
+

dc

ρ

(
∂2ζ

∂x2 +
∂2ζ

∂y2

)
− βVss − βVss

∂ζ

∂t
= 0, (12)

where the interface curvature is chosen as

K ≈ − ∂2ζ

∂x2 −
∂2ζ

∂y2

in the vicinity of a dendritic tip.
We solve this equation by analogy with the two-dimensional case. Considering the

two shapes, a paraboloid of revolution and an elliptic paraboloid, we obtain the interface
functions in the forms of

ζ(x, y, t) =
(

∆Q + mcpCl∞

βVssQ
− 2dc

βVssρ
− 1
)

t− x2

2
− y2

2
, (13)
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ζ(x, y, t) =
(

∆Q + mcpCl∞

βVssQ
− 2dc

βVssρ(1− a2)
− 1
)

t− x2

2(1− a)
− y2

2(1 + a)
, (14)

where a is the ellipticity parameter. The translation velocity for these two shapes has the
respective forms of

Vtr =


Vss

(
∆Q + mcpCl∞

βVssQ
− 2dc

βVssρ
− 1
)

, paraboloid of revolution,

Vss

(
∆Q + mcpCl∞

βVssQ
− 2dc

βVssρ(1− a2)
− 1
)

, elliptic paraboloid.
(15)

Note that the second line of (15) transforms into the first line at a = 0 when an elliptical
paraboloid becomes a paraboloid of revolution. In addition, the first line of (15) transforms
into a two-dimensional case that accounts for the double curvature in three-dimensional
geometry, i.e., K3D = 2K2D.

5. Conclusions

In summary, this paper addresses the BIE for the steady-state growth mode of dendritic
crystals. First, we show that a dendrite whose tip is connected with the steady-state crystal-
lization velocity Vss grows in this reference frame with a constant translational velocity Vtr.
As a result, the dendrite tip moves with a constant velocity V = Vss + Vtr in a laboratory
reference frame. Accordingly, the same velocity V has been observed experimentally as the
velocity of the recalescence front during the solidification of undercooled liquid droplets in
electromagnetic levitators and other crystallization facilities (see, among others, [44,45]).

The constant translational crystallization velocity Vtr has been found to be a function
of the established liquid undercooling ∆, dendrite tip diameter ρ, attachment kinetics of
the atoms to the surface of the growing crystal β, steady-state velocity Vss, and capillary
constant dc.

The main outcomes following from the aforementioned analysis are as follows:
(i) Considering kinetically limited crystal growth (neglecting heat and mass transport),

we conclude that this process always occurs in a steady-state manner. In other words,
there is no time to reach stationary growth, because the crystallization process is always in a
steady state.

(ii) Moving to the frame of reference associated with the crystal surface (a system
moving with the steady-state velocity Vss), we see that a dendrite grows with a constant
velocity Vtr in this system. Its growth is caused by the driving force (undercooling ∆) and
the attachment of the atoms to the interphase boundary (kinetic parameter β). As this
takes place, we can choose a reference frame that is always connected with the dendritic
tip, i.e., Vtr = 0, if Vss = V = ∆/β − dc/(βρ) for the two-dimensional solidification of
a pure liquid (the reference frame following the growth of the crystal tip). In a more
general case, we find this velocity from the second line of expression (15) as Vss = V =
∆/β + mcpCl∞/(βQ)− 2dc/(βρ(1− a2)) for the three-dimensional thermodiffusion case.

(iii) Considering kinetically limited crystal growth (neglecting heat and mass trans-
port), we can use the aforementioned expressions for Vss = V (at Vtr = 0) as aux-
iliary relations to find the selection constant entering the criterion of stable dendritic
growth [10,20,46].

(iv) The translational velocity Vtr is defined by expressions (7), (11), or (15) in the case
of kinetically limited crystallization when the integral contributions IT

ζ and IC
ζ are small

enough. In a more general case, and especially in the case of rapid crystallization, Vtr
should be numerically found from the BIE [10] that contains the integral contributions IT

ζ

and IC
ζ .
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(v) To move to a frame of reference moving together with the dendrite tip (moving
with the constant velocity V = Vtr relative to the laboratory coordinate system), we can
choose Vss = 0 (since this velocity is arbitrary). In this case, the BIE becomes

− Q
mcp

[
∆− dc

ρ
K− βV

(
1 +

∂ζ

∂t

)
− IT

ζ

]
− Cl∞ = IC

ζ ,

V = Vtr =
∆Q + mcpCl∞

βQ
− 2dc

βρ(1− a2)
,

(16)

where IT
ζ and IC

ζ are defined by expressions (1) and (8), respectively, with PT = ρV/(2DT)

and PC = ρV/(2DC). Here, the characteristic spatial and time scales are chosen in terms of
ρ and ρ/V, respectively. As this takes place, the Ivantsov solutions and selection criterion
should be written in terms of V. Note that the second line of Equation (16) takes place only
when β 6= 0.

The present theory can be extended to high-speed crystallization processes, which
are described by a more complex BIE that takes into account the rate of atomic jumps to
neighboring vacant positions [10]. From a mathematical point of view, such processes are
described by the hyperbolic equation of impurity diffusion changing the concentration
part of the BIE. In addition, the presence of a constant translational velocity Vtr (the growth
velocity of the dendritic tip in any reference frame moving with the steady-state velocity
Vss with respect to the laboratory reference frame) should be taken into account when
considering the evolution of various patterns and solid/liquid interfaces [37,47–54].
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Appendix A

Let us now demonstrate how to derive the boundary integral Equations (1) and (8)
analyzed above when considering pure thermal and thermochemical dendritic growth.
At first, we consider the most simple case of the pure thermal boundary-value problem
when the solid/liquid interface propagates into an undercooled liquid due to proper ther-
mal gradients. Physically, the preferable direction in space is controlled by the anisotropy
of the surface energy and atomic kinetics. To derive the boundary integral for the interface
function, we apply the Green’s function method previously considered in Refs. [55,56].

So, we consider a propagation of the curved solid/liquid interface into a pure under-
cooled liquid. The initial position of a flat interface lies in the x-plane (which is perpendicu-
lar to the growth direction z; see Figure A1). A curved solid/liquid phase interface then
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moves along the z axis and is characterized by the function zintrerface = ζ(x, t), where t is
the process time. At the solid/liquid interface, we have the following Gibbs–Thomson and
heat balance equations:

T = Tf −
dcQ
cp

K− β̃

(
Vss +

∂ζ

∂t

)
, (A1)

DT(∇Ts −∇Tl) · ds =
Q
cp

(
Vss +

∂ζ

∂t

)
d 2x. (A2)

Here, T stands for the temperature, Tf is the freezing temperature of a flat phase interface,
β̃ is the anisotropic kinetic coefficient, ds is the vector of the surface area directed towards
the liquid phase, indices “s” and “l” denote the solid and liquid substances, respectively,
and the solid/liquid interface curvature K in the 2D and 3D geometries is given by the
following:

K(ζ) = − ∂2ζ/∂x2[
1 + (∂ζ/∂x)2

]3/2 , K(ζ) = −∇ ·

 ∇ζ√
1 + (∇ζ)2

. (A3)

Figure A1. The solid/liquid interface ζ(x, t) moving into an undercooled liquid.

The temperature conductivity equation in the moving coordinate system reads as(
DT∇2 + Vss

∂

∂z
− ∂

∂t

)
T = 0. (A4)

Using the Green’s function G(p|p1) for this equation, we have(
DT∇2

1 −Vss
∂

∂z1
+

∂

∂t1

)
G(p|p1) = −δ(p− p1), (A5)

where δ is the unit impulse, p denotes the point (x, z, t), and G equals zero at t1 > t.
Next, we multiply the expressions (A4) and (A5) by G and T, subtract one equation

from the other, and integrate the obtained formula. As a consequence, we obtain

T(p) = DT

∫ t

−∞
dt1

∫
S1

ds1[T(p1)∇1G(p|p1)− G(p|p1)∇1T(p1)]

+Vss

∫ t

−∞
dt1

∫
Λ1

d2x1dz1
∂

∂z1
[G(p|p1)T(p1)]. (A6)

Here, Λ1 is a domain including p and excluding the phase boundary, S1 is the surface
containing Λ1, and ds1 is the vector square on S1 pointing along the normal to this surface.
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Using the Fourier transform for the Green’s function from expression (A5), we obtain

G(p|p1) =
∫ djk

(2π)j

∫
C

dω

2π
Ĝ(k, ω)eik·(r−r1)+iω(t−t1), (A7)

where r represents the vector (x, z), i stands for the imaginary unit, the path C passes
from −∞ to +∞ and lies lower than all singularities in the ω plane to fulfill the causality
condition [56], and the integral kernel looks like

Ĝ(k, ω) =
1

DTk2 − iVsskz + iω
. (A8)

Let us especially underline that j = 2 and j = 3 in the 2D and 3D geometries, respectively.
By integrating expression (A7) and using the inverse Fourier transform on expres-

sion (A8), we come to

G(p|p1) =
1

(4πDTτ)j/2 exp
(
− Σ2

4DTτ

)
,

τ = t− t1, Σ2 = |x− x1|2 + (z− z1 + Vssτ)2. (A9)

The condition of temperature continuity in the vicinity of the phase boundary leads to
the conclusion that the summand proportional to ∇1G in (A6) vanishes. By evaluating the
second integral summand with ∇1T in (A6) using expression (A2) and assuming that the
last summand in (A6) gives T∞ [56], we obtain

T(p) = T∞ +
Q
cp

t∫
−∞

dt1

∞∫
−∞

∞∫
−∞

d2x1G(p|p1)

(
Vss +

∂ζ1

∂t1

)
. (A10)

Here, T∞ represents the far-field temperature, and ζ1 means ζ(x1, t1).
Now, we bring the point p closer to the phase boundary and combine expressions (A1)

and (A10):

∆− dcK− β

(
Vss +

∂ζ

∂t

)
−

t∫
−∞

dt1

∞∫
−∞

∞∫
−∞

d2x1Ḡ(p|p1)

(
Vss +

∂ζ(x1, t1)

∂t1

)
= 0. (A11)

Here, ∆ = (Tf − T∞)cp/Q stands for the dimensionless melt undercooling, β = β̃cp/Q
stands for the kinetic coefficient,

Ḡ(p|p1) =
1

(4πDTτ)j/2 exp
(
− Σ̄2

4DTτ

)
,

Σ̄2 = |x− x1|2 + [ζ(x, t)− ζ(x1, t1) + Vssτ]2.

Now, we introduce the dimensionless variables as follows (ρ means a typical length):

x′ =
x
ρ

, x′1 =
x1

ρ
, τ′ =

Vssτ

ρ
, ζ ′ =

ζ

ρ
, t′ =

Vsst
ρ

, t′1 =
Vsst1

ρ
, τ′ = t′ − t′1.

Expression (A11) becomes (for simplicity, we omitted all primes):

∆− dc

ρ
K− βVss

(
1 +

∂ζ(x, t)
∂t

)
= IT

ζ . (A12)
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Here, the right-hand side reads as

IT
ζ = PT

∞∫
0

dτ

2πτ

∞∫
−∞

dx1

[
1 +

∂ζ(x1, t− τ)

∂t

]

× exp
{
−PT

2τ

[
(x− x1)

2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2
]}

(A13)

in the 2D geometry, and as

IT
ζ = P3/2

T

∞∫
0

dτ

(2πτ)3/2

∞∫
−∞

∞∫
−∞

d 2x1

[
1 +

∂ζ(x1, t− τ)

∂t

]

× exp
{
−PT

2τ

[
|x− x1|2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2

]}
(A14)

in the 3D geometry. Here, PT = ρVss/(2DT) stands for the thermal Péclet number,
and K(ζ(x, t)) is defined by the formulas in (A3). Let us especially highlight that Equa-
tion (A12) is the rescaled law for the phase boundary migration during the crystallization
of a single-component undercooled melt. This equation describes both the 2D and 3D cases
of the interface motion.

As a special note, expressions (A12) and (A13) in the two-dimensional geometry match
the previous studies of morphological stability and growth mode selection for dendritic
crystals [19–22,35]. In the three-dimensional geometry, assuming that ∂ζ/∂t = 0 and
β̃ = 0, we conclude that Equations (A12) and (A14) match the equations from previous
works [17,47]. Also, note that Equations (A12)–(A14) were studied in [18] in the case of
β̃ = 0 when dealing with the two- and three-dimensional geometries of crystal growth.

Let us now consider the phase interface motion controlled by the simultaneous occur-
rence of thermal and concentration gradients. As this takes place, the anisotropy of the
crystal surface energy and the atomic kinetics define the preferable direction of the interface
motion. The process under question takes place in undercooled binary melts and solutions
when the diffusion of dissolved impurities plays an important role in the dynamics of a
curved solid/liquid phase boundary.

We consider an undercooled binary liquid consisting of noninteracting particles of
two types: particles of type A (e.g., the solvent) and particles of type B (e.g., the dissolved
substance). In addition, we assume that isobaric conditions take place in the non-isothermal
liquid being considered, under which crystallization occurs without a change in the mass
density, i.e., we neglect shrinkage when the substance passes from the liquid state to
the solid form. We also assume that the heat and mass transfer in the liquid and at the
interfacial boundary occur according to the conductive mechanism. In other words, we
consider that there is no convection in the liquid. Moreover, we shall be neglectful of the
chemical diffusion in the solid material owing to its much slower rate as compared to the
diffusion in the liquid (see the typical estimates in [57–59]). These hypotheses enable us to
write down the mass balance equation at the moving phase boundary in the form of

−DC∇Cl · ds = (1− k0)Ci

(
V +

∂ζ

∂t

)
d 2x, (A15)

where Cl stands for the solute concentration of a dissolved component, and Ci is the solute
concentration at the curved solid/liquid boundary. The phase transition temperature at
this boundary when considering a binary system reads as

T = Tf −
dcQ
cp

K + mCi − β̃

(
Vss +

∂ζ

∂t

)
. (A16)



Axioms 2023, 12, 1016 11 of 14

The transport of dissolved impurities in the moving coordinate system is given by a
diffusion equation: (

DC∇2 + Vss
∂

∂z
− ∂

∂t

)
Cl = 0. (A17)

It should be mentioned that the implementation of atomic kinetics into thermal and ther-
mosolutal models of the phase interface motion, expressions (A1) and (A16), has been made
earlier using alternative approaches [60,61]. This allows us to provide a sufficiently transpar-
ent description of the thermochemical phenomena for different steps of patterns evolution.

Taking the consistency of Equations (A4) and (A17) into account, we can change DT to
DC and derive by analogy with Equation (A6) the solute concentration:

Cl(p) = DC

∫ t

−∞
dt1

∫
S1

ds1{∇1[Cl(p1)GC(p|p1)]− 2GC(p|p1)∇1Cl(p1)}

+Vss

∫ t

−∞
dt1

∫
Λ1

d2x1dz1
∂

∂z1
[GC(p|p1)Cl(p1)]. (A18)

Note that the integral of the contribution ∇1[Cl(p1)GC(p|p1)] vanishes on the basis of the
Kelvin–Stokes theorem (when integrating the ∇ operator about a closed loop S1).

The integral of the contribution with GC(p|p1)∇1Cl(p1) can be calculated using expres-
sion (A15) when the concentration flux into the solid material is infinitely small. The last
contribution is equivalent to the far-field solute concentration Cl∞ in the melt (see, for de-
tails, [56]). Keeping this in mind, we rewrite (A18) in the form of

Cl(p) = Cl∞ + 2(1− k0)

t∫
−∞

dt1

∞∫
−∞

∞∫
−∞

d2x1GC(p|p1)Ci(x1, t1)

(
Vss +

∂ζ1

∂t1

)
, (A19)

GC(p|p1) =
1

2(4πDCτ)j/2 exp
(
− Σ2

4DCτ

)
.

By combining Equations (A12) and (A16), we derive the interfacial concentration as
follows

Ci(x, t) = − Q
mcp

[
∆− dc

ρ
K− βVss

(
1 +

∂ζ(x, t)
∂t

)
− IT

ζ

]
. (A20)

Now, Equations (A19) and (A20) enable us to get the boundary integral equation for
thermosolutal model in the form of

− Q
mcp

[
∆− dc

ρ
K− βVss

(
1 +

∂ζ(x, t)
∂t

)
− IT

ζ

]
− Cl∞ = IC

ζ (A21)

with

IC
ζ = (1− k0)PC

∞∫
0

dτ

2πτ

∞∫
−∞

dx1Ci(x1, t− τ)

[
1 +

∂ζ(x1, t− τ)

∂t

]

× exp
{
−PC

2τ

[
(x− x1)

2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2
]}

(A22)

in the 2D geometry and

IC
ζ = (1− k0)P3/2

C

∞∫
0

dτ

(2πτ)3/2

∞∫
−∞

∞∫
−∞

d 2x1Ci(x1, t− τ)

[
1 +

∂ζ(x1, t− τ)

∂t

]

× exp
{
−PC

2τ

[
|x− x1|2 + (ζ(x, t)− ζ(x1, t− τ) + τ)2

]}
(A23)
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in the 3D geometry. Here, PC = ρVss/(2DC) = PT DT/DC is the solute concentration
Péclet number.

In summary, the derived integrals (A13) and (A14) for the pure thermal problem and
(A22) and (A23) for the concentration problem define the general thermosolutal boundary
integral Equation (A21). This equation defines the interface function ζ(x, t) defining the
propagation of the curved crystallization front into an undercooled binary liquid.

This equation contains the case of the pure chemical problem, which follows from
(A21) using the limiting transitions DT → ∞ and PT → 0 when IT

ζ , defined by expressions
(A13) and (A14), becomes negligibly small.

Let us especially highlight that the boundary integral Equation (A21) with the integral
contributions (A13), (A14), (A22), and (A23) should be solved analytically and/or numeri-
cally for various shapes of growing patterns and different crystallization conditions (e.g.,
for steady and unsteady crystal growth scenarios). For example, the evolution of dendrite
tips, envelops, and primary stems, as well as the dendrite tip velocity and tip diameter, can
be found using this equation. When dealing with the unsteady growth of various patterns
and structures, we can answer the question about their nonstationary time evolution and
their approaching steady-state conditions on the basis of the single integral differential
Equation (A21). The answer to this question is significant when it comes to describing the
materials microstructures obtained in certain crystallization conditions.
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