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Abstract: The purpose of this paper is to attain the existence of coincidences and common fixed points
in four mappings satisfying (ψ, β, L)-generalized contractive conditions in the framework of partially
ordered b-metric spaces. The main results presented in this paper generalize some recent results in
the existing literature. Furthermore, a nontrivial example is presented to support the obtained results.
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1. Introduction

It is world-renowned that the Banach contraction principle (for short, BCP) (see [1])
occupies a significant role in different fields of basic mathematics, applied mathematics
and other subjects, and it has been generalized and improved in many aspects. Numerous
generalizations and improvements come forth by changing metric spaces into general
abstract metric spaces (see [2,3]). In [4], Vulpe et al. introduced b-metric space (sometimes
so-called metric-type space, see [5]) as a new generalization of usual metric space. He
provided the generalized BCP in b-metric space. From then on, a large number of papers
have considered fixed point theory and its applications or variational methods for single-
valued and multi-valued operators in b-metric spaces (the reader may see [5–10] and the
related references therein). The mappings satisfying certain contractive conditions can be
utilized to establish the existence of solutions to all kinds of operator equations such as
integral equations, differential equations and fractional differential equations. Beg and
Abbas (see [11]) obtained common fixed point theorems by extending a weakly contractive
condition into two mappings. Abbas et al. (see [12]) investigated common fixed points for
four mappings satisfying generalized weakly contractive conditions in complete partially
ordered metric spaces. Esmaicy et al. (see [13]) initiated coincidence point results for four
mappings in partially ordered metric spaces and used their results to seek the common
solution of two integral equations. Recently, Abbas et al. (see [14]) acquired coincidence and
common fixed points for four mappings satisfying generalized (ψ, β)-contractive conditions
in complete partially ordered metric spaces.

Based on the previous work, throughout this paper, we aim to established coincidence
and common fixed points for four mappings under generalized (ψ, β, L)-contractive con-
ditions in complete partially ordered b-metric spaces. Our results make great progress in
extending, unifying and generalizing the corresponding results in [14–16].
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2. Preliminaries

In this paper, unless there are special statements, we always denote R, R+, N and
N∗ as the set of all real numbers, the set of all non-negative real numbers, the set of all
non-negative integers and the set of all positive integers, respectively.

First, we give some basic definitions and results which will be needed in what follows.

Definition 1 ([17]). Let X be a nonempty set and d : X× X → R+ a mapping satisfying

(1) d(ξ, η) = 0 if and only if ξ = η;
(2) d(ξ, η) = d(η, ξ) for all ξ, η ∈ X;
(3) d(ξ, η) ≤ s[d(ξ, ζ) + d(ζ, η)] for all ξ, η, ζ ∈ X,

where s ≥ 1 is a given real number, d is then said to be a b-metric on X, and (X, d) is said
to be a b-metric space. If (X,�) is still a partially ordered set, then (X,�, d) is said to be a
partially ordered b-metric space.

Otherwise, for more notions such as b-convergence, b-completeness, b-Cauchy se-
quence and b-continuity in b-metric spaces, the reader may refer to [1,4–11,13,15–28] and
the references mentioned therein.

In general, b-metric is not continuous; kindly see the following examples.

Example 1 ([16]). Let X = N∗ ∪ {∞}; define a mapping d : X× X → R+ using

d(ξ, η) =


0, when ξ = η;∣∣∣ 1

ξ −
1
η

∣∣∣, when one of ξ, η is even and another is distinctly even or infinity;

5, when one of ξ, η is odd and another is distinctly odd or infinity;
2, otherwise.

It is easy to see that when

d(ξ, ζ) ≤ 5
2
[d(ξ, η) + d(η, ζ)] (ξ, η, ζ ∈ X),

then (X, d) is a b-metric space with coefficient s = 5
2 . Put ξn = 2n (n ∈ N), then

d(ξn, ∞) =
1

2n
→ 0 (n→ ∞),

so ξn → ∞ (n→ ∞), but d(ξn, 1) = 2 9 5 = d(∞, 1) (n→ ∞). That is to say, the b-metric is
not continuous.

Example 2 ([6]). Let X = R and α > 1 be a constant. Define a mapping d : X× X → R+ using

d(ξ, η) =

{
|ξ − η|, ξη 6= 0,
α|ξ − η|, ξη = 0,

for all ξ, η ∈ X.

Then, (X, d) is a b-metric space with coefficient s = α, but the b-metric d is not continuous.

Definition 2 ([20,27,28]). Let (X,�, d) be a partially ordered b-metric space and f , g, h be self-
mappings on X such that f (X) ∪ g(X) ⊆ h(X).

(1) If ξ, η ∈ X, ξ � η or η � ξ holds, then the elements ξ, η are called comparable;
(2) If f ξ � g f ξ for all ξ ∈ X, then the pair ( f , g) is called partially weakly increasing;
(3) If f ξ � gη for all η ∈ h−1( f ξ), then the pair ( f , g) is called partially weakly increasing with

respect to h;
(4) If lim

n→∞
d( f gξn, g f ξn) = 0, whenever {ξn} is a sequence in X such that lim

n→∞
f ξn =

lim
n→∞

gξn = t for some t ∈ X, then the pair ( f , g) is called compatible;
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(5) If w = f ξ = gξ for some ξ in X, then ξ is called a coincidence point of f and g, and w is
called a point of coincidence of f and g.

(6) If f and g commute at their coincidence points, i.e., f gξ = g f ξ, where f ξ = gξ, then the pair
( f , g) is called weakly compatible;

(7) If ξ � f ξ for each ξ ∈ X, then f is called dominating. If f ξ � ξ for each ξ ∈ X, then f is
called dominated.

Example 3 ([14]). Let f : X → X be a mapping defined by f ξ = ξ
1
4 , where X = [0, 1] is endowed

with usual ordering. Clearly, ξ ≤ ξ
1
4 = f ξ for all ξ ∈ X; thus, f is a dominating map.

Example 4 ([14]). Let f : X → X be a mapping defined by f ξ = 1
ξ+1 , where X = [1,+∞) is

endowed with usual ordering. Clearly, f ξ = 1
ξ+1 ≤ ξ for all ξ ∈ X; hence, f is a dominated map.

An assertion similar to the following lemma was used (and proved) in the course of
proofs of several fixed point results in various articles.

Lemma 1 ([26]). Every sequence {ξn}n∈N from a b-metric space (X, d) with the property that
there exists γ ∈ [0, 1) such that

d(ξn, ξn+1) ≤ γd(ξn−1, ξn)

for every n ∈ N is b-Cauchy.

Lemma 2. Let (X, d) be a b-metric space with s ≥ 1 and {ηn} a sequence in X such that
lim

n→∞
d(ηn+1, ηn) = 0. If {η2n} or {η2n−1} is a b-Cauchy sequence, then {ηn} is a b-Cauchy

sequence in X.

Proof. We only prove the case that {η2n} is a b-Cauchy sequence. The another case can be
proved similarly.

In view of lim
n→∞

d(ηn+1, ηn) = 0, then for every ε > 0, there is a natural number N1

such that, for all n ≥ N1,

d(ηn+1, ηn) <
ε

3s2 . (1)

Since {η2n} is a b-Cauchy sequence, then for the above ε > 0 there is a natural number
N2 such that, for all n ≥ N2 and any p ∈ N, one has

d(η2n, η2n+2p) <
ε

3s2 . (2)

Now, let N = max{N1, N2}. We shall claim that, for all n > N, it satisfies d(ηn, ηn+p) < ε.
We complete the proof with four cases.

(c1) If n and p are even numbers, then, by (2), it follows that

d(ηn, ηn+p) <
ε

3s2 < ε.

(c2) If n is an odd number and n + p is an even number, then, by (1) and (2), one has

d(ηn, ηn+p) ≤ s[d(ηn, ηn+1) + d(ηn+1, ηn+p)] < s
( ε

3s2 +
ε

3s2

)
< ε.

(c3) If n is an even number and n + p is an odd number, then, by (1) and (2), it is easy to
see that

d(ηn, ηn+p) ≤ s[d(ηn, ηn+p+1) + d(ηn+p, ηn+p+1)] < s
( ε

3s2 +
ε

3s2

)
< ε.
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(c4) If n and n + p all are odd numbers, then, by (1) and (2), we have

d(ηn, ηn+p) ≤ s[d(ηn, ηn+1) + d(ηn+1, ηn+p)]

≤ sd(ηn, ηn+1) + s2[d(ηn+1, ηn+p+1) + d(ηn+p, ηn+p+1)]

≤ s · ε

3s2 + s2 ·
( ε

3s2 +
ε

3s2

)
< ε.

Hence, {ηn} is a b-Cauchy sequence.

3. Main Results

In this section, we improve and generalize some common fixed point theorems from
several references in several sides.

Throughout this paper, let P be the family of all functions β : [0,+∞) → [0, 1).
Let Ψ be the family of all functions ψ : R+ → R+ satisfying the condition that ψ is
continuous, nondecreasing and ψ(t) = 0 if and only if t = 0. In this case, ψ is called altering
distance function.

Let (X,�, d) be a partially ordered b-metric space with s > 1 and f , g, S, T : X → X
be mappings. If there exist β ∈ P and ψ ∈ Ψ and a constant L ≥ 0 such that for every two
comparable elements ξ, η ∈ X, it satisfies

ψ(sεd( f ξ, gη)) ≤ β(M(ξ, η))ψ
(

max
{

d(Sξ, Tη), d(Sξ, f ξ), d(Tη, gη)
})

+ Lψ(N(ξ, η)), (3)

where

M(ξ, η) = ψ

(
max

{
d(Sξ, Tη), d(Sξ, f ξ), d(Tη, gη),

d(Sξ, gη) + d(Tη, f ξ)

2s

})
, (4)

N(ξ, η) = min
{

d(Sξ, Tη), d(Sξ, gη), d(Tη, f ξ), d(gη, Tη), d(ξ, gη)
}

, (5)

and ε > 0 is a constant, then ( f , g) is said to be a (ψ, β, L)-ordered contractive pair with
respect to S and T.

Theorem 1. Let f , g, S and T be self-mappings on a partially ordered b-complete b-metric space
(X,�, d) with s > 1. Let f X ⊆ TX and gX ⊆ SX. Suppose that ( f , g) of dominating maps
is a (ψ, β, L)-ordered contractive pair with respect to dominated maps S and T. If {ξn} is a
nondecreasing sequence with ξn � ηn for all n and ηn → u implies ξn � u and either

(i) f or S is b-continuous, ( f , S) are compatible and (g, T) are weakly compatible;
(ii) g or T is b-continuous, (g, T) are compatible and ( f , S) are weakly compatible, then the

mappings f , g, S and T possess a common fixed point in X. Moreover, the set of common
points of f , g, S and T is well ordered if f , g, S and T have a unique common fixed point.

Proof. Let ξ0 be an arbitrary point of X. Similar to [14], we construct a sequence {ηn} in
X such that η2n−1 = Tξ2n−1 = f ξ2n−2 and η2n = Sξ2n = gξ2n−1. Since f , g are dominating
maps and S, T are dominated maps, it follows that ξ2n−2 � f ξ2n−2 = Tξ2n−1 � ξ2n−1 and
ξ2n−1 � gξ2n−1 = Sξ2n � ξ2n. Thus, for all n ≥ 1, we have ξn � ξn+1.

Without loss of generality, we assume d(η2n, η2n+1) > 0 for every n. If not, then
η2n0 = η2n0+1 for some n0 ∈ N. From (3) to (5), we obtain

ψ(sεd(η2n0+1, η2n0+2)) = ψ(sεd( f ξ2n0 , gξ2n0+1))

≤ β(M(ξ2n0 , ξ2n0+1))× ψ(max{d(Sξ2n0 , Tξ2n0+1), d(Sξ2n0 , f ξ2n0), d(Tξ2n0+1, gξ2n0+1)})
+ Lψ(N(ξ2n0 , ξ2n0+1))

= β(M(ξ2n0 , ξ2n0+1))× ψ(max{d(η2n0 , η2n0+1), d(η2n0 , η2n0+1), d(η2n0+1, η2n0+2)})
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+ Lψ(N(ξ2n0 , ξ2n0+1)) (6)

= β(M(ξ2n0 , ξ2n0+1))× ψ(max{0, 0, d(η2n0+1, η2n0+2)})
= β(M(ξ2n0 , ξ2n0+1))ψ(d(η2n0+1, η2n0+2))

≤ ψ(d(η2n0+1, η2n0+2)),

where

N(ξ2n0 , ξ2n0+1))

= min{d(Sξ2n0 , Tξ2n0+1), d(Sξ2n0 , gξ2n0+1), d(Tξ2n0+1, f ξ2n0), d(gξ2n0+1, Tξ2n0+1), d(ξ2n0 , gξ2n0+1)}
= min{d(η2n0 , η2n0+1), d(η2n0 , η2n0+2), d(η2n0+1, η2n0+1), d(η2n0+2, η2n0+1), d(ξ2n0 , η2n0+2)}
= min{0, d(η2n0 , η2n0+2), 0, d(η2n0+2, η2n0+1), d(ξ2n0 , η2n0+2)}
= 0,

then

ψ(N(ξ2n0 , ξ2n0+1)) = 0.

Thus, by the monotonicity of function ψ, it is valid from (6) that

sεd(η2n0+1, η2n0+2) ≤ d(η2n0+1, η2n0+2),

that is,

d(η2n0+1, η2n0+2) ≤
1
sε

d(η2n0+1, η2n0+2),

so d(η2n0+1, η2n0+2) = 0 (because sε > 1). Hence, η2n0+1 = η2n0+2.
Following similar arguments, we obtain η2n0+2 = η2n0+3. Thus, {ηn} becomes a

constant sequence, and η2n0 is the common fixed point of f , g, S and T. In this case,
the conclusion we need to prove is clear.

Now, we take d(η2n, η2n+1) > 0 for each n. As ξ2n and ξ2n+1 are comparable, by
inequality (3) we have

ψ(sεd(η2n+1, η2n+2)) = ψ(sεd( f ξ2n, gξ2n+1))

≤ β(M(ξ2n, ξ2n+1))× ψ(max{d(Sξ2n, Tξ2n+1), d(Sξ2n, f ξ2n), d(Tξ2n+1, gξ2n+1)})
+ Lψ(N(ξ2n, ξ2n+1))

= β(M(ξ2n, ξ2n+1))× ψ(max{d(η2n, η2n+1), d(η2n, η2n+1), d(η2n+1, η2n+2)})
+ Lψ(N(ξ2n, ξ2n+1))

= β(M(ξ2n, ξ2n+1))× ψ(max{d(η2n, η2n+1), d(η2n+1, η2n+2)}),
< ψ(max{d(η2n, η2n+1), d(η2n+1, η2n+2)}),

which follows immediately from the monotonicity of function ψ that

sεd(η2n+1, η2n+2) < max{d(η2n, η2n+1), d(η2n+1, η2n+2)}. (7)

Now, if
d(η2n, η2n+1) ≤ d(η2n+1, η2n+2),

then by using (7) we have

sεd(η2n+1, η2n+2) < d(η2n+1, η2n+2),

which leads to a contradiction because of sε > 1. Therefore, d(η2n, η2n+1) > d(η2n+1, η2n+2).
In this case, we have

sεd(η2n+1, η2n+2) < d(η2n, η2n+1),
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which implies that

d(η2n+1, η2n+2) <
1
sε

d(η2n, η2n+1). (8)

Again, by inequality (3) we have

ψ(sεd(η2n+1, η2n)) = ψ(sεd( f ξ2n, gξ2n−1))

≤ β(M(ξ2n, ξ2n−1))× ψ(max{d(Sξ2n, Tξ2n−1), d(Sξ2n, f ξ2n), d(Tξ2n−1, gξ2n−1)})
+ Lψ(N(ξ2n, ξ2n−1))

= β(M(ξ2n, ξ2n−1))× ψ(max{d(η2n, η2n−1), d(η2n, η2n+1), d(η2n−1, η2n)}) (9)

+ Lψ(N(ξ2n, ξ2n−1))

= β(M(ξ2n, ξ2n−1))× ψ(max{d(η2n, η2n−1), d(η2n, η2n+1)})
< ψ(max{d(η2n, η2n−1), d(η2n, η2n+1)}),

where

N(ξ2n, ξ2n−1))

= min{d(Sξ2n, Tξ2n−1), d(Sξ2n, gξ2n−1), d(Tξ2n−1, f ξ2n), d(gξ2n−1, Tξ2n−1), d(ξ2n, gξ2n−1)}
= min{d(η2n, η2n−1), d(η2n, η2n), d(η2n−1, η2n+1), d(η2n, η2n−1), d(ξ2n, η2n)}
= min{d(η2n, η2n−1), 0, d(η2n−1, η2n+1), d(η2n, η2n−1), d(ξ2n, η2n)}
= 0.

By (9) and the monotonicity of function ψ, we have

sεd(η2n+1, η2n) < max{d(η2n, η2n−1), d(η2n, η2n+1)}. (10)

Now, if
d(η2n, η2n−1) ≤ d(η2n, η2n+1),

then by using (10) we have

sεd(η2n, η2n+1) < d(η2n, η2n+1),

which leads to a contradiction because of sε > 1. Therefore, d(η2n, η2n−1) > d(η2n, η2n+1).
In this case, we have

sεd(η2n, η2n+1) < d(η2n−1, η2n),

which implies that

d(η2n, η2n+1) <
1
sε

d(η2n−1, η2n). (11)

Making full use of (8) and (11), we have

d(ηn, ηn+1) <
1
sε

d(ηn−1, ηn).

Accordingly, by Lemma 1, we claim that {ηn} is a b-Cauchy sequence. Since (X,�, d)
is b-complete, then there exists a point ζ in X such that {ηn} converges to ζ.

We first suppose that (i) holds. Assume that S is b-continuous. Because ( f , S) are
compatible, we have

lim
n→∞

d( f Sξ2n+2, S f ξ2n+2) = 0,
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that is,

lim
n→∞

d( f η2n+2, Sη2n+3) = 0.

As a result, by the b-continuity of S, we speculate that

d( f η2n+2, Sζ) ≤ s[d( f η2n+2, Sη2n+3) + d(Sη2n+3, Sζ)]→ 0 (n→ ∞),

which implies that

lim
n→∞

d( f η2n+2, Sζ) = 0. (12)

Now, we show that ζ = Sζ. If not, that is, d(Sζ, ζ) > 0. As ξ2n+1 � gξ2n+1 = Sξ2n+2,
from inequality (3), we have

ψ(sεd( f η2n+2, η2n+2))

= ψ(sεd( f Sξ2n+2, gξ2n+1))

≤ β(M(Sξ2n+2, ξ2n+1))× ψ(max{d(SSξ2n+2, Tξ2n+1),

d(SSξ2n+2, f Sξ2n+2), d(Tξ2n+1, gξ2n+1)} (13)

+ Lψ(N(Sξ2n+2, ξ2n+1))

< ψ(max{d(SSξ2n+2, Tξ2n+1), d(SSξ2n+2, f Sξ2n+2), d(Tξ2n+1, gξ2n+1)})
= ψ(max{d(Sη2n+2, η2n+1), d(Sη2n+2, f η2n+2), d(η2n+1, η2n+2)}),

where

N(Sξ2n+2, ξ2n+1)) = min{d(SSξ2n+2, Tξ2n+1), d(SSξ2n+2, gξ2n+1), d(Tξ2n+1, f Sξ2n+2),

d(gξ2n+1, Tξ2n+1), d(Sξ2n+2, gξ2n+1)}
= min{d(Sη2n+2, η2n+1), d(Sη2n+2, η2n+2), d(η2n+1, f η2n+2),

d(η2n+2, η2n+1), d(η2n+2, η2n+2)}
= 0.

By (13) and the monotonicity of function ψ, we have

sεd( f η2n+2, η2n+2) < max{d(Sη2n+2, η2n+1), d(Sη2n+2, f η2n+2), d(η2n+1, η2n+2)}. (14)

Combing (12) and the b-continuity of function S, we obtain

d(Sη2n+2, f η2n+2) ≤ s[d(Sη2n+2, Sζ) + d(Sζ, f η2n+2)]→ s(0 + 0) = 0 (n→ ∞),

which means that

lim
n→∞

d(Sη2n+2, f η2n+2) = 0. (15)

Moreover, since {ηn} is a b-Cauchy sequence, we have

lim
n→∞

d(η2n+1, η2n+2) = 0. (16)

By (15) and (16), there exists N1 ∈ N such that, for all n > N1, one has

d(Sη2n+2, η2n+1) > d(Sη2n+2, f η2n+2), d(Sη2n+2, η2n+1) > d(η2n+1, η2n+2). (17)

Via (14) and (17), it is easy to see that

sεd( f η2n+2, η2n+2) < d(Sη2n+2, η2n+1) (n > N1). (18)
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Using the triangular inequality of the b-metric (12) and the b-continuity of function S,
we obtain

|d( f η2n+2, η2n+2)− d(Sη2n+2, η2n+1)|
=
∣∣[d( f η2n+2, η2n+2)− sd(η2n+2, Sζ)] + [sd(η2n+2, Sζ)− d(Sζ, ζ)]

+ [d(Sζ, ζ)− sd(Sηn+2, ζ)] + [sd(Sηn+2, ζ)− d(Sηn+2, η2n+1)]
∣∣

≤
∣∣d( f η2n+2, η2n+2)− sd(η2n+2, Sζ)

∣∣+ ∣∣sd(η2n+2, Sζ)− d(Sζ, ζ)
∣∣

+
∣∣d(Sζ, ζ)− sd(Sηn+2, ζ)

∣∣+ ∣∣sd(Sηn+2, ζ)− d(Sηn+2, η2n+1)
∣∣

≤ sd( f η2n+2, Sζ) + sd(η2n+2, ζ) + sd(Sζ, Sηn+2) + sd(ζ, η2n+1)

→ 0 (n→ ∞),

which establishes that

lim sup
n→∞

d( f η2n+2, η2n+2) = lim sup
n→∞

d(Sη2n+2, η2n+1). (19)

Consider (18) and (19), they lead to a contradiction because of sε > 1. Consequently,
Sζ = ζ.

Now, by virtue of ξ2n+1 � gξ2n+1 and gξ2n+1 → ζ as n→ ∞, ξ2n+1 � ζ. It suffices to
prove ζ = f ζ. As a matter of fact, firstly, notice that∣∣d( f ζ, ηn+2)− d(ζ, f ζ)

∣∣
=
∣∣[d( f ζ, ηn+2)− sd( f ζ, ηn+1)] + [sd( f ζ, ηn+1)− d(ζ, f ζ)]

∣∣
≤
∣∣d( f ζ, ηn+2)− sd( f ζ, ηn+1)

∣∣+ ∣∣sd( f ζ, ηn+1)− d(ζ, f ζ)
∣∣

≤ sd(ηn+2, ηn+1) + sd(ηn+1, ζ)→ 0 (n→ ∞),

which follows that

lim sup
n→∞

d( f ζ, ηn+2) = d(ζ, f ζ). (20)

Secondly, by inequality (3), we have

ψ(sεd( f ζ, η2n+2))

= ψ(sεd( f ζ, gξ2n+1))

≤ β(M(ζ, ξ2n+1))× ψ(max{d(Sζ, Tξ2n+1), d(Sζ, f ζ), d(Tξ2n+1, gξ2n+1)})
+ Lψ(N(ζ, ξ2n+1)) (21)

= β(M(ζ, ξ2n+1))× ψ(max{d(ζ, Tξ2n+1), d(ζ, f ζ), d(Tξ2n+1, gξ2n+1)})
+ Lψ(N(ζ, ξ2n+1))

< ψ(max{d(ζ, η2n+1), d(ζ, f ζ), d(η2n+1, η2n+2)})
+ Lψ(N(ζ, ξ2n+1)),

where

ψ(N(ζ, ξ2n+1)) = ψ(min{d(Sζ, Tξ2n+1), d(Sζ, gξ2n+1), d(Tξ2n+1, f ζ),

d(gξ2n+1, Tξ2n+1), d(ζ, gξ2n+1)})

tends to

ψ

(
min

{
lim sup

n→∞
d(Sζ, Tξ2n+1), lim sup

n→∞
d(Sζ, gξ2n+1), lim sup

n→∞
d(Tξ2n+1, f ζ), 0, 0

})
= ψ(0) = 0

as n→ ∞. By taking the upper limit as n→ ∞ from (21), we obtain

sε lim sup
n→∞

d( f ζ, η2n+2) ≤ d( f ζ, ζ),
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which is a contradiction with sε > 1 and (20) unless lim sup
n→∞

d( f ζ, η2n+2) = 0. As a result, by

1
s

d( f ζ, ζ) ≤ d( f ζ, η2n+2) + d(η2n+2, ζ),

we have

1
s

d( f ζ, ζ) ≤ lim sup
n→∞

[d( f ζ, η2n+2) + d(η2n+2, ζ)] = 0,

which implies that d( f ζ, ζ) = 0. Hence, f ζ = ζ.
In view of f (X) ⊆ T(X), then there exists a point w ∈ X such that ζ = f ζ = Tw. Now,

we show d(Tw, gw) = 0. If not, i.e., d(Tw, gw) > 0. Since ζ � f ζ = Tw � w implies ζ � w,
from inequality (3), we have

ψ(sεd(Tw, gw))

= ψ(sεd( f ζ, gw))

≤ β(M(ζ, w))× ψ(max{d(Sζ, Tw), d(Sζ, f ζ), d(Tw, gw)})
+ Lψ(N(ζ, w))

= β(M(ζ, w))× ψ(max{0, 0, d(Tw, gw)})
+ Lψ(min{d(Sζ, Tw), d(Sζ, gw), d(Tw, f ζ), d(gw, Tw), d(ζ, gw)}))

= β(M(ζ, w))× ψ(d(Tw, gw))

+ Lψ(min{0, d(ζ, gw), 0, d(gw, ζ), d(ζ, gw)}))
= β(M(ζ, w))ψ(d(Tw, gw))

< ψ(d(Tw, gw)).

Hence, by the monotonicity of function ψ, we have

sεd(Tw, gw) < d(Tw, gw),

which leads to a contradiction with sε > 1. As a result, Tw = gw. On account of the fact
that g and T are weakly compatible, we obtain

gζ = g f ζ = gTw = Tgw = T f ζ = Tζ.

Thus, ζ is a coincidence point of g and T. Next, we show that ζ = gζ. As ξ2n � f ξ2n
and f ξ2n → ζ (n→ ∞) implies that ξ2n � ζ, from (3) we have

ψ(sεd(η2n+1, gζ)) = ψ(sεd( f ξ2n, gζ))

≤ β(M(ξ2n, ζ))× ψ(max{d(Sξ2n, Tζ), d(Sξ2n, f ξ2n), d(Tζ, gζ)}) + Lψ(N(ξ2n, ζ))

< ψ(max{d(Sξ2n, Tζ), d(Sξ2n, f ξ2n), d(Tζ, gζ)})
+ Lψ(min{d(Sξ2n, Tζ), d(Sξ2n, gζ), d(Tζ, f ξ2n), d(gζ, Tζ), d(ξ2n, gζ)})

= ψ(max{d(Sξ2n, Tζ), d(Sξ2n, f ξ2n), 0})
+ Lψ(min{d(Sξ2n, Tζ), d(Sξ2n, gζ), d(Tζ, f ξ2n), 0, d(ξ2n, gζ)})

= ψ(max{d(Sξ2n, Tζ), d(Sξ2n, f ξ2n)}) + Lψ(0)

= ψ(max{d(η2n, gζ), d(η2n, η2n+1)}),

which follows immediately from the monotonicity of function ψ that

sεd( f η2n+1, gζ) < max{d(η2n, gζ), d(η2n, η2n+1)}. (22)
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Since lim
n→∞

d(η2n, η2n+1) = 0, then there exists N2 ∈ N such that, for all n > N2, one has

d(η2n, gζ) > d(η2n, η2n+1). (23)

Considering (22) and (23), we acquire

sεd(η2n+1, gζ) < d(η2n, gζ) (n > N2).

Thus, it implies

sε lim sup
n→∞

d(η2n+1, gζ) ≤ lim sup
n→∞

d(η2n, gζ). (24)

By virtue of∣∣d(η2n+1, gζ)− d(η2n, gζ)
∣∣

=
∣∣[d(η2n+1, gζ)− sd(gζ, η2n−1)] + [sd(gζ, η2n−1)− d(η2n, gζ)]

∣∣
≤
∣∣d(η2n+1, gζ)− sd(gζ, η2n−1)

∣∣+ ∣∣sd(gζ, η2n−1)− d(η2n, gζ)
∣∣

≤ sd(η2n+1, η2n−1) + sd(η2n−1, η2n)→ 0 (n→ ∞),

which follows that

lim sup
n→∞

d(η2n+1, gζ) = lim sup
n→∞

d(η2n, gζ).

Consequently, (24) is a contradiction with sε > 1 unless lim sup
n→∞

d(η2n+1, gζ) = 0. That

is to say, lim sup
n→∞

d(η2n+1, gζ) = 0. Now, by

1
s

d(gζ, ζ) ≤ d(gζ, η2n+1) + d(η2n+1, ζ),

we claim that

1
s

d(gζ, ζ) ≤ lim sup
n→∞

d(gζ, η2n+1) + lim sup
n→∞

d(η2n+1, ζ) = 0,

which follows that d(gζ, ζ) = 0. Thus, gζ = ζ.
To sum up, f ζ = gζ = Sζ = Tζ = ζ. In other words, ζ is a common fixed point of f , g,

S and T. The proof is similar when f is b-continuous.
Similarly, the result follows when (ii) holds. Now, suppose that the set of common

fixed points of f , g, S and T is well ordered; we will show that the common fixed point of
f , g, S and T is unique. Indeed, assume, on the contrary, that f q = gq = Sq = Tq = q and
f r = gr = Sr = Tr = r but d(q, r) > 0. By the given assumption, we replace ξ with q and η
with r in (3). Then,

ψ(sεd(q, r)) = ψ(sεd( f q, gr))

≤ β(M(q, r))× ψ(max{d(Sq, Tr), d(Sq, f q), d(Tr, gr)})
+ Lψ(N(q, r))

< ψ(d(q, r)).

Consequently, we claim that sεd(q, r) < d(q, r), a contradiction. As a result, q = r
(because sε > 1). In reverse, if f , g, S and T are single, then it is well ordered.

Remark 1. Theorem 1 greatly generalizes Theorem 12 of [14] from several sides. On the one
hand, Theorem 1 refers to the conclusion in the setting of b-metric spaces, whereas Theorem 12
of [14] considered the result in usual metric space. It is well-known that b-metric space is a sharp
generalization of usual metric space since the given b-metric usually is not necessarily continuous,
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but the usual metric must be a continuous function. Therefore, Theorem 1 is more important than
Theorem 12 of [14]. On the other hand, as compared with Theorem 12 of [14], function β from
Theorem 1 satisfies the simpler condition. In addition, the proof of Theorem 1 is more straightforward
than the one of Theorem 12 of [14].

Remark 2. We use Lemma 2 to prove that the constructed sequence is a b-Cauchy sequence instead
of using Lemma 11 from [14] or Lemma 1 from [16]. This is a straightforward improvement because
Lemma 2 is easily understood for most of our readers. Otherwise, by Lemma 2, we also can prove
that the sequence is a b-Cauchy sequence but, due to the complicated process, we omit it in this
paper. In addition, in order to overcome the discontinuity of b-metric, we use a new method to prove
our theorem. This is a great innovation.

Example 5. Let X = {1, 2, 3, 4} be a partially ordered set defined as ξ � η if and only if ξ ≥ η
and d(ξ, η) = |ξ − η|2 for all ξ, η ∈ X. Then, (X, d) is a b-complete b-metric space with s = 9

5 .
Define ordered self-mappings f , g, S, and T on X using

f =

(
1 2 3 4
1 1 2 2

)
, g =

(
1 2 3 4
1 1 1 2

)
,

S =

(
1 2 3 4
1 3 4 4

)
, T =

(
1 2 3 4
1 4 3 4

)
.

It is easy to verify that the mappings f and g are dominating and S and T are dominated. Take
ψ(ξ) = ln(ξ + 1) and β = ψ(ξ)

ξ ; then, the mappings f , g, S and T satisfy all the conditions given
in Theorem 1 with ε = 1

4 . Moreover, one is the unique common fixed point of f , g, S, and T.

Theorem 2. Let f , g, S and T be self-mappings on a partially ordered b-complete b-metric space
(X,�, d) with s > 1. Let f (X) ⊆ T(X) and g(X) ⊆ S(X). Suppose that the mappings f , g, S
and T are b-continuous, the pairs ( f , S) and (g, T) are compatible, and the pairs ( f , g) and (g, f )
are partially weakly increasing with respect to T and S, respectively. Assume that ( f , g) is a
(ψ, β, L)-ordered contractive pair with respect to S and T for each ξ, η ∈ X, for which Sξ and Tη
are comparable. Then, the pairs ( f , S) and (g, T) have a coincidence point ζ ∈ X. Moreover, ζ is a
coincidence point of the mappings f , g, S and T provided that Sζ and Tζ are comparable.

Proof. Choose ξ0 ∈ X. Define a sequence {ηn} in X that satisfies η2n = f ξ2n = Tξ2n+1 and
η2n+1 = gξ2n+1 = Sξ2n+2 for all n ∈ N. By the hypothesis, it is easy to see that ηn � ηn+1
for all n ≥ 1. We start the proof with two steps.

Step 1. We prove that

d(ηn+1, ηn+2) ≤ λd(ηn, ηn+1), (25)

for each n ∈ N, where λ ∈ [0, 1) is a constant.
Firstly, we assume ηn 6= ηn+1 for each n ∈ N. Since Sξ2n = η2n−1 = gξ2n−1 and

Tξ2n+1 = η2n = f ξ2n are comparable, then, via (3), it has

ψ(sεd(η2n, η2n+1))

= ψ(sεd( f ξ2n, gξ2n+1))

≤ β(M(ξ2n, ξ2n+1))× ψ(max{d(Sξ2n, Tξ2n+1), d(Sξ2n, f ξ2n), d(Tξ2n+1, gξ2n+1)})
+ Lψ(min{d(Sξ2n, Tξ2n+1), d(Sξ2n, gξ2n+1), d(Tξ2n+1, f ξ2n), d(gξ2n+1, Tξ2n+1), d(ξ2n, gξ2n+1)})

< ψ(max{d(η2n−1, η2n), d(η2n−1, η2n), d(η2n, η2n+1)})
+ Lψ(min{d(η2n−1, η2n), d(η2n−1, η2n+1), d(η2n, η2n), d(η2n+1, η2n), d(ξ2n, η2n+1)}))

= ψ(max{d(η2n−1, η2n), d(η2n, η2n+1)}),
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which follows from the monotonicity of function ψ that

sεd(η2n, η2n+1) < max{d(η2n−1, η2n), d(η2n, η2n+1)}. (26)

If d(η2n−1, η2n) ≤ d(η2n, η2n+1), then by (26) it means that

sεd(η2n, η2n+1) < d(η2n, η2n+1),

which leads to a contradiction (because sε > 1). Then,

sεd(η2n, η2n+1) < d(η2n−1, η2n). (27)

Again, since Sξ2n+2 = η2n+1 = gξ2n+1 and Tξ2n+1 = η2n = f ξ2n are comparable, then,
by (3), it implies that

ψ(sεd(η2n+1, η2n+2)) = ψ(sεd( f ξ2n+2, gξ2n+1))

≤ β(M(ξ2n+2, ξ2n+1))× ψ(max{d(Sξ2n+2, Tξ2n+1), d(Sξ2n+2, f ξ2n+2), d(Tξ2n+1, gξ2n+1)})
+ Lψ(min{d(Sξ2n+2, Tξ2n+1), d(Sξ2n+2, gξ2n+1), d(Tξ2n+1, f ξ2n+2),

d(gξ2n+1, Tξ2n+1), d(ξ2n+2, gξ2n+1)})
< ψ(max{d(η2n+1, η2n), d(η2n+1, η2n+2), d(η2n, η2n+1)})
+ Lψ(min{d(η2n+1, η2n), d(η2n+1, η2n+1), d(η2n, η2n+2), d(η2n+1, η2n), d(ξ2n+2, η2n+1)}))

= ψ(max{d(η2n+1, η2n+2), d(η2n, η2n+1)}),

which follows from the monotonicity of function ψ that

sεd(η2n+1, η2n+2) < max{d(η2n+1, η2n+2), d(η2n, η2n+1)}. (28)

If d(η2n, η2n+1) ≤ d(η2n+1, η2n+2), then, by means of (28), it establishes

sεd(η2n+1, η2n+2) < d(η2n+1, η2n+2),

which leads to a contradiction (because sε > 1). Thus,

sεd(η2n+1, η2n+2) < d(η2n, η2n+1). (29)

Now, by using (27) and (29), we obtain (25), where λ = 1
sε ∈ [0, 1).

We now assume ηn0 = ηn0+1 for some n0 ∈ N. If n0 = 2k− 1, then η2k−1 = η2k implies
η2k = η2k+1. As a matter of fact, if η2k 6= η2k+1, i.e., d(η2k, η2k+1) > 0, then, by the fact
that η2k = f ξ2k = Tξ2k+1 and η2k−1 = gξ2k−1 = Sξ2k are comparable, then, via (26), we
speculate that

sεd(η2k, η2k+1) < max{d(η2k−1, η2k), d(η2k, η2k+1)} = d(η2k, η2k+1).

This is a contradiction (because sε > 1). Hence, d(η2k, η2k+1) = 0, i.e., η2k = η2k+1.
If n0 = 2k, then η2k = η2k+1 leads to η2k+1 = η2k+2. Actually, if η2k+1 6= η2k+2, then,
i.e., d(η2k+1, η2k+2) > 0. Since η2k+1 = gξ2k+1 = Sξ2k+2 and η2k = f ξ2k = Tξ2k+1 are
comparable, then, by (28), we claim that

sεd(η2k+1, η2k+2) < max{d(η2k, η2k+1), d(η2k+1, η2k+2)} = d(η2k+1, η2k+2).

This is a contradiction (because sε > 1). Thus, d(η2k+1, η2k+2) = 0, i.e., η2k+1 =
η2k+2. Therefore, the sequence {ηn} in both cases is equal to a constant for n ≥ n0 and
so (25) holds.

Step 2. We prove that f , g, S and T have a coincidence point. Taking advantage of (25)
and Lemma 1, we say that {ηn} is a b-Cauchy sequence. Since (X, d) is b-complete, then
there is a ζ ∈ X satisfying that lim

n→∞
ηn = ζ. We obtain
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lim
n→∞

d(Sξ2n, ζ) = lim
n→∞

d( f ξ2n, ζ) = lim
n→∞

d(Sξ2n+2, ζ) = lim
n→∞

d(Tξ2n+1, ζ) = lim
n→∞

d(gξ2n+1, ζ) = 0.

Since the pairs ( f , S) and (g, T) are compatible, then

lim
n→∞

d(S f ξ2n, f Sξ2n) = lim
n→∞

d(Tgξ2n+1, gTξ2n+1) = 0.

On the other hand, owing to the b-continuity of f , g, S and T, we obtain

lim
n→∞

d(S f ξ2n, Sζ) = lim
n→∞

d( f Sξ2n, f ζ) = 0,

lim
n→∞

d(Tgξ2n+1, Tζ) = lim
n→∞

d(gTξ2n+1, gζ) = 0.

We now acquire that

1
s

d(Sζ, f ζ) ≤ d(Sζ, S f ξ2n) + d(S f ξ2n, f ζ)

≤ d(Sζ, S f ξ2n) + s[d(S f ξ2n, f Sξ2n) + d( f Sξ2n, f ζ)], (30)

and

1
s

d(Tζ, gζ) ≤ d(Tζ, Tgξ2n+1) + d(Tgξ2n+1, gζ)

≤ d(Tζ, Tgξ2n+1) + s[d(Tgξ2n+1, gTξ2n+1) + d(gTξ2n+1, gζ)]. (31)

On taking the limit as n→ ∞ from both sides of (30) and (31), we obtain 1
s d(Sζ, f ζ) ≤ 0

and 1
s d(Tζ, gζ) ≤ 0, that is, f ζ = Sζ, gζ = Tζ.
Since Sζ and Tζ are comparable, we prove f ζ = gζ. Suppose the contrary, then, by (3),

it is valid that

ψ(sεd( f ζ, gζ)

≤ β(M(ζ, ζ))× ψ(max{d(Sζ, Tζ), d(Sζ, f ζ), d(Tζ, gζ)}) + Lψ(N(ζ, ζ))

< ψ(d(Sζ, Tζ)) = ψ(d( f ζ, gζ)),

that is to say,
sεd( f ζ, gζ) < d( f ζ, gζ).

This is a contradiction (because sε > 1). Accordingly, f ζ = gζ = Sζ = Tζ.

Remark 3. According to the main results of [14,15], Theorem 2 makes a general generalization.
That is to say, it generalizes Theorem 15 in [14] and Theorem 2.1 in [15]. Similar superiority is
discussed in Remarks 1 and 2.

The following result is a straightforward outcome of Theorem 2.

Corollary 1. Let f and T be self-mappings on a partially ordered b-complete b-metric space
(X,�, d) with s > 1. Assume that f (X) ⊆ T(X) and the pair ( f , T) is compatible, f and T are
b-continuous, and f is partially weakly increasing with respect to T. Assume that f satisfies the
following inequality

ψ(sεd( f ξ, f η)) ≤ β(M(ξ, η))ψ
(

max
{

d(Tξ, Tη), d(Tξ, f ξ), d(Tη, f η)
})

+ Lψ(N(ξ, η)),

for every ξ, η ∈ X, for which Tξ and Tη are comparable, where

M(ξ, η) = ψ

(
max

{
d(Tξ, Tη), d(Tξ, f ξ), d(Tη, f η),

d(Tξ, f η) + d(Tη, f ξ)

2s

})
,
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N(ξ, η) = min
{

d(Tξ, Tη), d(Tξ, f η), d(Tη, f ξ), d( f η, Tη), d(ξ, f η)
}

,

and ε > 0 is a constant. Then, the pair ( f , T) has a coincidence point ζ ∈ X. Moreover, ζ is a
coincidence point of f and T.
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