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1. Introduction

There is extensive use of impulsive differential equations in economics, engineering,
biology, medicine, etc. In recent years, the theory of INDDEs has been the object of active
research. Some scholars have investigated the existence, uniqueness, and continuous de-
pendence of INDDE:s (see [1,2]) and the oscillation of the first-order, second-order, and
even-order of INDDEs (see [3-5]). In [6], the thermoelasticity of type III for Cosserat
media has been studied. In [7], the asymptotic properties of the solutions of nonlinear,
non-instantaneous impulsive differential equations has been studied. In [8], the Legendre
spectral-collocation method is applied to delay the differential and stochastic delay differ-
ential equation. In [9], the convergence and superconvergence of collocation methods for
one class of impulsive delay differential equations have been studied, respectively.

However, there are not many studies on the stability of INDDEs. In [10], the asymp-
totic behavior of some special nonlinear INDDEs were considered by establishing proper
Lyapunov functions and certain analysis techniques. In [11], some results ensuring the
global exponential stability of impulsive functional equations of neutral type were derived
via impulsive delay inequality and certain analysis techniques that are very popular in the
application of the dynamical analysis of neural networks. In [3], the authors developed the
Razumikhin method for impulsive functional differential equations of neutral type and
established some Razumikhin theorems. Recently, we found that there are errors in [12]
(Stability of zero solution of linear INDDE with constant coefficients is studied, but zero is
not the solution of the linear INDDE in [12]). All the above studies focus on the asymptotic
stability of zero solutions, but in this paper we will study the stability of the exact solutions
(not necessarily zero solutions) of INDDEs.

Usually, as is well known, it is difficult, sometime maybe impossible, to acquire the
explicit solutions for INDDEs, so it is necessary to investigate the numerical methods for
INDDESs. Numerical stability refers to the degree to which small perturbations of input
data affect the output results of the algorithm when solving numerical problems using an
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algorithm. A numerically stable algorithm can produce accurate results that are not affected
by input perturbations, while a numerically unstable algorithm may produce unpredictable
results. Hence, it is necessary to investigate the asymptotical stability of numerical methods
for INDDEs.

The stability of the exact solutions and the numerical solutions for NDDEs without
impulsive perturbations has also been extensively studied (see [13-27]). There are many
classic results found in the literature [14,21,22,28]. Recently, some new and important
related developments have emerged. In papers [17-20], Guang-Da Hu and Taketomo
Mitsui et al. studied the asymptotical stability of the exact solutions and the numerical
solutions of linear NDDEs in real space and complex space, respectively. In [27], Wang
and Li studied the stability and asymptotic stability of -methods for nonlinear NDDEs
with constant delay and with proportional delay. In [15], Enright and Hayashi established
sufficient conditions for order of convergence results regarding continuous Runge-Kutta
methods for NDDEs with state dependent delays. Zhang, Song, and Liu have studied the
asymptotic stability of linear impulsive delay differential equations (IDDEs) (see [29]); the
exponential stability of linear IDDEs (see [30]); and the stability and asymptotical stability
of nonlinear IDDEs (see [31]. Based on their ideas, the problems of IDDEs are transformed
into the problems of delay differential equations without impulsive perturbations. In this
paper, this idea is applied to INDDEs for the first time, and to the best of our knowl-
edge no article has previously been written regarding the stability of numerical methods
for INDDEs.

The goal of this paper is to provide new different asymptotical stability criteria for
exact solutions and numerical solutions of a class of nonlinear impulsive neutral differential
equations (INDDEs). We will adopt the idea of two transformations to achieve our goal;
the problems of the stability and asymptotical stability of INDDEs are first transformed
into the problems of NDDEs without impulsive perturbations, and then transformed into
the problems of ordinary differential equations with a forcing term. The organization
of this paper is as follows. In Section 2, we first transform the problems of the stability
and asymptotical stability of INDDEs into the problems of NDDEs without impulsive
perturbations, and we then further transform them into the problems of ordinary different
equations with a forcing term. On this basis, two general forms of criteria for the stability
and asymptotical of INDDEs are established. Furthermore, when different transforms
are chosen, different criterion for the stability and asymptotical stability can be obtained.
For brevity, three different transforms are provided to achieve some specific different
criteria for stability and asymptotical stability. In Section 3, based on the ideas in Section 2,
we will derive the numerical methods of INDDEs, which can preserve the stability and
asymptotical stability of the nonlinear INDDE:s if corresponding continuous Runge-Kutta
methods are BN f—stable. In Section 4, one linear numerical example and one nonlinear
numerical example are chosen to demonstrate the theoretical results.

2. Asymptotical Stability of the Exact Solutions

Firstly, the relationships between INDDEs and NDDE:s are constructed in Section 2.1.
Based on this idea, the general sufficient conditions for the asymptotical stability of the
exact solutions of INDDEs are established in Section 2.2. Finally, the different special
relationships between INDDEs and NDDEs are studied, and different sufficient conditions
for the asymptotical stability of INDDEs are obtained in Section 2.3.

In this article, we will study the following nonlinear INDDEs:

L(x(t) = G(t,x(t—7))) = F(t,x(t),x(t — 1)), t>0, t #k1,
(t) =Ax(t7), t=kt, 1)
(t) (t), te [_T/ 0)/

=

X

I
<
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and the same equation with another initial function:

4 (%(t) — G(t, %(t — 1)) = F(t, %(t), %(t — 7)), t>0, t £k,
() = AZ(t7), t =k, @)
x(t) = (1), t e [-1,0),

where T > 0,1 #0,A # 1,k € N={0,1,2,--- }, ¢ and ¢ are continuous functions on
[-7,0), and lil’é‘l P(t) and liI(I)l P(t) exist. The right-hand derivative of x(t) is written
=0~ =0~

as x'(t). Assume that (-, -) is a given inner product on C% and || - || is the induced norm.
Assume that the function F : [0,00) x C? x C¢ — C? is continuous in t and fulfills the
following conditions: for arbitrary x, x1, X2, y1,y2 € C? and arbitrary ¢ € [0, +-c0), there are
real value functions X, Y from [0, +o0) to R, such that

Y(t)> sup R((H(t,y1,x) — H(t,y2, %), y1 — y2)) -
IRTEATE: ly1 — 22

X(t) > sup MHEYx) —Hty, 0)] w
Cymtn [[x1 — x2|

where H(t,y,x) = F(t,y + G(t,x), x), which is the same as that in [14]. Assume that the

function G : [0,00) x C? — C? is continuous in t and fulfills the following conditions: for

arbitrary x, x1, x2, € C? and arbitrary t € [0, +c0), a real value function Z from [0, +o0) to

R satisfies

[G(t,x1) = G(t, x|
lx1 —x2f

Z(t) > sup

X17£%2

©)

2.1. Relationships between INDDEs and NDDEs

In order to establish the relationships between INDDEs and NDDEs, setting the scalar
function « : [—T,00) — C satisfies the following:
(1) foranyt € [0,00), a(t) = a(t — 7);
(2)  «a(t) is infinitely smooth on [0, T);
B) a(0)=1landa(07)=A;
4) inf |a(t)] >m > 0.
te[0,7)

Theorem 1. If x(t) is the solution of INDDE (1), y(t) = a(t)x(t) for t € [—7, +00) , then y(t)
is the solution of the following NDDE:

Ly(t) = It y(t—1)) = J(ty(t),y(t—1)), t>0, ©
y(t) =¥ (1), te[-1,0],
where X
I(t, x) tx(t)G(t,M)
“l(t)y Y _Z 'y oz
I6y2) = S € 06 55+ eOF Fs, )
and

In reverse, assuming y(t) is the solution of NDDE (6), x(t) = y—)for t € [—7,+00), then
x(t) is the solution of INDDE (1).
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Proof. (i) On [kt, (k+1)T), k= -1,0,1,---,

that y(t) is continuous. We can obtain that

a(t) and x(t) are continuous, which implies

and

y(kt) = ykt") = alkt)x(kt™)
= a(kt)Ax(kt™) = a(0)Ax(kT™)
= Ax(kt™)

y(kt™) = a(kt)x(kt™) = Ax(kT™),

implying y(kt) = y(kt*) = y(kt~), k € N. Consequently, y(#) is continuous on [—T, o).

For t € [kt, (k+1)7),k € N, we obtain

()~ 100t = 0)] = 5 1y(6) — ()G, LT

[a(t)x(t) — a(t)G(t, x(t = 1))]

=a'(t

S

S =

)x(t) — &' (H)G(t, x(t — 7)) +a(t) dt [x(t) = G(t, x(t = 1))]
=a'(t)x(t) — &' ()G(t, x(t — T))
_ w’(;gy;f) & (DG, y(;(f) )) 44 ()P(t'z(g’y(;(t)ﬂ>
= J(ty(t),y(t - 1))

_l’_
_l’_

(i) Let y(t) be the solution of (6). For t € [kt, (k+1)7),k € N,

(0 = G- 1)) = 1140 - 60, L)
_y@)  a(ty(t) 1 d y(t—1) a'(t) . y(t—1)
2w 2 lama Wty ) T wm S T )
— )~ 1 - )] - T Al g WDy
Tyt yt—1) ' (By(t)  o'(t) .., y(t—1)
=T wm an T am )
oy yt—1) o y(t) y(t—1)

A A O (o
= F(t,x(t),x(t — 1))

We can easily see that
_ylkr) _ y(kT) _
*(KT) = k) = o) YT

and

y(t) _ ykt) _ ylkt) _ y(k7)

x(kt7) = lim =<

ik a(t)  alkt™)  a(t) A

implying that x(kt) = Ax(kt~),k € N. Apparently, we obtain x(f) = % =(t), t €
[—7,0). Therefore, x(t) is the solution of INDDE (1). [

Since in Theorem 1, a(t) and ﬁ are bounded for all f € R, we can obtain the

following result.

Remark 1. The exact solution x(t) of INDDE (1) is stable if and only if the exact solution y(t)

of NDDE (6) is stable when y(t)

= a(t)x(t) for t € [—T,+00). Moreover, the exact solution
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asymptotically stable when y(t) = a(t)x(t) for t € [—T,+0).

2.2. Asymptotical Stability of INDDEs

x(t) of INDDE (1) is asymptotically stable if and only if the exact solution y(t) of NDDE (6) is

According to Theorem 1, assuming 7(t) = a(t)X(t), t > —7, then %(t) is the solution

of (2) if and only if §(t) is the solution of the following equation:

{;i@(t) — It g(t—1) = J(L§(), 9(t—T)), >0,
g(t) =¥(t), te[—-1,0]
where )
o) - { x(OF(0), 1€ [-70)
x(07)p(07), t=0.
Let
P(t) = y(t) — I(ty(t — 7)), B(t) = §(t) — 1(t,5(t — 7)),

Qty,2) = J(ty + 1(£2),2).

Then the NDDE (6) can be expressed as the following ordinary differential equations with

Q(t, P(t),y(t—1)), t=0,

forcing term:
P'(t) =
{ ¥(0) - 1(0,¥(—1)),

P(0) =

coupled with the algebraic recursion
¥(t), te[-T1,0),

y) :{ P(t)+I(t,y(t—71)), t=>0.

t>0,

Analogously, the NDDE (7) can also be expressed in the following
{ P'(t) = Q(t, P(t), 5(t — 1)),

coupled with the algebraic recursion
¥(t),

i) = { te[-1,0),
PO by + 10,9 — ),

t>0.

Theorem 2. Assume IDDEs (1) and (2) satisfy (3)-(5). If Y(t) < 0, there exists a bounded
(10)

form:

@)

®)

©)

function r(t), integrable in any bounded interval, such that r(t) <0, r(0) <0,

wX(t) = r(t) (afe(";'((:))) + Yﬁg?)

and a non-negative constant p < 1, such that
sup |r(x)|+wZ(t) <p, t >0,

0<x<t

then the solution of IDDEs (1) and (2) are bounded stable; that is

, Al

[x(t) = x(t)[| < max{w sup |¢(t) —¢(t)]
te[—1,0)

07)—
—mr(0

20y, 50

(11)
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Moreover, if p < 1 and

m(i/((:)))+i§) Yo <0, t>0, (12)

then IDDEs (1) and (2) are asymptotically stable; that is

lim [|lx(t) = x(t)[| = 0.
Proof. We will apply inequalities (3)~(5) to prove that the function Q : [0,00) x C% x C? — C4
is continuous in # and satisfies the following conditions: for arbitrary y, y1,y2, x1, x2 € C?, and
Vt € [0,40),

sup JUQUYLY) — Qv X =y2) () | 2y (13)
V1#Y2,x ly1 — y2l|? - a(t)
sup 19U x) = Qb x)|l wX(t) (14)
y,xlalé)xz Hxl - xZ” a ’
o 1630 =Gl _ s
X17éxZ ||x1 - x2||

First, the inequality (13) can be proven as follows:

R(Q(t,y1,x) — Q(ty2, %), y1 — y2,)
=R(J(t,y1 +I(t,x),x) = J(t,y2 + I(t, x),%),y1 — Y2,)
a'(t)

X

1
= éR< Dé(t) (}/1 + I(trx)) - ( ) ( ’ Dé(t)) (t)F(t/ m(% + I(t,x)), Dé(t))
o (t) x 1 x

- [“( ) (2 +1(t,x)) —a (f)G(t/m) +“(t)F(t/m(}/z+1(t,x))/@)],

y1—Y2)
— R () a1+ 1(17)), )
BRATTORANRE IR AR

~a(OF(t 15 2+ 1(4,2), ﬁml )
_ (1) x . ox
=R(E () Mlyr — v2l* + R(a(t)(F(t, @ +G<t'm>'rt>)

Y x x

—F(t, WZ)JFG( 7)) 7))) Y1 —Y2))
A0 2 2 WX g Y2 X Y2
- 8%( ( ))Hyl yZH + |“(t)| §R(<I_I(t/ tX(i’),lX(ﬂ) H(t, Ué(t), zx(t) )/ Oé(i’) zx(t)>)

o' (t)
< R( 0 Mlyr = yall* + la(t) Y (¢ )llﬁ - mll2
which implies that, if Y(t) <0,
RIO( 11, — Oty ) — ) < R + X - el (16
andif Y(t) < Yand Y >0,
R(Q(t, y1,%) — Q(t,y2,%),y1 — y2,) < [%(“/(t)) + Y|y — v (17)
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Next, we will prove the inequality (14) as follows:

1Q(t, v, x1) — Q(t, v, x2) |
= |[J(t,y+ I(t x1),x1) = J(ty + I(t, x2), %2) |

U 1t m)) - (06 ) + a(b)F(,

_ [";’((tt)) (y+ (£, %2)) —a’(t)G(t,%)—l—a(t)F( (X(lt)(y+l(t x2)), %)]II
= wl|H(t, L, 2y~ H(, L, 2

Finally, the inequality (15) can be proven as follows:

11(t, x1) = I(£,x2) |

X
= [la(t)G(t, Wi)) —a(t)G(t,
< (S;IOD ODIGE

X1
< Z(t)(stggla(t)l)llw -

< wZ(t)|[x1 — x2.

X2

MOL

X
; )*G(t,ﬁ))ﬂ

By [14] (Theorem 9.4.1) or [24] (Theorem 3.1, Theorem 4.2), we can obtain that

_ Y(0)—-¥(0
Iy(6) =900l < max{_sup_ ()~ %), LT O, v
te[—1,0)
and
lim (1) ~ 5] =0.
Because x(t) = %, t > —1, we know the theorem holds. [
Theorem 3. Assune IDDEs (1) and (2) satisfy (3)—(5). If Y(t) < Y, Y > 0, there exists a bounded
function 7(t), integrable in any bounded interval, such that 7(t) § ( ) <0,
li
wX(t) = 7(t) (é}%(“ () )+ sz) (18)
a(t)
and a non-negative constant p < 1, such that
sup [r(x)[+wZ(t) <p, t 20, (19)

0<x<t

then the solution of IDDEs (1) and (2) are bounded stable; that is

() = 70)] < max{o swp lg(t) ~ (o), MIEEIZ M) >
te[—1,0)

Moreover, if p < 1 and

!
m(“(t))w%?g 0<0, t>0, (20)
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then IDDEs (1) and (2) are asymptotically stable; that is

lim ||x(t) — %(8)|| = 0.

t—o0

2.3. Special Cases

When different functions of «(t) are chosen, different sufficient conditions for the
bounded stability and asymptotical stability of the exact solutions of (1) and (2) can be
obtained. For brevity, we only consider three of them.

Special Case I. Set a1 (t) = AMad re [—T,00), where {£} = L — [ L] [ L] denotes the
floor function. The following theorem can be seen as a special case of Theorem 2 when

oc(t) = le(t).

Theorem 4. Let x(t) be the solution of (1). If z1(t) = /\{%}x(t), t € [—T,00), then z1(t) is the
solution of

{;ﬂ[zl(t) — Ltz (t—1)] = Itz (t),z1 (- 1), £>0, on

z1(t) = ¥1(t), te[-1,0],

where t t
L(tx)) = A G, A 15hy)
InA () InA {4 () —{L},, 4 —{L}
hi(ty, x) = (T)y—)\ T (T)G(tz)\ “Ix) + AVIF(E ATy, AT )
A=tlp(t), te[-1,0),
wy = { A0 1elTo)
Ap(07), t=0.
Conversely, x(t) is the solution of (1) if z1(t) is the solution of (21) and x(t) = /\_{%}zl(t),

t e [—1,00).

Theorem 5. Assume IDDEs (1) and (2) satisfy inequalities (3)—(5). If Y(t) < 0, there exists a
bounded function r1(t), integrable in any bounded interval, such that r1(t) < 0and r1(0) < 0,

X (1) =i (1 (1““' + ’“?)

T w3
and a non-negative constant p1 < 1, such that

sup |r(x)|+wiZ(t) < p1, t >0,
0<x<t

then the solutions of IDDEs (1) and (2) are bounded stable,

(P(t)Hr |/\|qu(07) — @(Oi)H }, t>0.

|x(t) — 2(t)|| < max{w; sup |¢(t)— —1r1(0)

te[—7,0)
where wy = max{|A|, \17|}’ my = min{1, |A|}. Moreover, if p; < 1 and

InjA| | Y(t
nA YO v <o, 6,
T w1

then IDDEs (1) and (2) are asymptotically stable.
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Theorem 6. Assume IDDEs (1) and (2) satisfy inequalities (3)—(5). If Y(t) < <Y,Y >0, there
exists a bounded function 71 (t), integrable in any bounded interval, such that 71 (t) < 0,71(0) <0,

w1 X(t) = 71 () (lnTAl + w%Y)

and a non-negative constant p1 < 1, such that

sup |r(x)| +wiZ(t) <p1, t >0,
0<x<t

then the solutions of IDDEs (1) and (2) are bounded,

(AMlle(07) = @(07) |l
1, ) b t=0

Ix(t) — 2(0)| < max{er sup llg(t) - £

te[—7,0)
Moreover, if p1 < 1 and

ln| |

el <hi<o, t20,

then IDDEs (1) and (2) are asymptotically stable.

Special CaseIL Letap(t) = 1+ (A —1){£} ,# € [-7,00),A > 0, A # 1. The following
theorem can be seen as a special case of Theorem 2 when a(t) = ay(t).

Theorem 7. Assume that x(t) is the solution of (1) and zp () = [14+ (A —1){L}]x(t),t € [-T, ).
Then z,(t) is the solution of

Lizo(t) — Lt za(t — 1)) = Jalt, z2(t), z2(t — 7)), t>0, )
Zg(t) = ‘Pz(t), te [—T,O},
where
x t x
B0:0) = 02060, ) = (14 0= DT 6l ()
_(A=-Dy Ar-1 x y x
]2(t,y,x) Tth(t) T G(tr az(t))+lx2(t)F(t' Déz(t)/txz(t))
(1) = { 1+ (} —D(E+Dlp(t), te[-7,0),
Ap(07),  t=0,
Conversely, x(t) is the solution of (1) if zy(t) is the solution of (22) and x(t) = %,
t € [—1,00). '

Theorem 8. Assume that A € R, A > 0, A # 1, IDDEs (1) and (2) satisfy (3)-(5). If Y(¥) <0,
there exists a bounded function ry(t), integrable in any bounded interval, such that ro(t) < 0,

r2(0) <0,
wX(t) = r(t) <T+ ()i\_ll)r{t} i Y“?)

and a non-negative constant pp < 1, such that

sup [r2(x)|+wrZ(t) < ps, t >0,

0<x<t
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then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

J(0) = 1)) < max{eor sup_flg(e) — g0, 1PNy,
te[—1,0) 272

where wy = max{A, 1}, my = min{1, A}. Moreover, if p, < 1 and there is a negative constant

Y5 such that
A—1 Y(¥)
ot 2
T+A-Dt{s} w3

then IDDEs (1) and (2) are asymptotically stable.

<Y, <0, t>0,

Theorem 9. Assume that IDDEs (1) and (2) satisfy (3)-(5), A > Oand A # 1. If Y(t) < Y,
Y > 0, there exists a bounded function 7,(t), integrable in any bounded interval, such that
?z(t) <0, 1_’2(0) <0,

W X(t) = r(t) <T n (;?__f)r{*} ! W%Y)

and a non-negative constant py < 1, such that

sup |r(x)| +wZ(t) < pp, t >0,
0<x<t

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

Ale(07) —@(07) ||
—my2(0) b 120

Jx(t) = x(t)]| < max{wz sup lo(t) = @(t)],
te[—1,0)

Moreover, if pp < 1 and there is a negative constant Yo, such that

A—=1

+WAY <Y, <0, t>0,
T+(A—Dr{Lfy " =2 =

then IDDEs (1) and (2) are asymptotically stable.

Because #E;T{%} < % forall A > 0, Vt € R, by Theorems 8 and 9, we can obtain

the following two results.

Corollary 1. Assume that IDDEs (1) and (2) satisfy (3)—(5), A # land A > 0. If Y (t) <0, there
exists a bounded function 7, (t), integrable in any bounded interval, such that 75 (t) < 0, 72(0) < 0,

w2 X(t) = Fat) <A 1y Y@)

T ws

and a non-negative constant pp < 1, such that

sup |72 (x)|+ wrZ(t) < o, t >0,
0<x<t

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

Mle(07) =9Iy -+,

() 20 < max{wr sup_Jlg(t) (1)), ==L

te[—1,0)
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Moreover, if po < 1 and there is a positive constant Yo, such that

A_1+L§)§Y2<o, t>0,
T w

2

then IDDEs (1) and (2) are asymptotically stable.

Corollary 2. Assume that IDDEs (1) and (2) satisfy (3)—(5) and A > 0, A # 1. If there exists a
bounded function ¥ (t), integrable in any bounded interval, such that ¥ (t) < 0, #2(0) <0,

wrX(t) = #a(t) <)‘;1 + w%Y)

and a non-negative constant pp < 1, such that

sup |r(x)|+waZ(t) < pa, t >0,
0<x<t

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

AMle(07) — @(07)||
—maF2(0) b 120

lx(t) = () || < max{w; sup [lo(t) —p(t)],

te[—1,0)

Moreover, if pp < 1 and % +w3Y <0, t> 0, then IDDEs (1) and (2) are asymptoti-
cally stable.

Special Case I Let a3(t) = —{L}2+ A{L} +1,t € [-T,00), A €R, A >0, A # L.
The following theorem can be seen as a special case of Theorem 2 when a(t) = as(t).

Theorem 10. Let x(¢t) be the solution of (1) and z3(t) = (—{L}> + A{L} +1)x(t),t € [-T, ).
Then z3(t) is the solution of

&lza(t) — Lt za(t = 1)) = J3(t,z3(8), z3(t — 7)), £>0, )
z3(t) = ¥5(t), te[-1,0],
where , ,
—(_{th2 r g
B(t.) = (~( )+ M D60 )
_ (At Vy (AN L, x y  x
Ja(t,y,x) = O T G(t, a3(t)) + az(H)E(t, O oc3(t))
(1) = { [—(%f DA+ 1) +1p(t), te[-T,0),
Ap(07), t=0.
Conversely, x(t) is the solution of (1) if z3(t) is the solution of (23) and x(t) = —{%}22-3%7(;){%%1’
te[—1,00).

Theorem 11. Assume that A € Rand A > 0, and IDDEs (1) and (2) satisfy inequalities (3)—(5).
IfY(t) <0, there exists a bounded function r3(t), integrable in any bounded interval, such that
r3(t) <0, 7‘3(0) <0,

—2{f} +A Y(t)
—{%}ZT+/\T{%}+T) w3

w3 X(t) = r3(t) <§R(
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and a non-negative constant p3 < 1, such that

sup [r(x)| +wsZ(t) < ps3, t >0,
0<x<t

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

Ix(t) — 7)) < maxfws sup () — (), ML=y -y
te[-1,0) m313(0)

where m3 = min{1, A} and

+1, 0<a<y,
+1, 1<A<2
A A>2

A
4
2
ws =14 i

Moreover, if p3 < 1 and there is a positive constant Y3, such that

—2{L}+4A Y(t)

<Y;<0 t>0,
—{LPr+ar{i}+t W T 3

then IDDEs (1) and (2) are asymptotically stable.

t
% < % forall A > 0, Vt € R, by Theorem 11, we can obtain the
following corollary.

Because

Corollary 3. Assume that A € R and A > 0, and the IDDEs (1) and (2) satisfy inequalities
(3)—(5). If Y(t) < 0, there exists a bounded integrable function 73(t) in any bounded interval, such
that 73(f) <0, 1_’3(0) <0,

A Y(t

4 Q)

X () =707+

and a non-negative constant p3 < 1, such that

sup |F3(x)|+wsZ(t) < p3, t >0,
0<x<t

then the exact solutions of IDDEs (1) and (2) are bounded stable as follows:

AMle(07) —¢(07) ||
—m373(0) b 120

Hﬂﬂ—f®HSHMAw2?$%H¢D—¢GMI

Moreover, if p3 < 1 and there is a positive constant Y3, such that

A Y(¢ -
7+L2)§Y3<Or tZO/
T wsy

then IDDEs (1) and (2) are asymptotically stable.

3. Numerical Methods for INDDEs

Firstly, based on the idea of transformations, the numerical methods for INDDEs are
constructed. Furthermore, it is proven that the constructed numerical methods can preserve
the boundary stability and asymptotical stability of the nonlinear INDDEs if corresponding
continuous Runge-Kutta methods are BN-stable.

The numerical method for nonlinear INDDE (1) can be constructed as the following
three steps.
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Step 1. The numerical solution of (8) is computed by the following continuous Runge—
Kutta method:

. S . . . )
N1 =pnth ‘21 ai}Q(t;H'ALH"?(t;H -1)), i=12,---,5
]:

S . . .
Aty +6h) = py+h ,21 bi(0)Q(t, 1, Al sy, m(t g —T)) (24)
1=

s . , ,
Pn+1 = )\(trﬂ-l) = Pn + h .21 biQ(t171+1/A;1+1/77(t;1+1 - T))/

1=

where the stepsize h = %, m is a positive integer, t, = nh, tiz =t t cih,and ¢; = ijl ajj,
neN,i=12,---,s.
Step 2. The numerical solution of (6) can be computed by

() = A(t) + Gt n(t = 1)), £ >0, (25)

where
n(t) ="%¥(t), t € [-1,0].

Step 3. The numerical solution y(t) of (1) can be computed by
u(t) = 1) o, (26)

In the above process, the exact solution P(t) of (8) is approximated by A(t) for all t > 0
and P(t,) is approximated by p,, n € N; y(t) of (6) is approximated by #(t) and x(f) of (1)
is approximated by y(t) for all t > 0.

Similarly, the numerical method for nonlinear INDDE (2) can be constructed as follows:

~ S . o B . )
Aupr =pnth .Zl ai]'Q(t{Hl/A]nH/’?(t;H -1)), i=12,---,s
]:

~ S . ~ .
Aty +60h) = pu+h '21 bi(0)Q(t, 11, Ay, Tt — 7)),
i=

- s . - )
Pni1 = Mtus1) = Pn+h 421 biQ(t;H'A;H'ﬁ(t;ﬂ - 1),
1=

=A(t)+G(t7j(t—1)), t >0,

(27)

where
() =¥(t), t € [-7,0].

Theorem 12. Assume that IDDEs (1) and (2) satisfy inequalities (3)—(5), and assume the con-
structed numerical methods (24)—(27) are furnished by BN¢-stable continuous Runge-Kutta meth-
ods. If Y(t) <0, there exists a bounded function r(t), integrable in any bounded interval, such
that r(t) < 0,7(0) < 0, and (10) and (11) hold, then the numerical solution u(t) obtained from
(24)—(26) and fi(t) obtained from (27) are bounded, in the following sense:

[1(8) = (B[] < max{w sup |[o(t) — ¢(t)

te[—1,0)

) Ul 90y 5

—mr(0

Moreover, if p < 1 and (12) hold, then the numerical methods (24)—(27) for IDDEs (1) and
(2), furnished by BN ¢-stable continuous Runge-Kutta methods, are asymptotically stable; that is

tim [|u(#) - A(1)]| = 0.

t—o0
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Proof. By ref. [14] (Theorem 10.5.1)or ref. [24] (Theorem 6.1), the numerical methods (24)
and (25), furnished by BN-stable continuous Runge-Kutta methods, are bounded; that is

7 (tn) = 77(t) || < max{|@(0) — D(0)||,}.

Moreover, ref. [14] (Theorem 10.5.1) or ref. [24] (Theorem 6.3), under the condition
of Theorem 2, the numerical methods (24) and (25) furnished by BNy-stable continuous
Runge-Kutta methods, are also asymptotically stable; that is,

im () = 7(t)]| = 0.

Because of the relationship (26) between the numerical solutions INDDE and NDDE
without impulsive perturbations, the theorem holds. [

Similar to Theorem 12, we can obtain that the constructed numerical methods (24)—(27),
furnished by BN-stable continuous Runge-Kutta methods, preserve the boundary stability
and asymptotical stability of the exact solutions, under the conditions of Theorem 3,
as follows.

Theorem 13. Assume that IDDEs (1) and (2) satisfy inequalities (3)—(5), and assume the con-
structed numerical methods (24)—(27) are furnished by BN¢-stable continuous Runge-Kutta meth-
ods. IFY(t) <Y, Y > 0, there exists a bounded function r(t) integrable in any bounded interval,
such that 7(t) < 0,7(0) < 0, (18) and (19) hold, then the numerical solution u(t) obtained from
(24)—(26) and fi(t) obtained from (27) are bounded stable, in the following sense:

() RO < maxleo s [lt8) = 0] Ll

Moreover, if p < 1 and (20) hold, then the numerical methods (24)—~(27) for IDDEs (1) and
(2), furnished by BN ¢-stable continuous Runge—Kutta methods, are asymptotically stable.

4. Numerical Experiments

In this section, two numerical examples are chosen to confirm the theoretical results.
Example 1. Consider the following scalar linear INDDEs with different initial functions:
x(f) —ex!(t—1) =ax(t) + bx(t — 1), t>0,t Zkt, k€N,
x(kt) = Ax(kt™), (28)
x(t) = ¢(t), t € [-7,0),
where a, b, ¢, and A are real constants and ¢(t) is the continuous differential initial function

on [—7,0). Obviously, the inequalities (3)—(5) are satisfied with X(t) = |ac+b|, Y(t) = a,
Z(t) = |c|. There are many parameters that meet the conditions of the theorems. Obviously, when

4 1 5
= — = — = — = - Il
a 5 b 5,c 5,/\ 4,T ,
we have
1 4 1
X(t)=lac+bl=|-5x=+=|==,Y({t)=a=-5 Z() =|c| = =,
5 5 5
and 5 4 5
w1 :max{;,g} = E
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Obviously, there exists r1(t) as follows:

In|A Y
" (t) -

_ 1
le(t) -

<0,
4~ +n(3)
such that the first condition of Theorem 5 holds; that is

T w?

CUlX(t) = 1’1(1’) (M + Y(t)>

So we can obtain that

sup |r1(x)[ +wi1Z(t) = p1

H=pr= ||+ 2 x s <1
0<x<t 4(f% +1n(%)) 475
nd Al Y() 5 5
n t
——+ —5 =—5 +In(7) =Y; <0.
T w? B 4

Hence, all the conditions of Theorem 5 hold. By Theorem 5, the exact solution of (28) is
asymptotically stable.

Similarly, wy = max{3, 2} = 3 and there exists r5(t) as follows:

1Y
()
r(t) = =

sz(t)

such that the first condition of Corollary 1 holds; that is

WX (1) =r2(t>(A;1 +Y“>).

Therefore, we can obtain that

0<x<t

5 1
sup |r2(x)|+wzz(t):f)2:‘T|+ZX§<1
D)
and

A—=1

+Y(t) 1

— =
wy 4

=Y, <0.
T 2

SR @

Hence, all the conditions of Corollary 1 hold. By Corollary 1, we also obtain that the exact
solution of (28) is asymptotically stable.

Similarly, w3 = /\T +1= %, and there exists r3(t) as follows:

< wg ) 89

w X() 5 xeax (3
such that the first condition of Corollary 3 holds; that is

<0,
_ 5x642
892

T w?

WX (1) = r5(t) (A + Ym)
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Therefore, we can obtain that

89 89 1
sup [r3(x)| + wsZ(t) = p3 = | |+ = x-<1
0<xst 5x6ax (- gE) 645
and " ,
AoY(@) 5 64
S =25 x 25 =3 <0,
T+w§ 1 7 ge BT

Hence, all the conditions of Corollary 3 hold. By Corollary 3, we also obtain that the exact
solution of (28) is asymptotically stable.

By Theorem 12, we can obtain that the constructed numerical methods (24)—(27) for INDDE
(28), furnished by BN ¢-stable continuous Runge—Kutta methods, are asymptotically stable. From
Figures 1 and 2, we can roughly see the trend that the distances between the two numerical solutions
(obtained from the constructed numerical methods (24)—(27) for linear INDDE (28), furnished by
implicit Euler method or 2-stage Lobatto I1IC method with two different constant initial function 1
and 0.9) become smaller as the time increases.

Implicit Euler method, a(t)=c, (t) Implicit Euler method, a(t)=a, (1
1.4 T T T 14 " " "
+A %, INDDE (28) whose inital function is constant 1 —s—x,, INDDE (28) whose nitial function is constant 1
ok %f —#—y,NDDE which transformed from (28) as a(t)=a, (1) | | 1ok T —6—x,, INDDE (28) whose initial function is constant 0.9 | |
2
1 ek 1
08 [ 1
0.6 [ 1
04 1
02 1
0
-1 0 1 2 3 4 5
Implicit Euler method, a(t)=oz2(t) Implicit Euler method, a(t)=a3(t)
1.4 T T T 14 T T T
——X, INDDE (28) whose initial function is constant 1 —k—X INDDE (28) whose initial function is constant 1
12} T —O—X,, INDDE (28) whose initial function is constant 0.9 | {5 | —O—X,, INDDE (28) whose initial function is constant 0.9 |

-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

Figure 1. The numerical methods (24)—(27) for (28), furnished by implicit Euler method with the
stepsize h = 11—0.
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2-stage Lobatto 11IC method, a(t)=c, (t) 2-stage Lobatto I1IC method, a(t)=a, ()
1.4 ‘ ‘ ‘ 1.4 ‘ ‘ ‘
A —*—x, INDDE (28) whose initial function is constant 1 —#—X,, INDDE (28) whose initial function is constant 1
12 A —*—y, NDDE which is transformed from INDDE (28) 1ok —6—X,, INDDE (28) whose initial function is constant 0.9 |

3 4 5
2-stage Lobatto 1lIC method, o t)=a2(t) 2-stage Lobatto IlIC method,a(t)=a3(t)
14 T T T 1.4 T T T
—s—x,, INDDE (28) whose initial function is constant 1 —#—X,, INDDE (28) whose initial function is constant 1
12+ —6—X,, INDDE (28) whose initial function is constant 0.9 | | 1o | T X, INDDE (28) whose initial function is constant 0.9 | _|

Figure 2. The numerical methods (24)—(27) for (28), furnished by 2-stage Lobatto IIIC method with
the stepsize h = %.

Example 2. Consider the following scalar nonlinear INDDEs:

£ (x(t) —veos(x(t—1))) = Bx(t) + ye !sin(x(t — 1)), t>0,t#kk€eN,
(k) = Ax(k™), (29)

x(t) = ¢(t),

~

=

te[-1,0),

where B, 7y, v, and A are real constants and ¢(t) is the continuous differential initial functions on
[—1,0). It is easy to verify that the inequalities (3)—(5) are satisfied with X(t) = |Bv| + |yle”",
Y(t) = B, Z(t) = |v|. We can see that the one-side Lipschitz coefficient X (t) is non-negative, which
is different from the general results of NDDEs without impulsive perturbations. The parameters j3,
v, v, and A are chosen to satisfy the conditions of Theorem 6:

ﬁzﬁl"}/:%,V:g,A:

4

1 1 1 1
e
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which implies that the exact solution of (29) is stable and asymptotically stable (See Figures 3 and 4).
We can see that the one-side Lipschitz coefficient X(t) is non-negative, which is different from
NDDEs’ (without impulsive perturbations) stability results of Bellen, Zennaro, et al. (See [14]
(Theorem 9.4.1) or [24] (Theorem 3.1, Theorem 4.2)).
Implicit Euler method, a(t)=a1 (t) Implicit Euler method, a(t)=c, (t
1 T T T 1 T T T
A —*—x, INDDE (29) whose initial function is constant 1 —k—Xy INDDE (29) whose initial function is constant 1
\ —~y, NDDE which is transformed from (29) —6—X,, INDDE (29) whose initial function is constant 0.9
0811 1 08
06 A 1 06°F ]
04
02
ok
0.2 ‘ ‘ : : 02 : ‘ ‘ : :
-1 1 2 3 4 5 -1 0 1 2 3 4 5
Implicit Euler method, o(t)=a., (1) Implicit Euler method,a(t):aa(t)
e ; ; ‘ ‘ ‘ 1 w ‘
INDDE (29) whose initial function i 1 INDDE (29) whose initial function i 1
09 —*—Xy, (29) whose |T1|t.|la uncn‘on |‘s constant 1 09 ——Xy, (29) whose I.mt.lé UnClIfJn I.S constant |
—O—X,, INDDE (29) whose initial function is constant 0.9 —O—X,, INDDE (29) whose initial function is constant 0.9
08 1 08r b
071 1 07F .
06 1 06 b
05r 1 0571 b
04r
03r
02
01r
0 Il

Figure 3. The numerical methods (24)-(27) for (29) furnished by implicit Euler method with the
stepsize h = 11—0.

By Theorem 13, we can obtain that the constructed numerical methods (24)—-(27) for nonlinear
INDDE (29), furnished by BN-stable continuous Runge—Kutta methods, are asymptotically stable.
From Figures 3 and 4, we can roughly see the trend that the distances between the two numerical
solutions (obtained from the constructed numerical methods (24)—(27) for INDDE (29), furnished
by implicit Euler method or 2-stage Lobatto 11IC method with two different constant initial function
1 and 0.9) become smaller as the time increases.
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2-stage Lobatto I1IC method,a(t):al(t)

2-stage Lobatto IlIC method,a(t)=a1(t)

\
0.9 A

\

\
0.8 ’A\\
ol
051

031

01r

—k—x, INDDE (29) whose initial function is constant 1
—%—y, NDDE which is fransformed from (29)

0.90e0e000000

08

07

DEVITOSOROROTOR)
HARAAIRIRN T T T T T T

—#—X,, INDDE (29) whose initial function is constant 1
—6—X,, INDDE (29) whose initial function is constant 0.9

2-stage Lobatto IIC method,a(t)=a2(t)

05 1 15 2 25
2-stage Lobatto I1IC method, o(t)=c, ()

0.9Ge0se95580

0.7

051

03

011

—f— Xy, INDDE (29) whose initial function is constant 1
—o—X,, INDDE (29) whose initial function is constant 0.9

IRe[cSSSSSSESS)

—*—Xy, INDDE (29) whose initial function is constant 1
—O—X,, INDDE (29) whose initial function is constant 0.9

Figure 4. The numerical methods (24)—(27) for (29), furnished by 2-stage Lobatto IIIC method with
the stepsize h = %.

In Tubles 1-6, AE denotes the absolute errors between the numerical solutions and the exact
solution of INDDEs. Similarly, RE denotes the relative errors between the numerical solutions and
the exact solution of INDDEs. As is well known, when the step size is halved, the global errors of
the numerical methods of p-order convergence will become approximately the same as the original
times. We can see from the tables that the average ratio of the absolute errors (or relative errors)
between the numerical solutions obtained from (24)—(26), furnished by implicit Euler method and
the exact solution of (28), is close to 2 (the reciprocal of % ) and the average ratio of the absolute errors
(or relative errors) between the numerical solutions obtained from (24)—(26), furnished by 2-stage
Lobatto I1IC method and the exact solution of (29), is close to 4 (the reciprocal of 2% ) when the step
size doubles and three different kinds of the transformations are used. Hence, Tables 1-6 roughly
show that the constructed method, furnished by backward Euler method, is convergent of order 1
and by 2-stage Lobatto IIIC method is convergent of order 2 when the different transformations
are chosen.
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Table 1. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of

(28) at t = 10, when a(t) = a1 (t) = A1, £ > —1.

The Implicit Euler 2-Lobatto IIIC
m AE RE AE RE
10 3.6581941667 x10~8  0.0551236000 3.3993997914 x10~°  0.0051223952
20 1.6188740613 x10~%  0.0243940486  9.5844940891 x10~10  0.0014442422
40 7.5674842099 x10~°  0.0114030845 2.5770607279 x10~10  3.8832512532 x10~*
80 3.6514998468 x10~2  0.0055022726  6.7075180094 x10~11  1.0107242500 x10—*
Ratio 2.1571322845 2.1571322845  3.7026585356 3.7026585356

Table 2. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of
(28)att =10, when a(t) = ap(t) =1+ (A = 1){¢t}, t > —1.

The Implicit Euler 2-Lobatto ITIC
m AE RE AE RE
10 3.6469927694 x10~8  0.0549548115  3.3341478657 x10~°  0.0050240702
20 1.6145910077 1078 0.0243295093  9.2718600641 x10~10  0.0013971329
40 7.5491598720 x10~7  0.0113754724  2.4224957236 x 1010  3.6503445423 x 10~*
80 3.6430871304 x10~?  0.0054895959  6.7075212665 x 1011 8.9455329107 x 10>
Ratio  2.1565761938 2.1565761938  3.8346733002 3.8346733002

Table 3. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of
= {2+ A{}+1,t> -1

(28) at t = 10, when a(t) = a3(t)

The Implicit Euler 2-Lobatto IIIC
m AE RE AE RE
10 3.2928273582 x1078  0.0496180603 3.5224011714 x10~2  0.0053077402
20 1.4792658001 x10~8  0.0222903577  9.9361388805 x10~10  0.0014972299
40 6.9719562429 x10~°  0.0105057116 2.6736493834 x10~10  4.0287961420 x10—*
80 3.3787413432 x10™9  0.0050912658  6.9626687974 x10~11  1.0491717188 x 104
Ratio  2.1370673472 2.1370673472  3.7004462838 3.7004462838

Table 4. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of

(29) att =5, when a(t) = a1 ().

The Implicit Euler 2-Lobatto ITIC
m AE RE AE RE
20 0.0022369766 0.2202504769  5.7299369527 x10~°  2.3107308782 x10~*
40 0.0011276564 0.1110279231  1.4405875293 x10~°  5.8095056092 x 10>
80 5.6614685412 x10™*  0.0557422526  3.6113985329 x10~7  1.4563807896 x 107>
160 2.8365495107 x10™*  0.0279283826  9.0363875351 x10~%  3.6441342859 x10~°
Ratio  1.9904827766 1.9904827766  3.9876695906 3.9876695906

Table 5. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of

(29) at t = 5, when a(t) = ap(t).

The Implicit Euler 2-Lobatto ITIC
m AE RE AE RE
20 1.9815130517 x10~*  0.0195097711  2.3187856183 x10~°>  9.4091835401 x10~*
40 1.0076686770 x10~*  0.0099214008 5.9673597828 x10~¢  2.4210841877 x10~*
80 5.0814463184 x107°  0.0050031391 1.5136126717 x10~®  6.1405921789 x10~°
160 2.5515894339 x107°  0.0025122684  3.8502245644 x10~7  1.5462538456 x10~°
Ratio  1.9803170077 1.9803170077  3.9334584227 3.9334584227
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Table 6. The errors between the numerical solutions obtained from (24)—(26) and the exact solution of
(29) att =5, when a(t) = az(t).

The Implicit Euler 2-Lobatto ITIC
m AE RE AE RE
20 0.0046567801 0.4585012456  1.5888036813 x10~*  0.0064072219
40 0.0024075383 0.2370434701  4.2949208184 x10~>  0.0017320271
80 0.0012240906 0.1205225617  1.1161651179 x107°  4.5011964909 x10~*
160 6.1718429346 x10™*  0.0607672605  2.8446726005 x10~°  1.1471806565 x10~4
Ratio  1.9614646923 1.9614646923  3.8236303912 3.8236303912

5. Conclusions and Future Works

In this paper, some new different asymptotical stability criteria are given for the exact
solutions of a class of nonlinear INDDEs, based on the following idea: first the problems
of the stability and asymptotical stability of INDDEs are transformed into the problems
of NDDEs without impulsive perturbations, and then transformed into the problems of
ordinary differential equations with a forcing term. Based on the above idea, some new
sufficient conditions for the stability and asymptotical stability of the exact solutions of
INDDEs are obtained and the numerical methods for INDDESs are constructed. Moreover,
the numerical method is asymptotically stable if the corresponding continuous Runge—
Kutta methods are BN f-stable, under these different sufficient conditions.

In the future, we will study the asymptotical stability of more general INDDEs with
the following characteristics: the size of the delay in continuous dynamics can be flexible,
and there is no magnitude between the delay in continuous flow and impulsive delay.
Finally, we propose the discontinuous Galerkin method (see [32]) as a stable and highly
efficient alternative for solving INDDEs. Its application to these equations holds substantial
potential and could produce promising outcomes.
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