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Abstract: In the pursuance of engineering excellence and sustainable practices, the optimization
of material selection processes plays a crucial role. Using Fermatean fuzzy aggregation Operators
(AOs), this study introduces an innovative method for improving material selection procedures.
Combining the advantages of Fermatean fuzzy set (FrFS) and AOs, the proposed method enables a
comprehensive evaluation of materials based on multiple criteria. The authors propose two operators:
the “Fermatean fuzzy hybrid weighted arithmetic geometric aggregation (FrFHWAGA) operator”
and the “Fermatean fuzzy hybrid ordered weighted arithmetic geometric aggregation (FrFHOWAGA)
operator”. This method facilitates informed decision making in a number of industries by taking into
account factors such as cost, durability, environmental impact, and availability. This research enables
engineers, designers, and decision makers to optimize material selection, resulting in more efficient,
cost-effective, and sustainable solutions across multiple domains.

Keywords: decision making; aggregation operators; material selection; optimization; Fermatean
fuzzy set

MSC: 03E72; 94D05; 90B50

1. Introduction

The process of decision making emerges as a critical and influential factor that pro-
foundly influences the trajectory of human endeavors across all domains amidst the dy-
namic and ever-changing global landscape [1]. In the current era, which is characterized by
technological advancements, global interconnectedness, and complex dilemmas, effective
decision making is of paramount importance. The long-term consequences of present-day
decisions have a significant impact on numerous industries, communities, and the global
environment. It is imperative that we recognize the uttermost significance of decision
making if we are to thrive in our contemporary, complex society characterized by rapid
change. It is crucial that we cultivate and hone our decision-making skills and employ them
effectively to confront the diverse and complex dilemmas and opportunities of our time.
By engaging in this process, we enhance our ability to make significant contributions to the
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progression of knowledge, the improvement of society, and the responsible management of
our planet [2].

Within the domain of finance and economics, the process of decision making plays
a crucial role in providing direction to businesses as they navigate through a complex
network of potential possibilities and associated dangers. From the perspective of business
strategy, investments and market expansion, as well as managing supply chains and
allocation of resources, have far-reaching ramifications that impact different industries
and countries [3]. The discipline of healthcare and medical care is characterized by the
significant and tangible consequences of decision making, as it directly affects the physical
and mental health of individuals and communities [4]. The importance of environmental
sustainability on a global scale highlights the crucial role of decision making in ensuring the
preservation of our planet’s future. Policymakers, environmental advocates, and industrial
stakeholders are confronted with the complex task of making decisions on energy sources,
techniques for conservation, and regulatory interventions. In an epoch characterized by
swift technological progress and growing multidisciplinary cooperation, the procedure
of material selection assumes a crucial position in the evolution of inventive items and
technologies inside diverse industries [5]. The careful selection of materials has a significant
impact on the performance, longevity, and ecological responsibility of engineered systems,
as well as their cost effectiveness and overall usefulness. As a result, professionals in the
fields of engineering, science, and research are consistently in pursuit of approaches that
can optimize the efficiency and precision of material selection processes [6].

The determination of material attributes and the establishment of selection criteria
may lack clear-cut or exact definitions. Frequently, they demonstrate varying levels of
ambiguity and imprecision. Fuzzy logic enables the depiction of uncertainty by utilizing
fuzzy sets (FSs) and membership functions. Rather than categorizing a material as either
“suitable” or “unsuitable” in a binary manner, FSs are used to quantify the extent to which
a material exhibits a particular attribute. One illustrative instance involves representing the
hardness of a material as an FS, wherein membership functions are employed to indicate the
degree of “hardness” on a continuous spectrum. The utilization of this approach facilitates
a more intricate and authentic portrayal of the process of decision making, resulting in
enhanced material selection decisions that are well informed and in accordance with the
particular requirements of the given application. The selection criteria utilized in the field
of material science frequently involve the utilization of qualitative descriptors such as
“strong”, “durable”, or “resistant”. Fuzzy logic facilitates the representation of imprecise
criteria through the establishment of associations between linguistic concepts and FSs. As
an example, the concept of “strong” can be modeled as an FS by utilizing a membership
function that effectively represents the range of strength values. Fuzzy logic facilitates
the process of evaluating and prioritizing items by considering their varying degrees of
acceptability in relation to the combined fuzzy criteria. Materials that possess greater
aggregated membership values are seen as being more appropriate [7]. This ranking
methodology offers a systematic approach to prioritizing materials by considering their
overall performance across numerous criteria, particularly in cases when these criteria
include intrinsic imprecision. Fuzzy logic additionally facilitates sensitivity analysis, a
crucial aspect in comprehending the impact of alterations in criteria weights or membership
function shapes on the outcomes of material selection.

Real-world challenges, such as agglomeration, segmentation, decision-making, and
supplier evaluation, are significantly influenced by the presence of ambiguities. In the
absence of processing imprecise, ambiguous, or misleading input, it is not possible for
decision-making systems to obtain dependable results. According to Zadeh [8], an FS is
a broadened concept of a classical set, where the membership function is employed to
quantify the degrees of membership for the elements of the FS. Zadeh’s FSs have been
subject to thorough examination by researchers from various angles connected to MCDM.
Atanassov [9] introduced the notion of “intuitionistic fuzzy sets” (IFS) as an extension of
FS, wherein the combined value of the membership degree (MSD) and non-membership
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degree (NMSD) is constrained to be no greater than one. This particular characteristic is
highly regarded by numerous professionals in the different fields. The IFSs has limitations
in effectively addressing intricate decision-making problems due to the requirement of
identical values for the MSD and the NMSD. Yager’s concept of the “Pythagorean fuzzy
set” (PFS) is a notable extension of the IFS framework, wherein the constraint of the sum of
squares of MSD and the NMSD is limited to a value of one [10]. This phenomenon exhibits
various uses, one of which is selection. The authorization of PFS is not always guaranteed.
To illustrate, a panel of experts was partitioned into two distinct groups with the purpose
of evaluating training institutions. The initial panel of experts issued a MSD rating of 0.92,
whereas the subsequent panel assigned a NMSD value of 0.84. The sum of the squares of
MSD and NMSD exceeded one. The IFS and PFS were not able to effectively demonstrate
this phenomenon. In order to address this issue, Senapati and Yager [11] introduced the
concept of FrFS as a natural expansion of IFS and PFS. The FrFS theory holds considerable
importance across various domains due to its robust conceptual framework employed for
addressing contradictory and inaccurate data inside an FrF framework.

The process of data aggregation holds significant importance in several sectors, in-
cluding business-related, management, social, medical, technical, mental disorders and
artificial intelligence areas, since it plays a crucial role in facilitating informed decision
making. Historically, the concept of alternate consciousness is seen as a distinct entity or a
linguistic numeral. However, due to the level of uncertainty associated with the data, its
aggregation is not a straightforward task. Indeed, it is evident that decision makers known
as AOs hold a significant role within the realm of MCDM challenges. The fundamental
aim of MCDM is to obtain a singular numerical value by amalgamating several distinct
inputs. Numerous research studies have centered on FrFSs exclusively [12]. When multiple
potential solutions to a given problem exist, the concept of AOs is crucial for determining
the most advantageous option [13]. Extensive research conducted by numerous scholars
demonstrates that significant progress has been made in the field of FrFSs. Senapati and
Yager [14] provided the basic AOs, Einstein AOs were offered by Rani et al. [15], Jeevaraj
offered the concept of interval-valued FrFSs [16], Garg et al. [17] proposed the idea of
Yager AOs and Shahzadi et al. [18] initiated the concept of Hamacher Interactive AOs for
FrFSs. In their study, Chen et al. [19] introduced a framework for MCDM in the context of
selecting sustainable construction materials. Chen et al. [20] introduced a novel approach
for assessing passenger wants and measuring passenger satisfaction by utilizing online-
review analysis. The concept of “Pythagorean fuzzy power AOs” was introduced by Wei
and Lu [21]. Wu and Wei [22] offered the notion of “Pythagorean fuzzy Hamacher AOs”,
while Garg [23] proposed “confidence level-based Pythagorean fuzzy AOs” in the context
of their application to MCDM. The concept of “Yager operators with the picture fuzzy
set environment and its application to emergency program selection” was introduced by
Qiyas et al. [24].

The subsequent sections of the paper are organized in the following manner. Section 2
presents a set of fundamental definitions pertaining to FrFSs, operational rules, a scoring
function, and an accuracy function for FrFNs. This section also discusses two fundamen-
tal AOs, namely FrFWA and FrFWG operators. In Section 3, we provide two operators,
namely the “Fermatean fuzzy hybrid weighted arithmetic geometric aggregation (FrFH-
WAGA) operator and the Fermatean fuzzy hybrid ordered weighted arithmetic geometric
aggregation (FrFHOWAGA) operator”. In Section 4, we provide an FrFN-based MADM
technique, while in Section 5, we propose a case study on material selection accompanied
by a numerical example. Section 6 presents the research work’s conclusion.

2. Preliminaries

In this section, we present some rudiments of FrF sets.

Definition 1 ([11]). An FrFS in a finite universe X is

F = {< k,ℵµ
F(k), ζν

F(k) >: k ∈ X }
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where ℵµ
F(k) : X → [0, 1] shows the MSD and ζν

F(k) : X → [0, 1] shows the NMSD of the
element k ∈ X to the set F, respectively, with the condition that 0 ≤ ℵµ

F(k)3 + ζν
F(k)3 ≤ 1.

The degree of indeterminacy is given as πF(k) = 3
√
(ℵµ

F(k)3 + ζν
F(k)3 − ℵµ

F(k)3ζν
F(k)3) .

A basic element of the form 〈ℵµ
F(k), ζν

F(k)〉 in an FrFS F is called a Fermatean fuzzy num-
ber (FrFN).

2.1. Operational Laws of FrFSs

Definition 2 ([11]). We ket F1 = 〈ℵµ
F1(k), ζν

F1
(k)〉 and F2 = 〈ℵµ

F2(k), ζν
F2
(k)〉 be FrFSs on

a X . Then, we have the following operations:
(1) F̄1 = 〈ζν

F1
(k),ℵµ

F1(k)〉.
(2) F1 ⊆ F2 if and only if ℵµ

F1(k) 6 ℵµ
F2(k) and ζν

F2
(k) 6 ζν

F1
(k).

(3) F1 = F2 if and only if F1 ⊆ F2 and F2 ⊆ F1.
(4) F1 ∪ F2 = {〈k, max{ℵµ

F1(k),ℵµ
F2(k)}, min{ζν

F1
(k), ζν

F2
(k)}〉 | k ∈ X }.

(5) F1 ∩ F2 = {〈k, min{ℵµ
F1(k),ℵµ

F2(k)}, max{ζν
F1
(k), ζν

F2
(k)}〉 | k ∈ X }.

(6) F1 + F2 = {〈k, (ℵµ
F1(k)

3 +ℵµ
F2(k)3−ℵµ

F1(k)
3ℵµ

F2(k)3)1/3, ζν
F1
(k)ζν

F2
(k)〉 |k ∈ X }.

(7) F1.F2 = {〈k, (ℵµ
F1(k)ℵµ

F2(k), ζν
F1
(k)3 + ζν

F2
(k)3 − ζν

F1
(k)3ζν

F2
(k)3)1/3〉 | k ∈ X }.

(8) σF1 = {〈k, (1− (1− ℵµ
F1(k)

3)σ))1/3, ζν
F1
(k)σ〉}.

(9) Fσ
1 = {〈k,ℵµ

F1(k)
σ, (1− (1− ζν

F1
(k)3)σ))1/3, 〉}.

Theorem 1 ([11]). Let A , B and C be any FrFSs over the reference set X . Let Ũ be absolute
FrFS and ∅̃ be the null FrFS. Then,

(i) A ∪A = A .
(ii) A ∩A = A .
(iii) (A ∪B) ∪ C = A ∪ (B ∪ C ).
(iv) (A ∩B) ∩ C = A ∩ (B ∩ C ).
(v) A ∪ (B ∩ C ) = (A ∪B) ∩ (A ∪ C ).
(vi) A ∩ (B ∪ C ) = (A ∩B) ∪ (A ∩ C ).
(vii) A ∪ ∅̃ = A and A ∩ ∅̃ = ∅̃.
(viii) A ∪ Ũ = Ũ and A ∩ Ũ = A .
(ix) (A c)c = A .
(x) Ũc = ∅̃ and ∅̃c = Ũ.

Theorem 2. Let A and B be two FrFSs over the reference set X . Then,

(a) (A ∪B)c = A c ∩Bc, and
(b) (A ∩B)c = A c ∪Bc.

2.2. Operational Laws of Fermatean Fuzzy Numbers (FrFNs)

Definition 3 ([14]). Suppose h̄δ
1 = 〈ℵµ

1, ζν
1〉 and h̄δ

2 = 〈ℵµ
2, ζν

2〉 are the two FrFNs. Then,
(1) ¯h̄δ

1 = 〈ζν
1,ℵµ

1〉.
(2) h̄δ

1 ∨ h̄δ
2 = 〈max{ℵµ

1, ζν
1}, min{ℵµ

2, ζν
2}〉.

(3) h̄δ
1 ∧ h̄δ

2 = 〈min{ℵµ
1, ζν

1}, max{ℵµ
2, ζν

2}〉.
(4) h̄δ

1 ⊕ h̄δ
2 = 〈 3

√
ℵµ3

1 + ℵµ3
2 − ℵµ3

1ℵµ3
2, ζν

1ζν
2〉.

(5) h̄δ
1 ⊗ h̄δ

2 = 〈ℵµ
1ℵµ

2, 3
√

ζν3
1 + ζν3

2 − ζν3
1ζν3

2〉.
(6) σh̄δ

1 = 〈(1− (1− ℵµ3
1)

σ)1/3, ζνσ
1 〉.

(7)h̄δ h̄δ
1

1 = 〈ℵµσ
1 , (1− (1− ζν3

1)
σ)1/3〉.

Theorem 3 ([14]). Suppose h̄δ
1 = 〈ℵµ

1, ζν
1〉 and h̄δ

2 = 〈ℵµ
2, ζν

2〉 are any FrFNs on a X , and
n1, n2 > 0; then,
(1) h̄δ

1 ⊕ h̄δ
2 = h̄δ

2 ⊕ h̄δ
1.

(2) h̄δ
1 ⊗ h̄δ

2 = h̄δ
2 ⊗ h̄δ

1.
(3) n(h̄δ

1 ⊕ h̄δ
2) = nh̄δ

1 ⊕ nh̄δ
2.
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(4) n1h̄δ
1 ⊕ n2h̄δ

2 = (n1 + n2)h̄δ
1.

(5) h̄δn1
1 ⊗ h̄δn2

1 = h̄δn1+n2
1 .

(6) h̄δn
1 ⊗ h̄δn

2 = (h̄δ
1 ⊗ h̄δ

2)
n.

Definition 4 ([14]). Suppose that A = 〈ℵµ, ζν〉 is a FrFN; then, score function E of A is defined as

E(A) = ℵµ3 − ζν3

E(A) ∈ [−1, 1]. If the score is large, then the FrFN is greater. However, the score function cannot
be useful in many cases of FrFN. To solve this problem, we use another function named the accuracy
function.

Definition 5 ([14]). Consider A = 〈ℵµ, ζν〉 is the FrFN; then, the accuracy function R of A is
defined as

R(A) = ℵµ3 + ζν3

2.3. Some Basic Aggregation Operators on FrFNs

Definition 6 ([14]). Assume that h̄δ
k = 〈ℵµ

k, ζν
k〉 is the conglomeration of FrFNs. Define

(FrFWA) : Tn → T given by

(FrFWA)(h̄δ
1, h̄δ

2, . . . , h̄δ
n) =

n

∑
k=1
<k h̄δ

k

= <1h̄δ
1 ⊕<2h̄δ

2 ⊕ . . . ,<n h̄δ
n

where Tn is the set of all FrFNs, and < = (<1,<2, . . . ,<n)T is weight vector (WV) of

(h̄δ
1, h̄δ

2, . . . h̄δ
n), such that 0 6 <k 6 1 and

n

∑
k=1
<k = 1. Then, the FrFWA is called the

“Fermatean fuzzy weighted averaging (FRFWA) operator”.

We can compute FrFWA using FrFN operating principles, as shown by the subse-
quent theorem.

Theorem 4 ([14]). Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be the conglomeration of FrFNs. FrFWA can be obtained

by

(FrFWA)(h̄δ
1, h̄δ

2, . . . , h̄δ
n) =

〈
3

√
(1−

n

∏
k=1

(1− ℵµ3
k)
<k ),

n

∏
k=1

ζν<k
k

〉
(1)

Definition 7 ([14]). Assume that h̄δ
k = 〈ℵµ

k, ζν
k〉 is a conglomeration of FrFN , and (FrFWG) :

Tn → T, if

(FrFWG)(h̄δ
1, h̄δ

2, . . . h̄δ
n) =

n

∑
k=1

h̄δ<k
k

= h̄δ<1
1 ⊗ h̄δ<2

2 ⊗ . . . , h̄δ<n
n

where Tn is the set of all FrFNs. Then, the FrFWG is called the “Fermatean fuzzy weighted
geometric (FrFWG) operator”.

We can compute the FrFWG operator using FrFN operating principles, as shown by
the subsequent theorem.

Theorem 5 ([14]). Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be the conglomeration of FrFNs. FrFWG can be found by

(FrFWG)(h̄δ
1, h̄δ

2, . . . h̄δ
n) =

〈
n

∏
k=1
ℵµ<k

k , 3

√
(1−

n

∏
k=1

(1− ζν3
k)
<k )

〉
(2)
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2.4. Some Drawbacks of FrFWA and FrFWG Operators

As we know, in many MCDM problems, FrFWA and FrFWG operators are used to
aggregate information. Nevertheless, the collective values may provide irrational outcomes
when some values approach the upper limits of the arguments or the weights. In this
analysis, we examine two distinct scenarios.
Case 1: We take two FrFNs such that h̄δ

1 = (0.001, 0), h̄δ
2 = (1, 0) with weights <1 = 0.9

and <2 = 0.1. By (1) and (2), we obtain

FrFWA(h̄δ
1, h̄δ

2) = (1, 0)

and
FrFWG(h̄δ

1, h̄δ
2) = (0.002, 0).

Case 2: We take two FrFNs such that h̄δ
1 = (0.001, 0), h̄δ

2 = (1, 0) with weights <1 = 0.1
and <2 = 0.9. By (1) and (2), we obtain

FrFWA(h̄δ
1, h̄δ

2) = (1, 0)

and
FrFWG(h̄δ

1, h̄δ
2) = (0.501, 0)

Based on the obtained data, it is evident that the FrFWA and FrFWG operators did not
yield satisfactory outcomes in these two instances. Hence, it is imperative to enhance the
operators of aggregation in order to address these limitations or deficiencies.

3. Some Hybrid AOs of FrFNs

In this part, we provide a novel hybrid approach to address the limitations of the
FrFWA and FrFGA operators.

3.1. FrFHWAGA Operator

Definition 8. Assume that h̄δ
k = 〈ℵµ

k, ζν
k〉 is a conglomeration of FrFN, and (FrFHWAGA) :

Tn → T, if

(FrFHWAGA)(h̄δ
1, h̄δ

2, . . . , h̄δ
n) =

( n

∑
k=1
<k h̄δ

k

)i( n

∑
k=1

h̄δ<k
k

)1−i

where Tn is the set of all FrFNs, i is any real number in the interval [0, 1] and< = (<1,<2, . . . ,<n)T

is WV of (h̄δ
1, h̄δ

2, . . . , h̄δ
n), such that 0 6 <k 6 1 and

n

∑
k=1
<k = 1. Then, the FrFHWAGA is

called the Fermatean fuzzy hybrid weighted arithmetic geometric aggregation (FrFHWAGA) operator.

We can compute FrFHWAGA operator using FrFN operating principles as shown by
the subsequent theorem.

Theorem 6. Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be a conglomeration of FrFN. FrFHWAGA can be found by

(FrFHWAGA)(h̄δ
1, h̄δ

2, . . . , h̄δ
n) =

( n

∑
k=1
<k h̄δ

k

)i( n

∑
k=1

h̄δ<k
k

)1−i

=
〈
(1−∏n

k=1(1− (ℵµ
k)

3)wk )
i
3 (∏n

k=1 ℵµwk
k )1−i,

3
√

1− (1− (∏n
k=1(ζ

ν
k)

wk )3)i(∏n
k=1(1− (ζν

k)
3)wk )1−i

〉 (3)
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Proof. Based on the operational laws of FrFNs,

(FrFHWAGA)(h̄δ
1, h̄δ

2, . . . h̄δ
n) =

( n

∑
k=1
<k h̄δ

k

)i( n

∑
k=1

h̄δ<k
k

)1−i

=
〈
(1−∏n

k=1(1− ℵµ3
k)
<k )1/3, ∏n

k=1 ζν<k
k )
〉i〈

(∏n
k=1 ℵµ<k

k , (1−∏n
k=1(1− ζν3

k)
<k )1/3)

〉1−i

=

〈(
(1−∏n

k=1(1− ℵµ3
k)
<k )i/q, (1− (1− (∏n

k=1 ζν<k
k )3)i)

1
3

)(
(∏n

k=1 ℵµ<k
k )1−i, (1− (∏n

k=1(1− ζν3
k)
<k )1−i)

1
3

)〉

=

〈
(1−∏n

k=1(1− ℵµ3
k)
<k )i/q.(∏n

k=1 ℵµ<k
k )1−i, 3

√
(1− (1− (∏n

k=1 ζν<k
k )3)i)

3
3 + (1− (∏n

k=1(1− ζν3
k)
<k )1−i)

3
3

−(1− (1− (∏n
k=1 ζν<k

k )3)i)(1− (∏n
k=1(1− ζν3

k)
<k )1−i)

〉

=

〈
(1−∏n

k=1(1− (ℵµ
k)

3)<k )
i
3 (∏n

k=1 ℵµ<k
k )1−i, 3

√
(1− (1− (∏n

k=1 ζν<k
k )3)i) + (1− (∏n

k=1(1− ζν3
k)
<k )1−i)

3
3

−1 + (∏n
k=1(1− ζν3

k)
<k )1−i) + (1− (∏n

k=1 ζν<k
k )3)i)− (1− (∏n

k=1(1− ζν3
k)
<k )1−i)(1− (∏n

k=1 ζν<k
k )3)i)

〉

=

〈
(1−∏n

k=1(1− (ℵµ
k)

3)<k )
i
3 (∏n

k=1 ℵµ<k
k ), 3

√
1− (1− (∏n

k=1(ζ
ν

k)
<k )3)i(∏n

k=1(1− (ζν
k)

3)<k )1−i

〉

Therefore, this completes the proof of (3).

Remark 1. For different values of i ∈ [0, 1], it is possible to investigate the various families of the
FrFHWAGA operator individually. If we consider some special case like i = 1, the FrFHWAGA
operator is reduced to the FrFWA operator. If i = 0, the FrFHWAGA operator is reduced to
the FrFWG operator. If i = 0.5, the FrFHWAGA operator is the mean of the FrFWA and
FrFWG operators.

Example 1. Let h̄δ
1 = (0.710, 0.520), h̄δ

2 = (0.341, 0.562), and h̄δ
3 = (0.572, 0.681) be the

three FrFNs, < = (0.50, 0.30, 0.20) be the WV of (h̄δ
1, h̄δ

2, h̄δ
3), i = 0.5. Use the FrFHWAGA

operator to aggregate the three FrFNs by using (3).

(FrFHWAGA)(h̄δ
1, h̄δ

2, h̄δ
3) =

〈
(1−

3

∏
k=1

(1− (ℵµ
k)

3)wk )
0.5
3 (

3

∏
k=1
ℵµwk

k )1−0.5,

3

√√√√1− (1− (
3

∏
k=1

(ζν
k)

wk )3)0.5(
3

∏
k=1

(1− (ζν
k)

3)wk )1−0.5

〉
= (0.586, 0.561)

Theorem 7. Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be a conglomeration of FrFNs. Then,

1. (Idempotency) if h̄δ
k = h̄δ = 〈ℵµ, ζν〉 for all k, then

FrFHWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) = h̄δ (4)

2. (Boundedness) if h̄δ− = (min(ℵµ
k), max(ζν

k)) and h̄δ+ = (max(ℵµ
k), min(ζν

k)), then

h̄δ− ≤ FrFHWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) ≤ h̄δ+ (5)
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3. (Monotonicity) if h̄δ
k = 〈ℵµ

k, ζν
k〉 and h̄δ∗

k = 〈ℵµ∗
k , ζν∗

k 〉 are two sets of FrFNs and if
ℵµ

k ≥ ℵµ∗
k , ζν

k ≤ ζν∗
k for all k, then

FrFHWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) ≥ FrFHWAGA(h̄δ∗

1 , h̄δ∗
2 , . . . , h̄δ∗

n) (6)

3.2. FrFHOWAGA Operator

Definition 9. Assume that h̄δ
k = 〈ℵµ

k, ζν
k〉 is a conglomeration of FrFNs, and (FrFHOWAGA) :

Tn → T, if

(FrFHWAGA)(h̄δ
1, h̄δ

2, . . . h̄δ
n) =

( n

∑
k=1
<k h̄δ

i(k)

)i( n

∑
k=1

h̄δ<k
i(k)

)1−i

where Tn is the set of all FrFNs,(i(1),i(2), . . . ,i(k)) is a permutation of (1, 2, . . . , n) such that
h̄δ

i(j−1) ≥ h̄δ
i(j) for any k, i is any real number in the interval [0, 1]. Then, the FrFHOWAGA is

called the Fermatean fuzzy hybrid ordered weighted arithmetic geometric aggregation
(FrFHOWAGA) operator.

Theorem 8. Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be a conglomeration of FrFNs. FrFHOWAGA can be found by

(FrFHWAGA)(h̄δ
1, h̄δ

2, . . . , h̄δ
n) =

( n

∑
k=1
<k h̄δ

i(k)

)i( n

∑
k=1

h̄δ<k
i(k)

)1−i

=

〈
(1−

n

∏
k=1

(1− (ℵµ
i(k))

3)<k )
i
3 (

n

∏
k=1
ℵµ<k

i(k))
1−i,

3

√
1− (1− (

n

∏
k=1

(ζν
i(k))

<k )3)i(
n

∏
k=1

(1− (ζν
i(k))

3)<k )1−i

〉
(4),

where i is any real number in the interval [0, 1]. (i(1),i(2), . . . ,i(k)) is a permutation of
(1, 2, . . . , n) such that h̄δ

i(k−1) ≥ h̄δ
i(k) for any k.

Proof. The evidence may be constructed using a similar approach to that of Theorem 6;
hence, we omit the proof.

Example 2. We consider ä1 = (0.710, 0.520), ä2 = (0.340, 0.560), and ä3 = (0.570, 0.680) to be
the three FrFNs, < = (0.50, 0.30, 0.20) be the WV of (ä1, ä2, ä3), i = 0.5.
By score function, we rank these FrFNs

E(ä1) = 0.181,

E(ä2) = −0.085,

E(ä3) = −0.108;

now, h̄δ
1 = ä1, h̄δ

2 = ä2, h̄δ
3 = ä3. We use the FrFHOWAGA operator to aggregate by using

(4).

(FrFHOWAGA)(h̄δ
1, h̄δ

2, h̄δ
3) =

〈
(1−

3

∏
k=1

(1− (ℵµ
i(k))

4)wk )
0.5
4 (

3

∏
k=1
ℵµwk

i(k))
1−0.5,

4

√√√√1− (1− (
3

∏
k=1

(ζν
i(k))

wk )4)0.5(
3

∏
k=1

(1− (ζν
i(k))

4)wk )1−0.5

〉
= (0.582, 0.567)
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Theorem 9. Let h̄δ
k = 〈ℵµ

k, ζν
k〉 be a conglomeration of FrFNs . Then,

1. (Idempotency) If h̄δ
k = h̄δ = 〈ℵµ, ζν〉 for all k, then

FrFHOWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) = h̄δ (7)

2. (Boundedness) If h̄δ− = (min(ℵµ
k), max(vk)) and h̄δ+ = (max(ℵµ

k), min(ζν
k)), then

h̄δ− ≤ FrFHOWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) ≤ h̄δ+ (8)

3. (Monotonicity) If h̄δ
k = 〈ℵµ

k, ζν
k〉 and h̄δ∗

k = 〈ℵµ∗
k , ζν∗

k 〉 are two sets of FrFNs and if
ℵµ

k ≥ ℵµ∗
k , ζν

k ≤ ζν∗
k for all k, then

FrFHOWAGA(h̄δ
1, h̄δ

2, . . . , h̄δ
n) ≥ FrFHOWAGA(h̄δ∗

1 , h̄δ∗
2 , . . . , h̄δ∗

n) (9)

3.3. Numerical Example

In order to demonstrate the suitability of the aggregated values obtained from the
FrFHWAGA and FrFHOWAGA operators, we consider the first scenario outlined in
Section 2.4. In this study, we consider the value of i to be 0.5. For the given scenario,
we employ the FrFHWAGA and FrFHOWAGA operators. For Case 1, by (3), there
is FrFHWAGA(h̄δ

1, h̄δ
2) = (0.045, 0) which is between FrFWA(h̄δ

1, h̄δ
2) = (1, 0) and

FrFWG(h̄δ
1, h̄δ

2) = (0.002, 0). In the aforementioned scenario, recently devised opera-
tors demonstrate the presence of moderate values. It is evident that these operators possess
the capability to address the limitations of the FrFWA and FrFWG operators. Hence, the
FrFHWAGA and FrFHOWAGA operators exhibit more efficacy and rationality in the
context of information aggregation.

4. Decision-Making Method Based on Proposed AOs

We suppose that A = {(Aγ
1, Aγ

2, . . . , Aγ
p)} and C = {C1, C2, . . . , Cq} is the set

of alternatives and criterions, respectively. We let < be the WV of attributes, such that

<j ∈ [0, 1] and
n

∑
j=1
<j = 1, (j = 1, 2, . . . , n) and <j represent the weight of Cj. An alternative

on criterions is evaluated by the decision maker, and the evaluation values must be in
FrFNs. We assume that (zij)p×q = 〈ℵµ

ij, ζν
ij〉 is the decision matrix provided by decision

maker (zij) representing FrFNs for alternative Aγ
i associated with criterions Cj. Here, we

have some conditions:
1. ℵµ

ij and ζν
ij ∈ [0, 1],

2. 0 ≤ ℵµ
A(k)3 + ζν

A(k)3 ≤ 1.
Now, we develop Algorithm 1 to solve the given problem.

Algorithm 1: Decision-making algorithm
Step 1. The preference matrix for input is assessed.

(zij)p×q = 〈ℵµ
ij, ζν

ij〉

.
Step 2. The decision matrix should be normalized. In the context of decision
making, it is common to encounter many criteria or characteristics, such as cost
and benefit. In order to standardize the decision matrix, a normalization
technique may be employed, wherein the complement of certain criteria, such as
cost, is taken into consideration.

Step 3. Evaluate zi = FrFHWAGA(zi1,zi2, . . .zin) or
zi = FrFHOWAGA(zi1,zi2, . . .zin) for each i = 1, 2, . . . , q.

Step 4. The objective is to ascertain the scoring functions for each individual zi in
relation to the aggregate overall FrFNs.

Step 5. Rank all the zi (i = 1, 2, . . . , p) according to the score values.
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The flow chart of Algorithm 1 is given in Figure 1.

Figure 1. Flow chart of Algorithm 1.

5. Case Study

The process of choosing materials is a crucial element in the domains of design
and engineering, as it significantly impacts the performance, longevity, and usefulness
of a diverse array of products in numerous industries. The selection of materials has
a significant influence on the ultimate result, regardless of the industry, whether it is
aerospace, automotive, construction, healthcare, or consumer products.

• In the aerospace sector, where the highest priority is placed on safety and dependability,
the process of material selection has critical significance. Aircrafts and spacecrafts
necessitate the ability to endure exceedingly challenging circumstances, encompassing
elevated temperatures, heightened pressures, and the inhospitable surroundings of
the extraterrestrial realm. The selection of materials for various components, including
airframes, engines, and avionics, has a direct influence on the performance and safety
of these vehicles.

• The selection of materials in the automotive sector exerts a substantial influence on the
safety of vehicles, their fuel efficiency, and their overall performance. In the realm of
car manufacturing, engineers and designers are confronted with the task of effectively
managing several considerations, including weight, strength, and cost, in order to
develop automobiles that align with both legal requirements and market preferences.
The utilization of high-strength steel, aluminum, and composite materials is a common
practice in the automotive industry with the aim of diminishing vehicle mass and
enhancing fuel economy [25]. Furthermore, it is vital to have materials that possess
exceptional crashworthiness characteristics in order to augment passenger safety in
the occurrence of a collision. The advancement of electric automobiles has moreover
prompted the utilization of lightweight materials in order to optimize the capacity of
the battery.

• The process of choosing materials in the field of construction has a crucial role in
determining the structural stability, energy efficiency, and durability of a structure. The
selection of appropriate materials for the construction of foundations, walls, roofs, and
insulation can have a substantial influence on the long-term performance of a structure.
Concrete and steel are frequently employed in the construction of tall structures
because to their robustness and long-lasting properties [26]. The utilization of timber
and wood-based items is very prevalent in the domain of residential construction
due to their commendable sustainability and aesthetic attributes. Energy-efficient
materials, such as insulated glass and improved insulation materials, play a crucial
role in mitigating heating and cooling expenses within buildings, therefore promoting
sustainability and enhancing occupant comfort.

• The careful selection of materials is of the utmost importance in the healthcare industry,
as it directly impacts the design and production of medical devices, implants, and



Axioms 2023, 12, 984 11 of 16

medications. When selecting materials for medical purposes, it is crucial to prioritize
factors such as biocompatibility, sterilizability, and durability. Surgical equipment and
implants frequently employ medical-grade polymers, stainless steel, and titanium
alloys due to their biocompatibility and corrosion resistance properties. Furthermore, it
is vital to exercise meticulousness in the selection of pharmaceutical packing materials
in order to guarantee the durability and security of medications during their storage
and transit processes [27].

• The selection of materials in the domain of energy production is of the utmost im-
portance in ensuring the optimal efficiency and sustainability of power generating
and storage systems. In the context of solar panels and wind turbines, the selection of
materials for photovoltaic cells and turbine blades plays a crucial role in determining
both the efficiency of energy conversion and the longevity of these devices. Advanced
materials, such as lithium-ion batteries, play a crucial role in the storage of energy for
electric cars and renewable energy systems. The aforementioned materials have a sig-
nificant influence on the energy density, charge/discharge rates, and overall longevity
of batteries, hence exerting an impact on the feasibility of clean energy solutions [28].

• The consideration of costs has the utmost importance when it comes to the choosing
of materials in many domains. The entire cost of production is influenced by several
factors, including the availability and cost of raw materials, manufacturing processes,
and labor. In order to maintain competitiveness in the market, engineers and designers
are required to achieve a harmonious equilibrium between performance, quality, and
cost effectiveness. Efficiency constitutes an additional key element. Materials that
possess the ability to undergo efficient processing and fabrication, resulting in the
attainment of specified forms and sizes, while minimizing energy consumption, are
crucial in enhancing industrial efficiency and generating cost savings [29].

Figure 2 shows the connection of material selection in different fields.
The automobile business is characterized by intense competition and a rapidly evolv-

ing landscape, as it continually strives to discover novel approaches for improving vehicle
performance, safety, and sustainability. The process of choosing materials for vehicles is
pivotal; it has a direct impact on the overall quality, financial implications, and environ-
mental consequences. This case study aims to examine a scenario whereby AutoTech, a
prominent automotive company, is confronted with the decision of choosing the optimal
material for the suspension arm, a critical component of their next electric vehicle (EV)
model. The individual responsible for making decisions in this particular scenario is the
chief engineer.

AutoTech has conducted a comprehensive analysis and has successfully reduced the
range of material possibilities to a total of four alternatives.

Aγ
1 High-Strength Steel (HSS) refers to a type of steel that possesses superior strength

properties compared to conventional steels. Advantages: The material exhibits
exceptional strength and durability, making it very suitable for many applications.
Additionally, it offers a cost-effective solution due to its affordability and widespread
availability. There are several drawbacks associated with this phenomenon. The
object has a substantial weight and possesses a diminished level of resistance to
corrosion.

Aγ
2 Titanium alloy, also referred to as Ti, is a metallic material that has a combination

of titanium and other elements. There are several advantages associated with this
material, including its lightweight nature, exceptional strength, and resistance to
corrosion. One of the drawbacks of this option is that it has the highest material cost
compared to other solutions.

Aγ
3 Carbon Fiber Reinforced Polymer (CFRP) is a composite material that consists of

carbon fibers embedded in a polymer matrix. There are several advantages associated
with the use of this material. Firstly, it possesses an exceptional strength-to-weight ra-
tio, which means that it can withstand high levels of stress while remaining relatively
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lightweight. Additionally, it exhibits a high level of resistance to corrosion, making
it particularly appropriate for use in environments where exposure to moisture or
other corrosive substances is a concern. Lastly, there are several drawbacks associated
with this technology, including the high cost of manufacturing and the restricted
availability of the product.

Aγ
4 Aluminum Alloy (AA) is a type of material that is often used in many industries.

There are several advantages associated with the use of this material. Firstly, it
is characterized by its lightweight nature, which contributes to its overall appeal.
Additionally, it possesses a commendable strength-to-weight ratio, further enhancing
its desirability. Furthermore, this material exhibits corrosion-resistant properties.
There are several drawbacks associated with this approach, namely increased material
expenses and the necessity for specialized welding procedures.

Figure 2. Relation of material selection in different fields.

The individual holding the position of chief engineer at AutoTech assumes the respon-
sibility of making the ultimate choice. The individual possesses a significant background
in the field of automotive engineering and demonstrates a strong commitment to devel-
oping an electric vehicle that surpasses expectations in terms of performance, safety, and
sustainability, all while effectively managing manufacturing costs [30,31].

To make an informed decision, the deciion maker considers the following four criteria:

C1 Weight Reduction: The optimization of performance and battery life in electric vehicles
is contingent upon the criticality of lowering weight, owing to their emphasis on
energy economy and range.

C2 Cost Efficiency: The effective management of manufacturing costs is crucial for
ensuring the profitability and affordability of the EV model.

C3 Environmental Impact: AutoTech demonstrates a strong dedication to mitigating
their environmental impact by actively striving to decrease its carbon emissions.
The selection of materials characterized by a minimal environmental footprint is
consistent with their overarching objectives of promoting sustainability.
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C4 Safety and Durability: The suspension arm plays a critical role in ensuring the safety of
passengers and withstanding the various pressures that are inherent in the operation
of EVs.

5.1. Decision-Making Process

In this particular scenario, FrFNs are employed to assess the four potential alternatives,
denoted as Aγ

i (i = 1, 2, 3, 4), based on the aforementioned criteria Ci where i takes values
from one to four. The WV < is given by (0.20, 0.30, 0.10, 0.40)T for Ci. Additionally, the
controlling index is denoted as i and has a value of 0.5. Algorithm 1 is employed for
the purpose of addressing the Multiple Criteria Decision Making (MCDM) problem. The
process stages are outlined in detail as follows:

• Step 1: Evaluate the decision matrix given by the DM consisting of FrF information
given in Table 1.

Table 1. Assessment matrix acquired from DM.

C1 C2 C3 C4

Aγ
1 (0.610, 0.320 ) (0.450, 0.410 ) (0.330, 0.560) (0.660, 0.530)

Aγ
2 (0.520, 0.610 ) (0.560, 0.340 ) (0.570, 0.680) (0.610, 0.490)

Aγ
3 (0.320, 0.720 ) (0.490, 0.360 ) (0.600, 0.420) (0.700, 0.210)

Aγ
4 (0.120, 0.760 ) (0.320, 0.820 ) (0.910, 0.120) (0.600, 0.130)

• Step 2: The decision matrix is not in a normalized form, because C1 and C2 are the
cost type criteria. Therefore, the normalized decision matrix is given in Table 2.

Table 2. Normalized matrix.

C1 C2 C3 C4

Aγ
1 (0.320, 0.610 ) (0.410, 0.450 ) (0.330, 0.560) (0.660, 0.530)

Aγ
2 (0.610, 0.520 ) (0.340, 0.560 ) (0.570, 0.680) (0.610, 0.490)

Aγ
3 (0.720, 0.320 ) (0.360, 0.490 ) (0.600, 0.420) (0.700, 0.210)

Aγ
4 (0.760, 0.120 ) (0.820, 0.320 ) (0.910, 0.120) (0.600, 0.130)

• Step 3: Compute zi = FrFHWAGA(zi1,zi2, . . . ,zin) for each i. Thus, find aggre-
gated FrFNs by using Equation (3).

z1 = (0.498, 0.527),

z2 = (0.531, 0.539),

z3 = (0.602, 0.351),

z4 = (0.742, 0.199).

• Step 4: Evaluate the score functions for all zi for the collective overall FrFNs.

E(z1) = −0.023,

E(z2) = −0.007,

E(z3) = 0.175,

E(z4) = 0.401.

• Step 5: Rank all the zi (i = 1, 2, 3, 4) according to the score values.

z4 � z3 � z2 � z1,
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Aγ
4 � Aγ

3 � Aγ
2 � Aγ

1,

and thus Aγ
4 is the most desirable alternative.

The process of selecting materials in the automobile industry is a multifaceted decision-
making process that involves the consideration of several aspects and trade-offs. The selec-
tion of the aluminum alloy for the suspension arm by the DM demonstrates AutoTech’s
dedication to manufacturing an electric car that is both efficient and cost effective, while
also prioritizing passenger safety and durability, all within the context of environmen-
tal sustainability.

5.2. Comparative Analysis

This section presents a comparison between the proposed AOs and the existing im-
plemented AOs. By utilizing extant algorithms and optimization techniques, we were
able to derive an ideal solution that aligns with our research findings. This exemplifies
the robustness and effectiveness of the AO. Our proposed strategy demonstrates more
applicability and superiority when compared to many previously documented alternative
options. Various contemporary operators are employed to authenticate our ideal solution.
The best alternatives that we identified are the same, which serves as evidence supporting
the validity of the alternative options shown in Table 3.

Table 3. Comparison analysis.

Authors AOs Ranking of Alternatives

Garg et al. [17] FrFYWA Aγ
4 � Aγ

1 � Aγ
2 � Aγ

3
FrFYWG Aγ

4 � Aγ
3 � Aγ

2 � Aγ
1

Shahzadi et al. [18] FrFHIWA Aγ
4 � Aγ

3 � Aγ
2 � Aγ

1
FrFHIWG Aγ

4 � Aγ
2 � Aγ

3 � Aγ
1

Senapati and Yager [14] FRFWA Aγ
4 � Aγ

3 � Aγ
1 � Aγ

2
FrFWG Aγ

4 � Aγ
3 � Aγ

2 � Aγ
1

Rani et al. [15] FrFEWA Aγ
4 � Aγ

1 � Aγ
2 � Aγ

3
FrFEWG Aγ

4 � Aγ
1 � Aγ

3 � Aγ
2

Proposed FrFHWAGA Aγ
4 � Aγ

3 � Aγ
2 � Aγ

1
FrFOHWAGA Aγ

4 � Aγ
3 � Aγ

1 � Aγ
2

Comparative analysis demonstrated that our proposed AOs are preferable to the
alternatives currently available. These AOs have the potential to make significant con-
tributions to the field of optimization algorithms based on their robustness, applicability,
and consistency in outperforming other operators. Additional research and real-world
applications are required to validate their performance in a variety of contexts and solidify
their status as valuable optimization and algorithmic operations tools. This is the first study
for material selection in automotive industry using Fermatean fuzzy AOs. That is why we
compare our results with those of exsiting AOs.

6. Conclusions

AOs used for the aggregation of FrFNs, namely FrFWA operators and FrWG opera-
tors, are important mathematical tools. To address some limitations associated with the
FrFWA and FrFWG operators in real-world scenarios, we introduced two new operators
called the FrFHWAGA operator and the FrFHOWAGA operator. Several properties of the
FrFHWAGA and FrFHOGA operators were also discovered. Compared to the currently
specified operators on FrFNs, the proposed operators are more efficient. Utilizing apparent
aides, the suggested operators were elucidated in greater detail. In the context of FrF, the
proposed operators exhibited greater efficacy and adaptability than the currently available
operators. This paper presented a comprehensive case study of the process of material
selection in the EV industry.
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Subsequent investigations will explore the potential applications of the suggested
operators across diverse data formats and their operational dynamics within different
domains. The principles elucidated in this essay possess the potential for application across
a diverse array of real-world scenarios. These methods have the potential to effectively
mitigate ambiguity in various domains such as business, machine intelligence, cognitive
science, the electoral system, pattern recognition, learning techniques, trade analysis,
predictions, agricultural estimation, microelectronics, and other related topics.
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