
Citation: Savović, S.; Ivanović, M.;

Min, R. A Comparative Study of the

Explicit Finite Difference Method and

Physics-Informed Neural Networks

for Solving the Burgers’ Equation.

Axioms 2023, 12, 982. https://

doi.org/10.3390/axioms12100982

Academic Editors: Zoltán Vizvári,

Mihály Klincsik, Robert Kersner,

Peter Odry, Zoltán Sári and Vladimir

László Tadić

Received: 27 September 2023

Revised: 12 October 2023

Accepted: 16 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Communication

A Comparative Study of the Explicit Finite Difference Method
and Physics-Informed Neural Networks for Solving the
Burgers’ Equation
Svetislav Savović 1 , Miloš Ivanović 1 and Rui Min 2,*

1 Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia;
savovic@kg.ac.rs (S.S.); mivanovic@kg.ac.rs (M.I.)

2 Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning,
Beijing Normal University, Zhuhai 519087, China

* Correspondence: rumi@doctor.upv.es

Abstract: The Burgers’ equation is solved using the explicit finite difference method (EFDM) and
physics-informed neural networks (PINN). We compare our numerical results, obtained using the
EFDM and PINN for three test problems with various initial conditions and Dirichlet boundary
conditions, with the analytical solutions, and, while both approaches yield very good agreement,
the EFDM results are more closely aligned with the analytical solutions. Since there is good agree-
ment between all of the numerical findings from the EFDM, PINN, and analytical solutions, both
approaches are competitive and deserving of recommendation. The conclusions that are provided
are significant for simulating a variety of nonlinear physical phenomena, such as those that occur in
flood waves in rivers, chromatography, gas dynamics, and traffic flow. Additionally, the concepts of
the solution techniques used in this study may be applied to the development of numerical models
for this class of nonlinear partial differential equations by present and future model developers of a
wide range of diverse nonlinear physical processes.

Keywords: Burgers’ equation; finite difference method; physics-informed neural networks

MSC: 35K55; 65M06

1. Introduction

For many years, both in the fields of fluid mechanics and heat transfer, significant
research has been conducted on the analytical techniques and numerical simulations of
the non-linear partial differential equations (PDEs) encountered in computational fluid
dynamics. The complexity of non-linear PDEs is increasing as more and more real-world
characteristics affecting engineering systems are taken into account. The Burgers’ equation
is one of the most famous equations including both non-linear propagation effects and
diffusive effects. Due to its applicability in a variety of domains, such as gas dynam-
ics [1], heat conduction [2], elasticity [3], and solute transport in ground water [4], etc., the
study of the general properties of the Burgers’ equation has attracted significant interest.
In addition, it can be used to evaluate different numerical algorithms. Several studies
have been conducted to explore the features of its solution using different analytical and
numerical techniques because of its broad range of applications. Using the aid of the
Hopf–Cole transformation, Rodin [5] studied a few approximative and exact solutions
to the boundary value problem for Burger’s equation. With various initial conditions,
Benton and Platzman [6] provided 35 different analytic solutions to Burgers’ equation.
By using group actions on coset bundles, Wolf et al. [7] found a method to extend the
analytical solution of Burgers’ equation to n-dimensional situations. The solutions were
expanded to curvilinear coordinate systems by Nerney et al. [8]. Using Hopf–Cole and

Axioms 2023, 12, 982. https://doi.org/10.3390/axioms12100982 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12100982
https://doi.org/10.3390/axioms12100982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9038-2393
https://orcid.org/0000-0002-8974-2267
https://orcid.org/0000-0001-7900-0422
https://doi.org/10.3390/axioms12100982
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12100982?type=check_update&version=1

Axioms 2023, 12, 982 2 of 12

Darboux transformations, Kudryavtsev and Sapozhnikov [9] proposed a method to find
the exact solution of the inhomogeneous Burgers’ equation. Significant efforts have been
made over the past few decades to create reliable numerical techniques for handling the
Burgers’ equation. The Burgers’ equation was transformed into the heat equation by Kut-
luay et al. [10] using the Hopf–Cole method. Using explicit and exact-EFD solutions, the
Burgers’ equation transformed into the heat equation with insulated boundary conditions
was solved. A two-level, three-point explicit FD scheme that was second-order accurate in
time and fourth-order accurate in space was created by Hassanien et al. [11]. The approach
is unconditionally stable, according to a von-Neumann stability analysis. In contrast to
Bahadir’s [12] proposed fully implicit FD scheme, the non-linear system is solved using
Newton’s method. For solving the Burgers’ equation, Kadalbajoo et al. [13] proposed an
implicit method. For a numerical simulation of the Burgers’ equation, Mukundan and
Awastji [14] suggested a numerical approach based on the semi-discretization technique
and implicit FDM. The modeled problem must be set up on a mesh (grid) of finite points
due to the technique of these numerical approaches. Even though they are thought of
as elegant and useful strategies, the more dimensions there are, the more difficult it is to
use them. The rise in dimensions is accompanied by an increase in computing processes
and resource allocation because of its mesh-based design. As a result of the continued
research into artificial intelligence and improvements in computing power, a completely
new field of modeling techniques, such as PINN, has been created. Raissi et al. [15] recently
demonstrated how PINN can be successfully employed for solving the Burgers’ equation.
It has been shown that PINN is also an effective tool for solving a nonlinear Schrodinger
equation, Allen–Cahn equation, Navier–Stokes equation, and Korteweg–de Vries equation,
as well as a high-dimensional inverse problems [15].

In this work, the EFDM and PINN are employed for solving the Burgers’ equation. The
FDM and PINN are two different approaches for solving PDEs. FDM is a numerical method
for approximating a function’s derivatives at discrete points inside a domain. The process
requires creating a grid of discrete points within the domain, where the function values
are calculated. Next, by calculating the difference between the function values at nearby
places, the approximate derivatives are derived. The grid step size and approximation
order utilized to generate the derivatives have an impact on the FDM’s accuracy. PINN
is a machine-learning-based approach for solving PDEs. In PINN, a neural network is
trained to learn the fundamental physics of a system and approximatively solve a PDE. The
residual of the PDE, which measures the discrepancy between the predicted solution and
the exact solution, is measured and the neural network is trained to minimize it. The main
benefit of PINN is that it can handle complicated boundary conditions and geometries,
which can be difficult to model using conventional numerical techniques. On the other
hand, it may be computationally expensive and requires a lot of data for training. The
selection of hyper-parameters, such as the number of layers and neurons in the neural
network, may also have an impact on PINN. In this study, our numerical results for three
test problems with various initial conditions and Dirichlet boundary conditions obtained
using EFDM and PINN are compared to the analytical solutions reported in the literature.

2. The Burgers’ Equation

We consider the Burgers’ equation:

∂u(x, t)
∂t

= v
∂u2(x, t)

∂x2 − u(x, t)
∂u(x, t)

∂x
, x ∈ [0, 1], t ∈ [0, T] (1)

with the initial condition:
u(x, 0) = u0(x), 0 < x < 1 (2)

and the boundary conditions:

u(0, t) = 0 = u(1, t), 0 < t ≤ T (3)

where ν > 0 is a parameter, u∂u(x, t)/∂x is the non-linear term, and u0(x) is a given suf-
ficiently smooth function. Burgers’ Equation (1) can describe the behavior of fluid flow

Axioms 2023, 12, 982 3 of 12

and can be used to model various physical phenomena, such as shock waves and turbu-
lence. Then, in Equation (1), ν is a kinematic viscosity parameter and the term ∂u(x, t)/∂t
represents the time derivative of the velocity, which describes how the velocity of the
fluid changes with time. The term u∂u(x, t)/∂x represents the non-linear advection of the
velocity field, which describes how the fluid carries its own velocity along with it as it flows.
The term v∂2u(x, t)/∂x2 represents the diffusion of the velocity field due to the viscosity of
the fluid. It describes how the velocity field spreads out over time and space due to the
internal friction of the fluid. Therefore, Burgers’ equation describes the balance between
the advection of the velocity field and the diffusion of the velocity field due to viscosity.
When ν approaches zero, Equation (1) becomes an inviscid Burgers’ equation, which is a
model for nonlinear wave propagation.

3. Explicit Finite Difference Method

Using the EFDM, where the forward FD scheme is used to represent the derivative
term (∂u(x, t)/∂t) = (uj+1

i − uj
i)/∆t and central FD schemes are used to represent the

derivative terms (∂u(x, t)/∂x) = (uj
i+1 − uj

i−1)/(2∆x) and
(
∂2u(x, t)/∂x2) = (uj

i+1 − 2uj
i +

uj
i−1)/(∆x)2, Equation (1) is written in the following form:

uj+1
i − uj

i
∆t

= v
uj

i+1 − 2uj
i + uj

i−1

(∆x)2 − uj
i
uj

i+1 − uj
i−1

2∆x
(4)

where uj
i ≡ u(xi, tj) and indexes i and j refer to the discrete step lengths ∆x and ∆t for the

coordinate x and time t, respectively. The grid dimensions in the x and t directions are
K = 1/∆x and M = T/∆t, respectively. Using the FD scheme, the initial condition (2) and
boundary conditions (3) are given as:

u0
i = u0(xi); 0 < xi < 1, i = 1, 2, . . . , K (t = 0) (5)

uj
0 = 0 = uj

K, j = 0, 1, . . . , M (x = 0 and x = 1) (6)

Equation (4) represents a formula for uj+1
i at the (i, j + 1)th mesh point in terms of the

known values along the jth time row. The truncation error for the difference Equation (4) is
O(∆t, (∆x)2). The truncation error can be decreased using small enough values of ∆t and
∆x until the accuracy attained is within the error tolerance.

4. Physics-Informed Neural Networks
4.1. The Basic Concept of Physics-Informed Neural Networks in Solving PDEs

A machine learning method called the PINN can be used to approximatively solve
PDEs. A general form of PDEs with corresponding initial and boundary conditions is:

∂u(x,t)
∂t + N[u(x, t)] = 0, x ∈ Ω, t ∈ [0, T]

u(x, t = 0) = h(x), x ∈ Ω
u(x, t) = g(x, t), x ∈ Ωg, t ∈ [0, T]

(7)

Here, N is a differential operator, x ∈ Ω ⊆ Rd and t ∈ R represent spatial and temporal
dimensions, respectively, Ω ⊆ Rd is a computational domain, Ωg ⊆ Ω is a computational
domain of the exposed boundary conditions, and u(x, t) is the solution of the PDEs with
the initial condition h(x) and boundary conditions g(x, t).

In the original formulation [16], an approximator network and a residual network are
the two subnets that make up PINN. After receiving the input (x, t) and going through the
training process, the approximator network outputs an approximate solution

_
u (x, t). A

grid of points, referred to as collocation points, sampled at random or on a regular basis
from the simulation domain, is used by the approximator network to train. The weights
and biases of the approximator network make up a set of trainable parameters, trained by
minimizing a composite loss function of the following form:

Axioms 2023, 12, 982 4 of 12

L = Lr + L0 + Lb (8)

where:

Lr =
1

Nr

Nr
∑

i=1

∣∣u(xi, ti) + N[u(xi, ti)]
∣∣2

L0 = 1
N0

N0
∑

i=1

∣∣u(xi, ti)− hi)]
∣∣2

Lb = 1
Nb

Nb
∑

i=1

∣∣u(xi, ti)− gi)]
∣∣2

(9)

Here, Lr, L0, and Lb represent residuals of the governing equations, initial, and bound-
ary conditions, respectively. Nr, N0, and Nb are the numbers of the mentioned collocation
points of the computational domain, initial, and boundary conditions, respectively. The
residual network, a non-trainable component of the PINN model, calculates these residuals.
PINN needs derivatives of the outputs with respect to the inputs x and t to calculate the
residual Lr. Such a calculation is performed through automated differentiation, which
relies on the fact that combining derivatives of the constituent operations by the chain rule
produces the derivative of the entire composition. This technique is a key enabler for the
development of PINNs and is the main element that differentiates PINNs from comparable
efforts in the early 1990’s, which relied on the manual derivation of back-propagation
rules. Nowadays, automatic differentiation capabilities are well-implemented in most deep
learning frameworks, such as TensorFlow and PyTorch, avoiding tedious derivations or
numerical discretization while computing derivatives of all orders in space–time.

A schematic of the PINN is demonstrated in Figure 1, in which a simple partial
differential equation ∂ f /∂x + ∂ f /∂y = u is used as an example. The approximator network
is used to approximate the solution u(x, t) which then goes to the residual network to
calculate the residual loss Lr, boundary condition loss Lb, and initial condition loss L0. The
weights and biases of the approximator network are trained using a composite loss function
consisting of the residuals Lr, L0, and Lb through a gradient descent technique based on
the back-propagation.

Axioms 2023, 12, x FOR PEER REVIEW 5 of 14

Figure 1. The architecture of a PINN and the standard training loop of a PINN constructed for solv-
ing a simple partial differential equation, where PDE and Cond denote governing equations, while
R and I represent their residuals. The approximator network is subjected to a training process and
provides an approximate solution. The residual network is a non-trainable part of PINN capable of
computing derivatives of the approximator network outputs with respect to the inputs, resulting in
the composite loss function, denoted by MSE.

4.2. Implementation of PINN in Solving the Burgers’ Equation
To conduct the PINN model development for solving the Burgers’ equation, we em-

ployed the DeepXDE library [17]. Our PINN has two inputs (x, t) and contains three layers
consisting of 20 neurons each. All neurons exhibit tanh activation. The set of collocation
points consists of three subsets. The largest subset of 5080 contains the collocation points
that belong to a general problem domain. The second and third subsets are smaller, with
320 and 160 collocation points, and their purpose is to enforce the boundary and initial
conditions, respectfully. These conditions are identical in all our test problems. The PINN
training process consists of two phases. In the first phase, we optimize the weights and
biases using the Adam algorithm for 15,000 epochs with a learning rate of 10−3. In the sec-
ond phase, after a “global” search is completed, the Limited Memory Broyden–Fletcher–
Goldfarb–Shanno algorithm (L-BFGS) acts to get closer to the optimal solution according
to [18]. The whole training process takes approximately 50 s on an nVidia Tesla T4 GPU
accelerator. Practically speaking, it is very likely that using various hyper-parameters,
such as various activation functions, training techniques, and varying PINN topologies,
will result in better solutions. However, since finding hyper-parameters is a tedious and
time-consuming process and is outside the scope of our study, we selected the hyper-
parameter values that were most prevalent in the Burgers’ problem literature.

The purpose of this work is to compare the accuracy of the numerical results obtained
using the EFDM and PINN for three test problems of Burgers’ equation with respect to
the analytical solutions available in the literature.

5. Results and Discussion
To illustrate the accuracy of the EFD scheme and PINN, several numerical computa-

tions are carried out for three test problems.
Test problem 1: Consider the Burgers’ equation:

x
txutxu

x
txuv

t
txu

∂
∂−

∂
∂=

∂
∂),(),(),(),(

2

2
,]1,0[∈x ,],0[Tt∈ (10)

with the initial condition:

Figure 1. The architecture of a PINN and the standard training loop of a PINN constructed for solving
a simple partial differential equation, where PDE and Cond denote governing equations, while R
and I represent their residuals. The approximator network is subjected to a training process and
provides an approximate solution. The residual network is a non-trainable part of PINN capable of
computing derivatives of the approximator network outputs with respect to the inputs, resulting in
the composite loss function, denoted by MSE.

Axioms 2023, 12, 982 5 of 12

4.2. Implementation of PINN in Solving the Burgers’ Equation

To conduct the PINN model development for solving the Burgers’ equation, we em-
ployed the DeepXDE library [17]. Our PINN has two inputs (x, t) and contains three layers
consisting of 20 neurons each. All neurons exhibit tanh activation. The set of collocation
points consists of three subsets. The largest subset of 5080 contains the collocation points
that belong to a general problem domain. The second and third subsets are smaller, with
320 and 160 collocation points, and their purpose is to enforce the boundary and initial
conditions, respectfully. These conditions are identical in all our test problems. The PINN
training process consists of two phases. In the first phase, we optimize the weights and
biases using the Adam algorithm for 15,000 epochs with a learning rate of 10−3. In the
second phase, after a “global” search is completed, the Limited Memory Broyden–Fletcher–
Goldfarb–Shanno algorithm (L-BFGS) acts to get closer to the optimal solution according
to [18]. The whole training process takes approximately 50 s on an nVidia Tesla T4 GPU
accelerator. Practically speaking, it is very likely that using various hyper-parameters, such
as various activation functions, training techniques, and varying PINN topologies, will
result in better solutions. However, since finding hyper-parameters is a tedious and time-
consuming process and is outside the scope of our study, we selected the hyper-parameter
values that were most prevalent in the Burgers’ problem literature.

The purpose of this work is to compare the accuracy of the numerical results obtained
using the EFDM and PINN for three test problems of Burgers’ equation with respect to the
analytical solutions available in the literature.

5. Results and Discussion

To illustrate the accuracy of the EFD scheme and PINN, several numerical computa-
tions are carried out for three test problems.

Test problem 1: Consider the Burgers’ equation:

∂u(x, t)
∂t

= v
∂u2(x, t)

∂x2 − u(x, t)
∂u(x, t)

∂x
, x ∈ [0, 1], t ∈ [0, T] (10)

with the initial condition:
u(x, 0) = sin(πx), 0 < x < 1 (11)

and the boundary conditions:

u(0, t) = 0 = u(1, t), 0 < t ≤ T (12)

The analytical solution of the problem is given as [19]:

u(x, t) = 2πv

∞
∑

n=1
Cn exp(−n2π2vt)n sin(nπx)

C0 +
∞
∑

n=1
Cn exp(−n2π2vt) cos(nπx)

(13)

where:

C0 =

1∫
0

exp
{
− 1

2πv
[1− cos(πx)]

}
dx (14)

Cn = 2
1∫

0

exp
{
− 1

2πv
[1− cos(πx)]

}
cos(nπx)dx (15)

Equation (4) represents the EFD scheme of this test problem, the boundary conditions
are given in (6), and the initial condition (11) becomes:

u0
i = sin(πxi); 0 < xi < 1, i = 1, 2, . . . , K (t = 0) (16)

Axioms 2023, 12, 982 6 of 12

Figures 2 and 3 compare our numerical solutions of the Burgers’ Equation (10) obtained
using the EFD scheme (step lengths are ∆x = 0.01 and ∆t = 0.0001) and PINN, with analytical
solutions (13) at different times T, for a kinematic viscosity parameter ν = 0.5 and 0.05,
respectively. A good agreement between our numerical solutions and analytical solutions
can be seen. Because Figures 2 and 3 are insufficient for an exact comparison of the two
numerical methods, we considered the root mean square error defined by:

Error =

√√√√ 1
N

K

∑
i=1

(
umethod

i − uanalit
i

)2 (17)

where K is the total number of observed points along the x axis. Equation (17) was taken
as the error function, representing an accuracy evaluation of the method. As the error
value decreases, the method gives a better distribution u(x,t) over a given time interval.
As an additional illustration, Figure 4 shows the physical behavior of the EFD and PINN
solutions of Test problem 1 in 3D at different times for ν = 0.05.

Axioms 2023, 12, x FOR PEER REVIEW 7 of 14

Figure 2. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.02, 0.05, and 0.1 for ν = 0.5.

Figure 3. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.5, 0.7, and 0.9 for ν = 0.05.

(a) (b)

Figure 4. (a) EFD and (b) PINN solutions of Test problem 1 in 3D at different times for ν = 0.05.

Figure 2. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.02, 0.05, and 0.1 for ν = 0.5.

Axioms 2023, 12, x FOR PEER REVIEW 7 of 14

Figure 2. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.02, 0.05, and 0.1 for ν = 0.5.

Figure 3. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.5, 0.7, and 0.9 for ν = 0.05.

(a) (b)

Figure 4. (a) EFD and (b) PINN solutions of Test problem 1 in 3D at different times for ν = 0.05.

Figure 3. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 1 at different times T = 0.5, 0.7, and 0.9 for ν = 0.05.

Axioms 2023, 12, 982 7 of 12

Figure 4. (a) EFD and (b) PINN solutions of Test problem 1 in 3D at different times for ν = 0.05.

Table 1 represents the accuracy of the EFDM and PINN for two kinematic viscos-
ity parameters v. It can be noted that the EFDM provides a better match with the
analytical solution.

Table 1. The accuracy of EFDM and PINN for different kinematic viscosity coefficients ν.

T Error (EFDM) Error (PINN)

ν = 0.5
0.02 5.14 × 10−7 2.56 × 10−5

0.05 5.07 × 10−7 4.96 × 10−5

0.1 5.43 × 10−5 9.51 × 10−5

ν = 0.05
0.5 4.43 × 10−7 7.09 × 10−6

0.7 2.38 × 10−7 1.46 × 10−6

0.9 7.03 × 10−8 1.02 × 10−6

Test problem 2: Consider the Burgers’ equation:

∂u(x, t)
∂t

= v
∂u2(x, t)

∂x2 − u(x, t)
∂u(x, t)

∂x
, x ∈ [0, 1], t ∈ [0, T] (18)

with the initial condition:

u(x, 0) = 4x(1− x), 0 < x < 1 (19)

and the boundary conditions:

u(0, t) = 0 = u(1, t), 0 < t ≤ T (20)

The analytical solution of the problem is given as [19]:

u(x, t) = 2πv

∞
∑

n=1
Dn exp(−n2π2vt)n sin(nπx)

D0 +
∞
∑

n=1
Dn exp(−n2π2vt) cos(nπx)

(21)

where:

D0 =

1∫
0

exp
{
− 1

3v
[x2(3− 2x)]

}
dx (22)

Dn = 2
1∫

0

exp
{
− 1

3v
[x2(3− 2x)]

}
cos(nπx)dx (23)

Axioms 2023, 12, 982 8 of 12

Equation (4) represents the EFD solution of this test problem, the boundary conditions
are given in Equation (6), and the initial condition (19) becomes:

u0
i = 4xi(1− xi); 0 < xi < 1, i = 1, 2, . . . , K (t = 0) (24)

Figures 5 and 6 compare our numerical solutions of the Burgers’ Equation (18) obtained
using the EFD scheme (step lengths are ∆x = 0.01 and ∆t = 0.0001) and PINN with analytical
solutions (21) at different times T for a kinematic viscosity parameter ν = 0.5 and 0.1. A
good agreement between these solutions can be seen. Figure 7 depicts the physical behavior
of the EFD and PINN solutions of Test problem 2 in 3D at different times for ν = 0.5.

Axioms 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 5. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.05, 0.25, and 0.5 for ν = 0.5.

Figure 6. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.3, 0.5, and 0.7 for ν = 0.1.

(a) (b)

Figure 7. (a) EFD and (b) PINN solutions of Test problem 2 in 3D at different times for ν = 0.5.

Figure 5. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.05, 0.25, and 0.5 for ν = 0.5.

Axioms 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 5. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.05, 0.25, and 0.5 for ν = 0.5.

Figure 6. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.3, 0.5, and 0.7 for ν = 0.1.

(a) (b)

Figure 7. (a) EFD and (b) PINN solutions of Test problem 2 in 3D at different times for ν = 0.5.

Figure 6. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.3, 0.5, and 0.7 for ν = 0.1.

The accuracy of the EFDM and PINN for two kinematic viscosity parameters v is given
in Table 2. It can be seen that the numerical results obtained using the EFDM are in better
agreement with the analytical solution.

Axioms 2023, 12, 982 9 of 12

Axioms 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 5. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.05, 0.25, and 0.5 for ν = 0.5.

Figure 6. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 2 at different times T = 0.3, 0.5, and 0.7 for ν = 0.1.

(a) (b)

Figure 7. (a) EFD and (b) PINN solutions of Test problem 2 in 3D at different times for ν = 0.5. Figure 7. (a) EFD and (b) PINN solutions of Test problem 2 in 3D at different times for ν = 0.5.

Table 2. The accuracy of EFDM and PINN for different kinematic viscosity coefficients ν.

T Error (EFDM) Error (PINN)

ν = 0.5
0.05 5.36 × 10−8 2.16 × 10−4

0.25 2.37 × 10−7 2.27 × 10−6

0.5 1.14 × 10−7 1.57 × 10−4

ν = 0.1
0.3 3.80 × 10−9 9.09 × 10−7

0.5 6.19 × 10−7 1.65 × 10−4

0.7 4.34 × 10−7 4.79 × 10−5

Test problem 3: Consider the Burgers’ equation:

∂u(x, t)
∂t

= v
∂u2(x, t)

∂x2 − u(x, t)
∂u(x, t)

∂x
, x ∈ [0, 1], t ∈ [0, T] (25)

with the initial condition:

u(x, 0) =
2vπ sin(πx)
m + cos(πx)

, 0 < x < 1 (26)

where m > 1 is a parameter, and the boundary conditions:

u(0, t) = 0 = u(1, t), 0 < t ≤ T (27)

The analytical solution of the problem is given as [20]:

u(x, t) =
2vπ exp(−π2vt) sin(πx)
m + exp(−π2vt) cos(πx)

, m > 1 (28)

Equation (4) represents the EFD solution of this test problem, the boundary conditions
are given in Equation (6), and the initial condition (26) becomes:

u0
i =

2vπ sin(πxi)

m + cos(πxi)
, 0 < xi < 1, i = 1, 2, . . . , K (t = 0) (29)

Figures 8 and 9 compare our numerical solutions of the Burgers’ Equation (25) obtained
using the EFD scheme (step lengths are ∆x = 0.01 and ∆t = 0.0001) and PINN, with analytical
solutions (28) (we used parameter m = 2) at different times T for a kinematic viscosity
parameter ν = 0.5 and 0.02. A good agreement between these solutions can be seen. One
can observe from Figure 10a the physical behavior of the EFD and PINN solutions of Test
problem 1 in 3D at different times for ν = 0.02.

Axioms 2023, 12, 982 10 of 12

Axioms 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 8. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.2, 0.4, and 0.8 for ν = 0.5.

Figure 9. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.5, 1, and 2 for ν = 0.02.

(a) (b)

Figure 10. (a) EFD and (b) PINN solutions of Test problem 3 in 3D at different times for ν = 0.02.

Figure 8. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.2, 0.4, and 0.8 for ν = 0.5.

Axioms 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 8. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.2, 0.4, and 0.8 for ν = 0.5.

Figure 9. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.5, 1, and 2 for ν = 0.02.

(a) (b)

Figure 10. (a) EFD and (b) PINN solutions of Test problem 3 in 3D at different times for ν = 0.02.

Figure 9. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.5, 1, and 2 for ν = 0.02.

Axioms 2023, 12, x FOR PEER REVIEW 11 of 14

Figure 8. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.2, 0.4, and 0.8 for ν = 0.5.

Figure 9. EFD and PINN solutions (open symbols) compared to analytical solutions (solid lines) of
Test problem 3 at different times T = 0.5, 1, and 2 for ν = 0.02.

(a) (b)

Figure 10. (a) EFD and (b) PINN solutions of Test problem 3 in 3D at different times for ν = 0.02. Figure 10. (a) EFD and (b) PINN solutions of Test problem 3 in 3D at different times for ν = 0.02.

Axioms 2023, 12, 982 11 of 12

Table 3 represents the accuracy of the EFDM and PINN for two kinematic viscosity
parameters ν. It can be noted that the EFDM provides a better match with the analytical
solution. It can also be seen that, with a decreasing kinematic viscosity parameter, the error
decreases both for the EFDM and PINN.

Table 3. The accuracy of EFDM and PINN for different kinematic viscosity coefficients ν.

T Error (EFDM) Error (PINN)

ν = 0.5
0.2 6.05 × 10−5 9.72 × 10−4

0.4 6.07 × 10−5 7.56 × 10−4

0.8 1.24 × 10−5 2.32 × 10−4

ν = 0.02
0.5 3.85 × 10−6 2.15 × 10−5

1 7.45 × 10−6 2.33 × 10−5

2 1.12 × 10−5 3.27 × 10−4

It is worth noting that, in this work, we used a small enough value of ∆t in order to
achieve the stability of the EFD scheme. As an illustration, a similar situation arises for solv-
ing a Lax–Wendroff-modified differential equation for linear and nonlinear advection [21].
Alternatively, one can adopt unconditionally stable algorithms, such as the uncondition-
ally positive finite difference method [22], Dufort–Frankel [23], and Leapfrog–Hopscotch
scheme [24]. On the other hand, one should also mention that the Burgers’ equation with
Neumann boundary conditions was solved using a domain decomposition method [25].

6. Conclusions

In solving nonlinear parabolic differential equations of the Burgers’ type, we com-
pared our numerical results obtained using EFDM and PINN with the analytical solutions
reported in the literature. To the best of our knowledge, for the first time, we compared,
in this work, the accuracy of the EFDM and PINN for solving the Burgers’ equation with
three different initial conditions and Dirichlet boundary conditions. We demonstrated that,
although both approaches yield a very good agreement with analytical solutions, the EFD
scheme with sufficiently fine step lengths ∆x and ∆t showed a higher accuracy compared
to the numerical solutions calculated using PINN. Since all the numerical results obtained
by the above methods showed a reasonably good agreement with the analytical solutions,
both methods can therefore be competitive and worth recommendation. Current and future
developers of models for a broad range of various nonlinear physical processes may draw
on the ideas of the solution methods employed in this study to further develop numerical
models for nonlinear partial differential equations. The presented results are important
when modeling various nonlinear physical processes using the Burgers’ equation, including
those which arise in gas dynamics, traffic flow, chromatography, and flood waves in rivers.

Author Contributions: Conceptualization, S.S. and M.I.; methodology, S.S.; software, S.S. and M.I.;
validation, S.S., M.I. and R.M.; formal analysis, R.M.; investigation, M.I.; resources, R.M.; data
curation, M.I.; writing—original draft preparation, S.S. and M.I.; writing—review and editing, S.S.
and M.I.; visualization, R.M.; supervision, S.S.; project administration, R.M.; funding acquisition,
R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Serbian Ministry of Science, Technological Development
and Innovations (Agreement No. 451-03-47/2023-01/200122) and by grant from Science Fund of
the Republic of Serbia (Agreement No. CTPCF-6379382). the National Natural Science Founda-
tion of China (62111530238, 62003046); Guangdong Basic and Applied Basic Research Foundation
(2021A1515011997); Special project in key field of Guangdong Provincial Department of Education
(2021ZDZX1050); The Innovation Team Project of Guangdong Provincial Department of Education
(2021KCXTD014).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Axioms 2023, 12, 982 12 of 12

References
1. Korshunova, A.A.; Rozanova, O.S. The Riemann Problem for the Stochastically Perturbed Non-Viscous Burgers Equation and

the Pressureless Gas Dynamics Model. In Proceedings of the International Conference Days on Diffraction 2009, St. Petersburg,
Russia, 26–29 May 2009.

2. Hills, R.G. Model Validation: Model Parameter and Measurement Uncertainty. J. Heat Transf. 2005, 128, 339–351. [CrossRef]
3. Sugimoto, N.; Kakutani, T. ‘Generalized Burgers’ Equation’ for Nonlinear Viscoelastic Waves. Wave Motion 1985, 7, 447–458.

[CrossRef]
4. Yonti Madie, C.; Kamga Togue, F.; Woafo, P. Numerical Solution of the Burgers’ Equation Associated with the Phenomena of

Longitudinal Dispersion Depending on Time. Heliyon 2022, 8, e09776. [CrossRef] [PubMed]
5. Rodin, E.Y. On Some Approximate and Exact Solutions of Boundary Value Problems for Burgers’ Equation. J. Math. Anal. Appl.

1970, 30, 401–414. [CrossRef]
6. Benton, E.R.; Platzman, G.W. A Table of Solutions of the One-Dimensional Burgers Equation. Q. Appl. Math. 1972, 30, 195–212.

[CrossRef]
7. Wolf, K.B.; Hlavatý, L.; Steinberg, S. Nonlinear Differential Equations as Invariants under Group Action on Coset Bundles:

Burgers and Korteweg-de Vries Equation Families. J. Math. Anal. Appl. 1986, 114, 340–359. [CrossRef]
8. Nerney, S.; Schmahl, E.J.; Musielak, Z.E. Limits to Extensions of Burgers’ Equation. Q. Appl. Math. 1996, 54, 385–393. [CrossRef]
9. Kudryavtsev, A.G.; Sapozhnikov, O.A. Determination of the Exact Solutions to the Inhomogeneous Burgers Equation with the

Use of the Darboux Transformation. Acoust. Phys. 2011, 57, 311–319. [CrossRef]
10. Kutluay, S.; Bahadir, A.R.; Özdeş, A. Numerical Solution of One-Dimensional Burgers Equation: Explicit and Exact-Explicit Finite

Difference Methods. J. Comput. Appl. Math. 1999, 103, 251–261. [CrossRef]
11. Hassanien, I.A.; Salama, A.A.; Hosham, H.A. Fourth-Order Finite Difference Method for Solving Burgers’ Equation. Appl. Math.

Comput. 2005, 170, 781–800. [CrossRef]
12. Bahadır, A.R. A Fully Implicit Finite-Difference Scheme for Two-Dimensional Burgers’ Equations. Appl. Math. Comput. 2003, 137,

131–137. [CrossRef]
13. Kadalbajoo, M.K.; Sharma, K.K.; Awasthi, A. A Parameter-Uniform Implicit Difference Scheme for Solving Time-Dependent

Burgers’ Equations. Appl. Math. Comput. 2005, 170, 1365–1393. [CrossRef]
14. Mukundan, V.; Awasthi, A. Linearized Implicit Numerical Method for Burgers’ Equation. Nonlinear Eng. 2016, 5, 219–234.

[CrossRef]
15. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving

Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
16. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial

Differential Equations. arXiv 2017, arXiv:1711.10561.
17. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev.

2021, 63, 208–228. [CrossRef]
18. Markidis, S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? Front. Big Data

2021, 4, 669097. [CrossRef]
19. Cole, J.D. On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [CrossRef]
20. Wood, W.L. An Exact Solution for Burger’s Equation. Commun. Numer. Methods Eng. 2006, 22, 797–798. [CrossRef]
21. Winnicki, I.; Jasinski, J.; Pietrek, S. New approach to the Lax-Wendroff modified differential equation for linear and nonlinear

advection. Numer. Methods Partial. Differ. Equ. 2019, 35, 2275–2304. [CrossRef]
22. Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–

diffusion reaction equation for modeling exponential traveling wave. Ric. Mat. 2022, 71, 245–252. [CrossRef]
23. Yang, X.; Ralescu, D.A. A Dufort–Frankel scheme for one-dimensional uncertain heat equation. Math. Comput. Simul. 2021, 181,

98–112. [CrossRef]
24. Nagy, Á.; Omle, I.; Kareem, H.; Kovács, E.; Barna, I.F.; Bognar, G. Stable, Explicit, Leapfrog-Hopscotch Algorithms for the

Diffusion Equation. Computation 2021, 9, 92. [CrossRef]
25. Bakodah, H.O.; Al-Zaid, N.A.; Mirzazadeh, M.; Zhou, Q. Decomposition method for Solving Burgers’ Equation with Dirichlet

and Neumann boundary conditions. Optik 2017, 130, 1339–1346. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.2164849
https://doi.org/10.1016/0165-2125(85)90019-8
https://doi.org/10.1016/j.heliyon.2022.e09776
https://www.ncbi.nlm.nih.gov/pubmed/35800253
https://doi.org/10.1016/0022-247X(70)90171-X
https://doi.org/10.1090/qam/306736
https://doi.org/10.1016/0022-247X(86)90088-0
https://doi.org/10.1090/qam/1388023
https://doi.org/10.1134/S1063771011030080
https://doi.org/10.1016/S0377-0427(98)00261-1
https://doi.org/10.1016/j.amc.2004.12.052
https://doi.org/10.1016/S0096-3003(02)00091-7
https://doi.org/10.1016/j.amc.2005.01.032
https://doi.org/10.1515/nleng-2016-0031
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/19M1274067
https://doi.org/10.3389/fdata.2021.669097
https://doi.org/10.1090/qam/42889
https://doi.org/10.1002/cnm.850
https://doi.org/10.1002/num.22412
https://doi.org/10.1007/s11587-021-00665-2
https://doi.org/10.1016/j.matcom.2020.09.022
https://doi.org/10.3390/computation9080092
https://doi.org/10.1016/j.ijleo.2016.11.140

	Introduction
	The Burgers’ Equation
	Explicit Finite Difference Method
	Physics-Informed Neural Networks
	The Basic Concept of Physics-Informed Neural Networks in Solving PDEs
	Implementation of PINN in Solving the Burgers’ Equation

	Results and Discussion
	Conclusions
	References

