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Abstract: Residuated basic logic (RBL) is the logic of residuated basic algebras, which constitutes
a conservative extension of basic propositional logic (BPL). The basic implication is a residual of
a non-associative binary operator in RBL. The conservativity is shown by relational semantics. A
Gentzen-style sequent calculus GRBL, which is an extension of the distributive full non-associative
Lambek calculus, is established for residuated basic logic. The calculus GRBL admits the mix-
elimination, subformula, and disjunction properties. Moreover, the class of all residuated basic
algebras has the finite embeddability property. The consequence relation of GRBL is decidable.
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1. Introduction

The term ‘subintuitionistic logic’, as described in [1,2], covers logics in the language
of intuitionistic logic (Int) that are defined in the same manner as intuitionistic logic but
lack some conditions on the Kripke semantics. Basic propositional logic (BPL), which
was introduced by Visser [3], is the subintuitionistic logic characterized by the class of all
transitive frames. It is well known that Int is embedded into the modal logic S4 via the
Gödel-McKinsey-Tarski translation (see, e.g., [4]). It is also known that BPL is embeddable
into the modal logic K4 ([1,3,5,6]). Basic propositional logic exists in the common part of
Int and Visser’s formal provability logic FPL. Visser [3] observed that FPL is embeddable
into the Gödel-Löb modal logic GL, which is incomparable with the modal logic S4. In the
modal respect, the modal logic K4 exists in the common part of S4 and GL. Hence, the role
of BPL as a basis for FPL and Int is analogous to the role of K4 as the basis for S4 and GL.

Basic propositional logic is a significant form of constructive logic. Ruitenburg [7]
commented that a truly constructive logic should admit an interpretation that is non-circular
and constructive in itself. Intuitionistic calculus does not satisfy this constraint. Gentzen [8]
observed that the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic
is circular in the proof semantics of implication. For example, to understand the meaning
of the claim that a is a proof of α→ β in the sense of the BHK interpretation, implication
elimination is equivalent to the full modus ponens axiom α ∧ (α → β) ` β. In this
case, the existence of a proof of β from α involves implication by the assumption α → β,
and hence the interpretation of the implication is circular. Ruitenburg [7] developed the
truly constructive logic BPC (basic propositional calculus), which is not circular and turns
out to be equivalent to Visser’s natural deduction system for BPL. The Kripke semantics
for BPL were originally given by Visser [3], while the soundness and completeness of BPC
under the Kripke semantics were presented by Ardeshir and Ruitenburg [9,10].

Visser’s propositional logics have been studied in, e.g., [6,9–13]. In the proof-theoretic
respect, Gentzen-style sequent calculi for basic propositional logics are given in [14–17].
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In this paper, we shall study BPC from the perspective of substructural logics. Substruc-
tural logics are logics that drop some structural rules in sequent formalizations. Many
well-known logics are substructural, such as Lambek calculus, Łukasiewicz many-valued
logics and relevant logics. Algebras for substructural logics are given by residuated
lattices [18–21]. We shall introduce residuation into BPL. The basic implication in BPL
is that there is no right residual of any binary operator in the language of BPL. Thus,
we introduce a new binary operator • (product), which satisfies additional conditions
such that the basic implication is a residual of the product. The resulting logic is called
residuated basic logic (RBL). Algebras for RBL are defined as bounded distributive lattices
with residuation pairs (•,→) and (•,←), where • satisfies the conditions of weakening
and strong contraction. We prove that the basic sequent system for RBL is a conservative
extension of BPC.

In the present paper, the Gentzen-style sequent calculus GRBL will be established for
RBL. This calculus is obtained from the distributive full non-associative Lambek calculus
(DFNL) by adding the structural rules of weakening and strong contraction. DFNL is ob-
tained from the full non-associative Lambek calculus (FNL) by adding distributivity [22].
The logic FNL [18] is obtained by adding all lattice operations and their rules to the non-
associative Lambek calculus NL. The calculus NL was originally introduced by Lambek [23],
and it is strongly complete with respect to residuated groupoids [18]. FNL with unit, i.e., the
groupoid logic, is studied in [24]. The associative variant L (Lambek calculus) of NL was
also introduced by Lambek [25], and it is strongly complete with respect to residuated semi-
groups). We shall prove that GRBL admits mix-elimination, the subformula property, and
the disjunction property. The finite embeddability property (FEP) of residuated basic alge-
bras shall be proved by applying the method of Haniková and Horc̆ík [26]. The decidability
of GRBL follows from the FEP.

The structure of this paper is as follows. Section 2 gives preliminaries on the basic
propositional logic. Section 3 introduces residuated basic algebras and proves the finite
embeddability property. Section 4 introduces residuated basic logic RBL and its basic
sequent calculus SRBL and proves that SRBL is a conservative extension of BPC. Section 5
introduces the Gentzen-style sequent calculus for RBL and proves the mix-elimination,
subformula property, and decidability. Section 6 gives some concluding remarks.

2. Preliminaries

We recall some basic concepts and results on basic propositional logic, which can
be found in [3,9,13]. The language of BPL consists of a denumerable set of propositional
variables Prop = {pi : i < ω} and connectives ∧,∨,→,⊥, and >.

Definition 1. The set of all BPL-formulas is defined inductively by the following rule:

LBPL 3 α ::= p | ⊥ | > | (α1 ∨ α2) | (α1 ∧ α2) | (α1 → α2), where p ∈ Prop.

The complexity of a BPL-formula α is defined as the number of occurrences of binary connectives
in α. A basic BPL-sequent is an expression of the form α⇒ β where α and β are BPL-formulas.

Definition 2. A BPL-frame is a pair F = (W, R), where W is a nonempty set of states (possible
worlds) and R is a transitive binary relation (accessibility relation) on W. A BPL-model is a tuple
M = (W, R, V), where (W, R) is a transitive frame, and V : Prop → P(W) is a valuation
function from Prop to the powerset of W satisfying the following persistency condition:

for every p ∈ Prop, if w ∈ V(p) and wRu, then u ∈ V(p).

For every BPL-model M = (W, R, V), the truth of a BPL-formula α at a state w ∈W in M

(notation: M, w |= α) is defined inductively as follows:

M, w |= p iff w ∈ V(p).
M, w 6|= ⊥ and M, w |= >.
M, w |= α ∧ β iff M, w |= α and M, w |= β.
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M, w |= α ∨ β iff M, w |= α or M, w |= β.
M, w |= α→ β iff for all v ∈W, if wRv and M, v |= α, then M, v |= β.

A BPL-formula α is true in M (notation: M |= α) if M, w |= α for all w ∈W.
For every BPL-frame F = (W, R), let R◦ = R ∪ {(w, w) | w ∈ W}, namely the reflexive

closure of R. A basic BPL-sequent α⇒ β is true at a state w in M (notation: M, w |= α⇒ β) if
for all u ∈W, if wR◦u and M, u |= α, then M, u |= β. We say that α⇒ β is true in M (notation:
M |= α⇒ β) if M, w |= α⇒ β for all w ∈W. A BPL-formula α is valid (notation: |= α) if it is
true in every BPL-model. A basic BPL-sequent α⇒ β is valid (notation: |=BPL α⇒ β) if α⇒ β
is true in every BPL-model.

Proposition 1 (Persistency). For every BPL-model M = (W, R, V) and BPL-formula α, if M, w |=
α and wRv, then M, v |= α.

Proof. The proof proceeds by induction on the complexity of α. Here we show only the
case α := β→ γ. Assume M, w |= β→ γ and wRv. Suppose vRu and M, u |= β. By wRv
and vRu, we have wRu. Furthermore, M, u |= γ. Hence M, v |= β→ γ.

The set of all valid BPL-formulas is finitely axiomatizable. A Hilbert-style axiomatic
system, HBPL, can be found in Ono and Suzuki [13]. In the present paper, we shall use
the basic propositional calculus (BPC) of basic BPL-sequents proposed by Ardeshir and
Ruitenburg [9]. It is easy to observe that a BPL-formula α is a theorem of HBPL if and only
if the basic sequent > ⇒ α is derivable in BPC.

Definition 3. The basic propositional calculus BPC consists of the following axioms and rules:

(1) Axioms:

(A1) α⇒ α
(A2) α⇒ >
(A3) ⊥ ⇒ α
(A4) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ)
(A5) (α→ β) ∧ (β→ γ)⇒ (α→ γ)
(A6) (α→ β) ∧ (α→ γ)⇒ α→ (β ∧ γ)
(A7) (α→ γ) ∧ (β→ γ)⇒ (α ∨ β)→ γ

(2) Rules:
α⇒ β α⇒ γ

(∧R)
α⇒ β ∧ γ

α⇒ γ β⇒ γ
(∨L)

α ∨ β⇒ γ

α ∧ β⇒ γ
(→)

α⇒ β→ γ

α⇒ β β⇒ γ
(Cut)α⇒ γ

The double line in (∧R) and (∨L) means the sequents are derivable from each other.

A basic BPL-sequent α⇒ β is provable in BPC (notation: BPC ` α⇒ β) if it is an axiom or
derivable by a rule in BPC.

Theorem 1 (Soundness and Completeness). For every basic BPL-sequent α⇒ β, BPC ` α⇒
β if and only if |=BPL α⇒ β.

Proof. The soundness is easily verified by induction on the length of a derivation in BPC.
The completeness follows from the strong completeness result given in ([9], Theorem 3.7.)

The basic sequent system BPC can also be characterized by basic algebras which are
studied in, e.g., [11,15].

Definition 4. An algebra A = (A,∧,∨,>,⊥,→) is a basic algebra if its (∧,∨,>,⊥)-reduct is
a bounded distributive lattice, and→ is a binary operator on A such that for all a, b, c ∈ A:
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(1) a→ (b ∧ c) = (a→ b) ∧ (a→ c).
(2) (b ∨ c)→ a = (b→ a) ∧ (c→ a).
(3) a→ a = >.
(4) a ≤ > → a.
(5) (a→ b) ∧ (b→ c) ≤ a→ c.

The binary operator→ in a basic algebra is called the basic implication. The variety of all basic
algebras is denoted by BCA.

Fact 1 (cf. [11]). For every basic algebra A and a, b, c ∈ A, the following hold:

(1) if a ≤ b, then c→ a ≤ c→ b, b→ c ≤ a→ c and a→ b = >.
(2) if a ∧ b ≤ c, then a ≤ b→ c.
(3) A is a Heyting algebra if and only if > → a ≤ a for all a ∈ A.

Let F = (W, R) be a BPL-frame. For every w ∈W and subset X ⊆W, let R(w) = {u ∈
W : wRu} and R[X] =

⋃
w∈X R(w). A subset X ⊆W is called an upset in F if R[X] ⊆ X. Let

Up(F) be the set of all upsets in F. It is easy to see that ∅, W ∈ Up(F), and that Up(F) is
closed under ∩ and ∪. Define a binary operation→R: Up(F)×Up(F)→ Up(F) by

X →R Y = {w ∈W : R(w) ∩ X ⊆ Y}.

The operation→R is well defined since X →R Y is an upset if X and Y are upsets. The
dual algebra of F is defined as F+ = (Up(F),∪,∩, ∅, W,→R). Clearly F+ is a basic algebra.

Definition 5. Given a basic algebra A = (A,∧,∨,>,⊥,→), an assignment in A is a function
θ : Prop→ A. For every assignment θ in A, the function θ̂ : LBPL → A is defined as follows:

θ̂(p) = θ(p), θ̂(⊥) = ⊥,

θ̂(>) = >, θ̂(α ∧ β) = θ̂(α) ∧ θ̂(β),

θ̂(α ∨ β) = θ̂(α) ∨ θ̂(β), θ̂(α→ β) = θ̂(α)→ θ̂(β).

A basic BPL-sequent α ⇒ β is valid in A (notation: A |= α ⇒ β) if θ̂(α) ≤ θ̂(β) for every
assignment θ in A. By BCA |= α⇒ β we denote that α⇒ β is valid in all basic algebras.

Theorem 2. For every basic BPL-sequent α⇒ β, BPC ` α⇒ β if and only if BCA |= α⇒ β.

Proof. The soundness is easily shown by induction on the derivation of α ⇒ β in BPC.
The completeness is shown by the standard Lindenbaum-Tarski construction (cf. [9,11,15]).

Now we define an alternative basic sequent system, SBCA, for basic algebras which
shall be used in the following section.

Definition 6. The basic sequent system SBCA consists of the following axioms and rules:

(1) Axioms:

(Id) α⇒ α (⊥) ⊥ ⇒ α (>) α⇒ > (D) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ)

(W1) β⇒ α→ α (W2) α⇒ β→ α (Tr) (α→ β) ∧ (β→ γ)⇒ α→ γ

(M1) (α→ β) ∧ (α→ γ)⇒ α→ (β ∧ γ)

(M2) (β→ α) ∧ (γ→ α)⇒ (β ∨ γ)→ α
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(2) Logical rules:

αi ⇒ β
(∧L)(i = 1, 2)

α1 ∧ α2 ⇒ β

γ⇒ α γ⇒ β
(∧R)

γ⇒ α ∧ β

α⇒ γ β⇒ γ
(∨L)

α ∨ β⇒ γ

γ⇒ αi (∨R)(i = 1, 2)
γ⇒ α1 ∨ α2

α⇒ β

γ→ α⇒ γ→ β
(→1)

α⇒ β

β→ γ⇒ α→ γ
(→2)

(3) Cut rule:
α⇒ β β⇒ γ

(Cut)α⇒ γ

A basic BPL-sequent α⇒ β is provable in SBCA (notation: SBCA ` α⇒ β) if it is an axiom
or derivable by a rule in SBCA. The prefix SBCA is omitted if no confusion arisse.

Theorem 3. For every basic BPL-sequent α⇒ β, SBCA ` α⇒ β if and only if BCA |= α⇒ β.

Proof. The soundness is verified by induction on the length of a derivation in SBCA.
The completeness is shown by the standard Lindenbaum-Tarski construction. Here, we
give a sketch of the proof. The equivalence relation ≈ on the set of all BPL-formulas is
defined by setting α ≈ β if and only if SBCA ` α ⇒ β and SBCA ` β ⇒ α. By the
axioms and rules of SBCA, one can show that ≈ is a congruence relation. Let [χ] be the
equivalence class for each BPL-formula χ. Furthermore, we have the Lindenbaum-Tarski
algebra ASBCA = (A/≈,∧,∨,>,⊥,→) where A/≈ is the quotient set of A modulo ≈.
Suppose SBCA 6` α ⇒ β. Furthermore, [α] 6≤ [β]. Let θ be the assignment in ASBCA

such that θ(p) = [p] for each p ∈ Prop. By induction on the complexity of a formula χ,
we have θ̂(χ) = [χ]. Hence ASBCA 6|= α ⇒ β. Clearly ASBCA ∈ BCA. It follows that
BCA 6|= α⇒ β.

By the standard Lindenbaum-Tarski construction, it is easy to show that SBCA is
sound and complete with respect to BCA, namely, for every basic BPL-sequent α ⇒ β,
SBCA ` α⇒ β if and only if BCA |= α⇒ β. Furthermore, we get the following corollary.

Corollary 1. For every basic BPL-sequent α⇒ β, (1) BPC ` α⇒ β if and only if SBCA ` α⇒
β; and (2) SBCA ` α⇒ β if and only if |=BPL α⇒ β.

Proof. It follows immediately from Theorems 1–3.

3. Residuated Basic Logic

The Heyting implication→H in intuitionistic logic is the residual of ∧, i.e., for all a, b, c
in a Heyting algebra, c ≤ a→H b if and only if a ∧ c ≤ b. However, the basic implication is
not a residual of ∧ in a basic algebra. Let us introduce a binary operator • (product) such
that the basic implication is one of its residuals. For this purpose, we introduce residuated
basic algebras. Furthermore, we shall prove the finite embeddability property of the variety
of all residuated basic algebras.

3.1. Residuated Basic Algebras

An algebra (A, •,→,←,≤) is a residuated groupoid if (A,≤) is a partially ordered set,
and •,→ and← are binary operators on A such that for all a, b, c ∈ A:

(RES) a • b ≤ c iff b ≤ a→ c iff a ≤ c← b.

Note that the associativity of the operator • is not assumed here.
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Definition 7. An algebra A = (A,∧,∨,>,⊥,→,←, •) is a residuated basic algebra (RBA) if
(A,∧,∨,>,⊥) is a bounded distributive lattice, and (A,→,←, •,≤) is a residuated groupoid
satisfying the following conditions for all a, b ∈ A:

(w1) a • b ≤ a, (w2) b • a ≤ a, (ct) a • b ≤ (a • b) • b,

where ≤ is the lattice order. These conditions for the product were studied by Restall [2,21,27].
Restall proved that these conditions are warranted by formulas. For example, the condition (ct)
(Restall’s condition (Syll) [27]) is warranted by the formula (p→ q) ∧ (q→ r)→ (p→ r). Let
RBA be the class of all RBAs.

For every RBA A, it is easy to check that (i) a → b =
∨{x ∈ A : a • x ≤ b},

and (ii) a← b =
∨{x ∈ A : x • b ≤ a} (the least upper bound).

Remark 1. The (•,→,←,≤)-reduct of a residuated basic algebra A = (A,∧,∨,>,⊥,→,←, •)
is not assumed to contain a unit. The condition (ct) differs from the ordinary contraction (c) a ≤
a • a, and the name ‘strong contraction’ was proposed for (ct) by Restall [21]. The contraction (c)
is derivable from (ct) if the residuated groupoid reduct contains a unit. Thus, the unit is equal to >
by (c), and hence > → a ≤ a, which does not hold in basic algebras.

Example 1. Let A = {0, x, 1}, where 0 < x < 1 and ∧,∨ are defined as usual, namely, a ∧ b =
min{a, b} and a ∨ b = max{a, b}. The operations •,→ and← on A are given as follows:

• 0 x 1

0 0 0 0
x 0 0 x
1 0 0 1

→ 0 x 1

0 1 1 1
x x 1 1
1 x x 1

← 0 x 1

0 1 1 0
x 1 1 x
1 1 1 1

It is easy to check that → and ← are residuals of • in the first and second coordinates,
respectively. The product also satisfies (w1), (w2) and (ct). Furthermore, (A,∧,∨, 1, 0,→,←, •)
is an RBA. Its (∧,∨, 0, 1,→)-reduct is not a Heyting algebra because a 6= 1→ a when a = 0.

Proposition 2. For every residuated algebra A = (A,∧,∨,>,⊥,→,←, •) and a, b, c ∈ A,
the following hold:

(1) (b ∨ c) • a = b • a ∨ c • a.
(2) a • (b • c) ≤ (a • b) • c.
(3) if a ≤ b, then c • a ≤ c • b and a • c ≤ b • c.
(4) if a ≤ b, then c→ a ≤ c→ b and b→ c ≤ a→ c.
(5) if a ≤ b, then a← c ≤ b← c and c← b ≤ c← a.

Proof. Clearly (3), (4), and (5) are monotonicity laws that hold in every residuated groupoid.
By (3), a ≤ b and c ≤ d imply that a • c ≤ b • d. We show (1) and (2) as follows:

(1) By b • a ≤ (b • a)∨ (c • a) and c • a ≤ (b • a)∨ (c • a), we have b ≤ ((b • a)∨ (c • a))←
a and c ≤ ((b • a)∨ (c • a))← a. Furthermore„ (b∨ c) ≤ ((b • a)∨ (c • a))← a, which
yields (b ∨ c) • a ≤ (b • a) ∨ (c • a). Conversely, from b ≤ b ∨ c and c ≤ b ∨ c, by (3)
we get b • a ≤ (b∨ c) • a and c • a ≤ (b∨ c) • a. Furthermore, b • a∨ c • a ≤ (b∨ c) • a.

(2) By (w1) and (w2), b • c ≤ b and b • c ≤ c. Furthermore„ by (3) we get a • (b • c) ≤ a • b.
By b • c ≤ c, we get (a • (b • c)) • (b • c) ≤ (a • b) • c. By (ct), a • (b • c) ≤ (a • b) • c.

Theorem 4. The (∧,∨,>,⊥,→)-reduct of any residuated basic algebra A is a basic algebra.

Proof. Let A = (A,∧,∨,>,⊥,→,←, •) be a RBA. Clearly (A,∧,∨,>,⊥) is a bounded
distributive lattice. We check the conditions for basic algebras as follows:
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(1) Assume x ≤ a → (b ∧ c). By (RES), a • x ≤ b ∧ c. By b ∧ c ≤ b and b ∧ c ≤ c,
we get a • x ≤ b and a • x ≤ c. Furthermore, x ≤ a → b and x ≤ a → c. Hence,
x ≤ (a → b) ∧ (a → c). Conversely, assume x ≤ (a → b) ∧ (a → c). Furthermore„
x ≤ a→ b and x ≤ a→ c. By (RES), a • x ≤ b and a • x ≤ c. Furthermore, a • x ≤ b∧ c.
Furthermore, x ≤ a→ (b ∧ c). Hence a→ (b ∧ c) = (a→ b) ∧ (a→ c).

(2) Assume x ≤ (b ∨ c) → a. By (RES), (b ∨ c) • x ≤ a. Because b ≤ b ∨ c, we have
b • x ≤ (b ∨ c) • x. Furthermore„ b • x ≤ a. Similarly c • x ≤ a. By (RES), x ≤ b → a
and x ≤ c → a. Hence, x ≤ (b → a) ∧ (c → a). Conversely, assume x ≤ (b →
a) ∧ (c → a). Furthermore, x ≤ b → a and x ≤ c → a. By (RES), b • x ≤ a and
c • x ≤ a. Furthermore, b • x∨ c • x ≤ a. By Proposition 2 (1), (b∨ c) • x ≤ b • x∨ c • x.
Furthermore, (b ∨ c) • x ≤ a. Hence (b ∨ c)→ a = (b→ a) ∧ (c→ a).

(3) Clearly a→ a ≤ >. By a • > ≤ a, we have > ≤ a→ a.
(4) By (w2), we have > • a ≤ a. By (RES), a ≤ > → a.
(5) Assume x ≤ (a → b) ∧ (b → c). Furthermore, x ≤ a → b and x ≤ b → c. By (RES),

a • x ≤ b and b • x ≤ c. By Proposition 2 (3), (a • x) • x ≤ b • x ≤ c. By a • x ≤
(a • x) • x, we get a • x ≤ c. By (RES), x ≤ a→ c. Hence (a→ b)∧ (b→ c) ≤ (a→ c).

3.2. Finite Embeddability Property

In this subsection, we apply the method of Haniková and Horc̆ík [26] to prove the
finite embeddability property (FEP) of residuated basic algebras. Here we recall some
basic concepts. Let A = 〈A, 〈 fAi 〉i∈I〉 be an algebra of any type and B ⊆ A. We say
B = 〈B, 〈 fBi 〉i∈I〉 is a partial subalgebra of A if for every n-ary function fi with i ∈ I, and for
every b1, . . . bn ∈ B,

fBi (b1, . . . , bn) =

{
fAi (b1, . . . , bn), if fAi (b1, . . . , bn) ∈ B.
undefined, otherwise.

If A is ordered by ≤A, we define ≤B as the restriction of ≤A to B. If we want to stress
that a function acts on A, we write fAi , but usually we drop it.

An embedding from an algebra B into C is an injection h : B→ C such that for every
b1, . . . bn, if fB(b1, . . . bn) ∈ B, then h( fB(b1, . . . , bn)) = fC(h(b1), . . . , h(bn)). If B and C
are ordered, then h is required to be an order embedding, i.e., h satisfies the condition
x ≤B y⇔ h(x) ≤C h(y). A class of algebras K has the FEP if every finite partial subalgebra
of a member of K can be embedded into a finite member of K.

Let (P,≤) be a poset. A map ρ : P→ P is called a closure operator on P if it satisfies
the following conditions for all a, b ∈ P:

(ρ1) a ≤ ρ(a),
(ρ2) if a ≤ b, then ρ(a) ≤ ρ(b),
(ρ3) ρ(ρ(a)) ≤ ρ(a).

An element a ∈ P is called ρ-closed if a = ρ(a). A map σ : P → P is called an interior
operator on P if it satisfies the following conditions for all a, b ∈ P:

(σ1) σ(a) ≤ a,
(σ2) if a ≤ b, then σ(a) ≤ σ(b),
(σ3) σ(a) ≤ σ(σ(a)).

An element a ∈ P is called σ-open if a = σ(a).
Let A = (A,∧A,∨A, •A,→A,←A,>A,⊥A) be an RBA, and B (with universe B) be

a finite partial subalgebra of A. It suffices to find a finite residuated basic algebra E(B)
into which B is embedded. Let the universe of E(B) be denoted by E. As in [26], we first
obtain a bounded distributive lattice E = (E,∧E,∨E,>E,⊥E) that is the bounded sublattice
generated by B from A, where >E = >A and ⊥E = ⊥A. Since B is finite, the distributive
lattice E is also finite and hence complete. Now we show that every element in A can be
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mapped to the least element in E above itself or the greatest element in E below itself. For
each a ∈ A, the maps ρ and σ on A are defined as follows for every a ∈ A:

ρ(a) =
∧
{b ∈ E | a ≤A b} and σ(a) =

∨
{b ∈ E | b ≤A a}.

Note that for every a ∈ A, ρ(a) and σ(a) exist. Moreover, ρ is a closure operator and
σ is an interior operator on (A,≤). For every a ∈ E, we have a = ρ(a) = σ(a). For every
a, b ∈ E, the binary operations on E are defined as follows:

a •E b = ρ(a •A b), a→E b = σ(a→A b) and a←E b = σ(a←A b).

This completes the definition of the finite algebra E(B) = (E,∧E,∨E, •E,→E,←E

,>E,⊥E).

Lemma 1. The algebra E(B) belongs to RBA.

Proof. By Haniková and Horc̆ík [26], clearly E(B) is a bounded distributive lattice or-
dered residuated groupoid. We recall the proof of residuation law here. Let a, b, c ∈ E.
Furthermore,

a •E b = ρ(a •A b) ≤E c⇔ a •A b ≤A c

⇔ b ≤A a→A c

⇔ b ≤E σ(a→A c) = a→E c.

Similarly a •E b ≤E c if and only if a ≤E c ←E b. Now we prove E(B) satisfies
(w1), (w2) and (ct). For (w1), let a, b ∈ E. It suffices to show a •E b ≤ a. By a •A b ≤ a
and (ρ2), we have ρ(a •A b) ≤ ρ(a). Note that ρ(a) = a for all a ∈ E. Furthermore,
a •E b = ρ(a •A b) ≤ ρ(a) = a. The proof of (w2) is similar. For (ct), let a, b ∈ E. It
suffices to show a •E b ≤ (a •E b) •E b. By (ρ1), a •A b ≤ ρ(a •A b). By Proposition 2 (3),
(a •A b) •A b ≤ ρ(a •A b) •A b. By (ρ2), ρ((a •A b) •A b) ≤ ρ(ρ(a •A b) •A b). By a •A b ≤
(a •A b) •A b and (ρ2), ρ(a •A b) ≤ ρ((a •A b) •A b). Clearly ρ(a) = a for every a ∈ E.
Furthermore, a •E b = ρ(a •A b) ≤ ρ((a •A b) •A b) ≤ ρ(ρ(a •A b) •A b) = (a •E b) •E b.
Hence E(B) is a RBA.

Lemma 2. The partial algebra B is embeddable into E(B).

Proof. We show that the identity map f : B → E is an embedding. Obviously >E = >B

and ⊥E = ⊥B. It suffices to show that f preserves all operators. First, f preserves ∧ and
∨, since E is a sublattice of A generated by B. Note that B ⊆ E and a = ρ(a) = σ(a) for all
a ∈ E. Furthermore, a •E b = ρ(a •A b) = a •A b = a •B b, a →E b = σ(a →A b) = a →A

b = a→B b, and a←E b = σ(a←A b) = a←A b = a←B b.

Theorem 5. The variety RBA of residuated basic algebras has the FEP.

Proof. It follows immediately from Lemmas 1 and 2.

Corollary 2. The variety BCA of basic algebras has the FEP.

The FEP usually has consequences for the finite model property and decidability. Here
we outline the proof of the universal finite model property and decidability. Consider the
first-order language of algebras in K. Atomic formulas are inequalities of the form s ≤ t
where s, t are terms. Notice that these terms are RBL-formulas in our case. A first-order
formula is quantifier-free if no quantifiers occur in it. A universal sentence is a sentence of
the form ∀xϕ, where ϕ is quantifier-free and x is the sequence of variables occurring in ϕ.
A Horn sentence is a universal sentence ∀x(ϕ1 ∧ . . . ϕn → ϕn+1) where n ≥ 0 and each ϕi
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(1 ≤ i ≤ n + 1) is atomic. The universal theory of K is the set of all universal sentences that
are valid in K. The Horn theory of K is the set of all Horn sentences that are valid in K.

Now we show that the FEP implies the universal finite model property. Namely,
every universal sentence refuted by a member of K can be refuted by a finite member of K.
Assume that K has the FEP and K 6|= ∀x1 . . . xn ϕ. Furthermore, there exists an algebra A ∈ K
such that A 6|= ∀x1 . . . xn ϕ. Thus, there exist a1, . . . , an ∈ A such that A 6|= ϕ[a1 . . . an]. Let
B = {ψ[a1 . . . an] |ψ(x1, . . . , xn) be a subterm of ϕ}. Furthermore, B forms a finite partial
subalgebra B of A. By the FEP of K, there exists an embedding h : B → C for some
finite C ∈ K. Since h is an embedding and B 6|= ϕ[a1, . . . , an], the preservation of first-
order formulas under the embedding implies that C 6|= ϕ[h(a1), . . . , h(an)]. Furthermore,
C 6|= ∀x1 . . . xn ϕ. This completes the proof of the universal finite model property of K. It
follows that the universal theory of K and hence the Horn theory of K are decidable.

4. Conservative Extension

Now we introduce the residuated basic logic RBL. The language of RBL is the extension
of LBPL obtained by adding binary operators • and ←. The set of all RBL-formulas is
defined inductively by the following rule:

LRBL 3 α ::= p | ⊥ | > | (α1 ∧ α2) | (α1 ∨ α2) | (α • α2) | (α1 → α2) | (α1 ← α2)

where p ∈ Prop. A basic RBL-sequent is an expression of the form α ⇒ β where α
and β are RBL-formulas. A basic RBL-sequent α ⇒ β is valid in a residuated basic
algebra A = (A,∧,∨, •,→,←,>,⊥), if for every assignment θ : Prop → A, θ̂(α) ≤ θ̂(β).
The notation RBA |= α⇒ β means that α⇒ β is valid in all residuated basic algebras.

In the following, we shall introduce a basic RBL-sequent system SRBL for residuated
basic algebras, and show that SRBL is a conservative extension of SBCA (cf. Theorem 7).

Definition 8. The sequent system SRBL for residuated basic algebras consists of the following
axioms and rules:

(1) Axioms:

(Id) α⇒ α (⊥) ⊥ ⇒ α (>) α⇒ > (D) α ∧ (β ∨ γ)⇒ (α ∧ β) ∨ (α ∧ γ)

(Wl) α • β⇒ α (Wr) β • α⇒ α (TC) α • β⇒ (α • β) • β

(2) Rules:
α • β⇒ γ

(R1)
β⇒ α→ γ

β⇒ α→ γ
(R2)

α • β⇒ γ

α • β⇒ γ
(R3)

α⇒ γ← β

α⇒ γ← β
(R4)

α • β⇒ γ

αi ⇒ β
(∧L)(i = 1, 2)

α1 ∧ α2 ⇒ β

γ⇒ α γ⇒ β
(∧R)

γ⇒ α ∧ β

α⇒ γ β⇒ γ
(∨L)

α ∨ β⇒ γ

γ⇒ αi (∨R)(i = 1, 2)
γ⇒ α1 ∨ α2

α⇒ β β⇒ γ
(Cut)α⇒ γ

By SRBL ` α ⇒ β we denote that α ⇒ β is provable in SRBL. The prefix SRBL is omitted if no
confusion can arise.

Theorem 6. For every basic RBL-sequent α⇒ β, SRBL ` α⇒ β if and only if RBA |= α⇒ β.

Proof. The soundness is easily shown by induction on the proof of a sequent α ⇒ β in
SRBL. The completeness is obtained by the standard Lindenbaum-Tarski construction.

Lemma 3. If SRBL ` α⇒ β, then SRBL ` α • γ⇒ β • γ and SRBL ` γ • α⇒ γ • β.
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Proof. Assume ` α⇒ β. We have the following derivations:

α⇒ β

β • γ⇒ β • γ
(R3)

β⇒ β • γ← γ
(Cut)

α⇒ β • γ← γ
(R4)

α • γ⇒ β • γ

α⇒ β

γ • β⇒ γ • β
(R1)

β⇒ γ→ γ • β
(Cut)

α⇒ γ→ γ • β
(R2)

γ • α⇒ γ • β

This completes the proof.

Remark 2. The axioms (Wl), (Wr) and (TC) in SRBL are equivalent to the following sequents
respectively: (W1) β ⇒ α → α; (W2) α ⇒ β → α and (Tr) (α → β) ∧ (β → γ) ⇒ α → γ.
By (R1) and (R2), (Wl) and (W1) are derivable from each other, and (Wr) and (W2) are derivable
from each other. Assume (TC) holds. We have the following derivations:

α→ β⇒ α→ β
(R2)

α • (α→ β)⇒ β
(Lemma 3)

(α • (α→ β)) • (β→ γ)⇒ β • (β→ γ)

β→ γ⇒ β→ γ
(R2)

β • (β→ γ)⇒ γ

By (Cut), ` (α • (α → β)) • (β → γ) ⇒ γ. Clearly (i) ` (α → β) ∧ (β → γ) ⇒ α → β
and (ii) ` (α→ β) ∧ (β→ γ)⇒ β→ γ. By (i) and Lemma 3, ` α • ((α→ β) ∧ (β→ γ))⇒
α • (α → β) and so ` (α • ((α → β) ∧ (β → γ))) • ((α → β) ∧ (β → γ)) ⇒ (α • (α →
β)) • ((α → β) ∧ (β → γ)). By (ii) and Lemma 3, ` (α • (α → β)) • ((α → β) ∧ (β →
γ)) ⇒ (α • (α → β)) • (β → γ). By (TC), α • ((α → β) ∧ (β → γ)) ⇒ (α • ((α →
β) ∧ (β → γ))) • ((α → β) ∧ (β → γ)). By (Cut), α • ((α → β) ∧ (β → γ)) ⇒ γ. By (R1),
(α → β) ∧ (β → γ) ⇒ α → γ. Conversely, assume (Tr) holds. Clearly ` β ⇒ α → α • β and
` β ⇒ α • β → (α • β) • β. By (∧R), ` β ⇒ (α → α • β) ∧ (α • β → (α • β) • β). By (Tr),
` (α → α • β) ∧ (α • β → (α • β) • β) ⇒ α → (α • β) • β. By (Cut), ` β ⇒ α → (α • β) • β.
By (R2), ` α • β⇒ (α • β) • β.

Now we show that SRBL is a conservative extension of SBCA. For this purpose, we
give interpretation of the language LRBL in BPL-models.

Definition 9. The satisfaction relation M, w |= α between a BPL-model M = (W, R, V) with
a state w ∈ W and an RBL-formula α is defined inductively. Besides the semantic clauses for
BPL-formulas, we give the following additional semantic clauses:

(1) M, w |= α • β iff M, w |= α and M, v |= β for some v ∈W with Rvw.
(2) M, w |= α← β iff the following conditions hold:

(C1) for all u ∈W, if Ruw and M, u |= β, then M, w |= α;
(C2) for all u′, v ∈W, if Rwu′, Rvu′ and M, v |= β, then M, u′ |= α.

A basic RBL-sequent α⇒ β is true at w in M (notation: M, w |= α⇒ β) if for all u, if wR◦u
and M, u |= α, then M, u |= β. Let M |= α⇒ β mean M, w |= α⇒ β for all w ∈W. A sequent
rule

α1 ⇒ β1 . . . αn ⇒ βn

α0 ⇒ β0
(R)

is admissible in a BPL-model M if M |= αi ⇒ βi for all 1 ≤ i ≤ n imply M |= α0 ⇒ β0.

Lemma 4 (Persistency). For every RBL-formula α, BPL-model M = (W, R, V), and w, u ∈W,
if M, w |= α and Rwu, then M, u |= α.

Proof. This follows by induction on the complexity of α. The BPL-cases are simple. We
show the following two cases:

(1) α = β • γ. Assume M, w |= β • γ and Rwu. Furthermore, there exists v ∈W such that
Rvw, M, w |= β and M, v |= γ. By induction hypothesis, M, u |= β. By the transitivity
of R, we have Rvu. Hence M, u |= β • γ.
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(2) α = β← γ. Assume M, w |= β← γ and Rwu. We show M, u |= β← γ. Assume Rvu
and M, v |= γ. By M, w |= β ← γ, we have M, u |= β. Now assume Ruu′, Rvu′ and
v |= γ. By the transitivity of R, we have Rwu′. By M, w |= β← γ, we have M, u′ |= β.
Thus, M, u |= β← γ.

Lemma 5. For every BPL-model M, if SRBL ` α⇒ β, then M |= α⇒ β.

Proof. The proof proceeds by induction on the proof of α⇒ β in SRBL. Let M = (W, R, V)
be a BPL-model. The axioms (Id), (⊥), (>), (D), and (Wl) are clearly true in M. The re-
maining axioms are shown to be true in M as follows:

(Wr) Assume w′R◦w and M, w |= β • α. Furthermore, there exists v ∈ W such that
Rvw, M, v |= α and M, w |= β. By Rvw and Lemma 4, M, w |= α.

(TC) Assume w′R◦w and M, w |= α • β. Furthermore, there exists v ∈ W such that
Rvw, M, w |= α and M, v |= β. Furthermore, M, w |= (α • β) • β.

The admissibility of rules (∧L), (∧R), (∨L), (∨R), and (cut) can easily be shown.
The admissibility of the residuation rules is shown as follows:

(R1) Assume M |= α • β⇒ γ. Suppose w′R◦w and M, w |= β but M, w 6|= α→ γ for
some w ∈ W. Furthermore, there exists v ∈ W such that Rwv, M, v |= α and M, v 6|= γ.
Furthermore, M, v |= α • β. By the assumption, M, v |= γ which yields a contradiction.

(R2) Assume M |= β⇒ α→ γ. Suppose w′R◦w and M, w |= α • β but M, w 6|= γ for
some w ∈W. Furthermore, there exists v ∈W such that Rvw, M, w |= α and M, v |= β. By
the assumption, M, v |= α→ γ. Hence M, w |= γ which yields a contradiction.

(R3) Assume M |= α • β⇒ γ. Suppose w′R◦w and M, w |= α but M, w 6|= γ← β for
some w ∈W. There are two cases:

Case 1. There exists v ∈ W such that Rvw, M, v |= β but M, w 6|= γ. Furthermore,
M, w |= α • β. By the assumption, M, w |= γ which yields a contradiction.

Case 2. There exist v, u ∈ W such that Rwv, Ruv, and M, u |= β but M, v 6|= γ. Since
M, w |= α and Rwv, it follows from Lemma 4 that M, v |= α. Hence M, v |= α • β. By the
assumption, we have M, v |= γ which yields a contradiction.

(R4) Assume M |= α⇒ γ← β. Suppose w′R◦w, M, w |= α • β but M, w 6|= γ for some
w ∈ W. Furthermore, there exists v ∈ W such that Rvw, M, w |= α and M, v |= β. By the
assumption, M, w |= γ← β. Furthermore, M, w |= γ, which yields a contradiction.

Theorem 7 (Conservativity). For every basic BPL-sequent α⇒ β, SBCA ` α⇒ β if and only if
SRBL ` α⇒ β.

Proof. Assume SBCA ` α ⇒ β. It is easy to show SRBL ` α ⇒ β. Conversely, assume
SBCA 6` α ⇒ β. By Corollary 1, there exists a BPL-model M = (W, R, V) such that
M 6|= α⇒ β. By Lemma 5, we have SRBL 6` α⇒ β.

Since SBCA is equivalent to the basic propositional calculus BPC, we obtain that SRBL
is a conservative extension of BPC.

5. A Gentzen-Style Sequent Calculus for RBL

The system SRBL is equivalent to the bounded distributive full Lambek calculus
DFNL ([18,22]) with weakening axioms (Wl) and (Wr) and the strong contraction axiom
(TC). We shall introduce a Gentzen-style sequent calculus GRBL for RBL, and show that
GRBL admits mix-elimination. For general details on sequent calculi for substructural
logics, see e.g., [20].

5.1. The Sequent Calculus GRBL

Definition 10. Let � and ? be structural operators for the product • and ∧ respectively. The set
of all RBL-structures is defined inductively as follows:
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Γ ::= α | (Γ1 � Γ2) | (Γ1 ? Γ2), where α ∈ LRBL.

We use Γ, ∆, Λ, etc. for RBL-structures. Each RBL-structure Γ is associated with a formula
µ(Γ) which is defined inductively as follows:

µ(α) = α, where α ∈ LRBL.

µ(Γ� ∆) = µ(Γ) • µ(∆).

µ(Γ ? ∆) = µ(Γ) ∧ µ(∆).

A RBL-sequent is an expression Γ⇒ α where Γ is an RBL-structure and α ∈ LRBL. An RBL-
sequent Γ⇒ α is valid in a residuated basic algebra A (notation: A |= Γ⇒ α) if A |= µ(Γ)⇒ α.

A context is an RBL-structure Γ[−] with a single position − for an RBL-structure.
For any context Γ[−] and RBL-structure ∆, Γ[∆] is the RBL-structure obtained from Γ[−] by
substituting ∆ for the position −.

Definition 11. The sequent calculus GRBL consists of the following axiom and rules:

(1) Axiom:
(Id) α⇒ α

(2) Logical rules:
Γ[>]⇒ α

(>)
Γ[∆]⇒ α

∆⇒ ⊥ (⊥)
Γ[∆]⇒ α

∆⇒ α Γ[β]⇒ γ
(→L)

Γ[∆� (α→ β)]⇒ γ

α� Γ⇒ β
(→R)

Γ⇒ α→ β

Γ[α]⇒ γ ∆⇒ β
(←L)

Γ[(α← β)� ∆]⇒ γ

Γ� β⇒ α
(←R)

Γ⇒ α← β

Γ[α� β]⇒ γ
(•L)

Γ[α • β]⇒ γ

Γ⇒ α ∆⇒ β
(•R)

Γ� ∆⇒ α • β

Γ[α ? β]⇒ γ
(∧L)

Γ[α ∧ β]⇒ γ

Γ⇒ α ∆⇒ β
(∧R)

Γ ? ∆⇒ α ∧ β

Γ[α]⇒ γ Γ[β]⇒ γ
(∨L)

Γ[α ∨ β]⇒ γ

Γ⇒ αi (∨R)(i = 1, 2)
Γ⇒ α1 ∨ α2

The RBL-structure Γ in (→R) and (←R) is required to be nonempty. The formula with a
connective in a logical rule is called principal.

(3) Structural rules:

Γ[∆ ? ∆]⇒ α
(?C)

Γ[∆]⇒ α

Γ[(Λ� ∆)� ∆]⇒ α
(�C)

Γ[Λ� ∆]⇒ α

Γ[∆ ? Λ]⇒ α
(?E)

Γ[Λ ? ∆]⇒ α

Γ[∆i]⇒ α
(W)(∗ ∈ {?,�})(i = 1, 2)

Γ[∆1 ∗ ∆2]⇒ α

Γ[(∆1 ? ∆2)? ∆3]⇒ α
(As)

Γ[∆1 ? (∆2 ? ∆3)]⇒ α

∆⇒ α Γ[α]⇒ β
(Cut)

Γ[∆]⇒ β

The RBL-structure Λ in (�C) is nonempty. The double line in the rule (As) indicates that
the premiss and the conclusion can be derived from each other.

A derivation in GRBL is a finite tree of sequents in which each node is either an instance of
(Id) or obtained from a child node(s) by a rule. The height of a derivation is the greatest number of
successive applications of rules. An instance of (Id) has height 0. We use GRBL ` Γ⇒ α for that
the sequent Γ⇒ α is derivable in GRBL.
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Remark 3. By the definition of GRBL, if GRBL ` Γ⇒ α, then Γ must be nonempty. Hence⇒ >
is not derivable. However > ⇒ > is an instance of (Id) in GRBL. Moreover, the following sequent
rule is admissible in GRBL:

Γ[(∆1 � ∆2)� ∆3]⇒ α
(�A1)Γ[∆1 � (∆2 � ∆3)]⇒ α

This rule is half of the associativity.

Theorem 8. For every RBL-sequent Γ⇒ α, SRBL ` µ(Γ)⇒ α if and only if GRBL ` Γ⇒ α.

Proof. We give an outline of the proof. For the ‘only if’ part, assume SRBL ` µ(Γ) ⇒
α. It is easy to show that every basic sequent provable in SRBL is derivable in GRBL.
Furthermore, GRBL ` µ(Γ) ⇒ α. By the definition of µ, GRBL ` Γ ⇒ α. For the ‘if’ part,
assume SRBL 6` µ(Γ)⇒ α. By the completeness of SRBL, there exists an RBA A such that
A 6|= µ(Γ) ⇒ α. Furthermore„ A 6|= Γ ⇒ α. Clearly GRBL is sound with respect to RBA.
Hence GRBL 6` Γ⇒ α.

5.2. Mix Elimination, Subformula Property and Decidability

We introduce the sequent calculus Gm
RBL which is obtained from GRBL by replacing

the (Cut) rule with the following mix rule:

∆⇒ α Γ[α] . . . [α]⇒ β

Γ[∆] . . . [∆]⇒ β
(Mix)

where Γ[α] . . . [α] denotes the formula structure containing at least one occurrence of α,
and Γ[∆] . . . [∆] denotes the formula structure obtained by replacing at least one occurrence
of α in Γ[α] . . . [α] by the formula structure ∆. The formula α in the rule (Mix) is called the
mixed formula. Note that (Cut) in GRBL is a special case of (Mix), and (Mix) is the finitely
many times of application of (Cut). Hence GRBL is equivalent to Gm

RBL.

Theorem 9 (Mix-elimination). Every RBL-sequent that is derivable in Gm
RBL admits a derivation

without using (Mix).

Proof. Let an application of (Mix) in a derivation of a sequent in Gm
RBL be

∆⇒ α Γ[α] . . . [α]⇒ β

Γ[∆] . . . [∆]⇒ β
(Mix)

where derivations of both premisses do not use (Mix). We prove the mix-elimination by
simultaneous induction on (I) the complexity of the mixed formula α, (II) the height of
a derivation of Γ[α] . . . [α] ⇒ β, and (III) the height of a derivation of ∆ ⇒ α. Let ∆ ⇒ α
be obtained by (R1) and Γ[α] . . . [α] ⇒ β by (R2). If (R1) is (Id), then ∆ = α and the
conclusion Γ[∆] . . . [∆]⇒ β is obtained by the right premiss of (Mix). If (R2) is (Id), then
α = β and Γ[∆] . . . [∆] ⇒ β is ∆ ⇒ β, which is the left premiss of (Mix). Assume (R1)
is a structural rule, then we apply (Mix) to the premiss(es) and then apply the rule (R1).
The case that (R2) is a structural rule is quite similar. Now, assume that neither (R1) nor
(R2) is an instance of (Id) or a structural rule. We have the following cases:

Case 1. The mixed formula α is not principal in (R1). We have the following cases:

(1.1) (R1) is (>). The derivation

Λ[>]⇒ α
(>)

Λ[∆′]⇒ α Γ[α] . . . [α]⇒ β
(Mix)

Γ[Λ[∆′]] . . . [Λ[∆′]]⇒ β



Axioms 2023, 12, 966 14 of 18

is transformed into
Λ[>]⇒ α Γ[α] . . . [α]⇒ β

(Mix)
Γ[Λ[>]] . . . [Λ[>]]⇒ β

(>∗)
Γ[Λ[∆′]] . . . [Λ[∆′]]⇒ β

where (>∗) denotes finitely many applications of the rule (>).
(1.2) (R1) is a left logical rule. Apply (Mix) to Γ[α] . . . [α]⇒ β and the premiss(es) of (R1),

and then apply (R1). For example, (R1) = (→L). The derivation

∆1 ⇒ γ ∆2[δ]⇒ α
(→L)

∆2[∆1 � (γ→ δ)]⇒ α Γ[α] . . . [α]⇒ β
(Mix)

Γ[∆2[∆1 � (γ→ δ)]] . . . [∆2[∆1 � (γ→ δ)]]⇒ β

is transformed into

∆1 ⇒ γ

∆2[δ]⇒ α Γ[α] . . . [α]⇒ β
(Mix)

Γ[∆2[δ]] . . . [∆2[δ]]⇒ β
(→L∗)

Γ[∆2[∆1 � (γ→ δ)]] . . . [∆2[∆1 � (γ→ δ)]]⇒ β

where (→L∗) denotes finitely many applications of the rule (→L).

Case 2. The mixed formula α is principal only in (R1). Furthermore, we have the
following cases according to (R2):

(2.1) (R2) is a right logical rule. Apply (Mix) to ∆⇒ α and the premiss(es) of R2, and then
apply (R2). For example, (R2) = (•R). The derivation

∆⇒ α

Γ1[α] . . . [α]⇒ β1 Γ2[α] . . . [α]⇒ β2
(•R)

Γ1[α] . . . [α]� Γ2[α] . . . [α]⇒ β1 • β2
(Mix)

Γ1[∆] . . . [∆]� Γ2[∆] . . . [∆]⇒ β1 • β2

is transformed into

∆⇒ α Γ1[α] . . . [α]⇒ β1
(Mix)

Γ1[∆] . . . [∆]⇒ β1

∆⇒ α Γ2[α] . . . [α]⇒ β1
(Mix)

Γ2[∆] . . . [∆]⇒ β2
(•R)

Γ1[α] . . . [α]� Γ2[α] . . . [α]⇒ β1 • β2

(2.2) (R2) is a left logical rule. Since α is not principal in (R2), we apply (Mix) to ∆ ⇒
α and the premiss(es) of (R2) and then apply (R2). For example, (R2) = (→L).
The derivation

∆⇒ α

∆′[α] . . . [α]⇒ γ Γ′[δ][α] . . . [α]⇒ β
(→L)

Γ′[∆′[α] . . . [α]� (γ→ δ)][α] . . . [α]⇒ β
(Mix)

Γ′[∆′[∆] . . . [∆]� (γ→ δ)][∆] . . . [∆]⇒ β

is transformed into

∆⇒ α ∆′[α] . . . [α]⇒ γ
(Mix)

∆′[∆] . . . [∆]⇒ γ

∆⇒ α Γ′[δ][α] . . . [α]⇒ β
(Mix)

Γ′[δ][∆] . . . [∆]⇒ β
(→L)

Γ′[∆′[∆] . . . [∆]� (γ→ δ)][∆] . . . [∆]⇒ β

Case 3. The mixed formula α is principal both in (R1) and (R2). We have the following
cases according to the complexity of α:
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(3.1) α = α1 • α2. Let the derivation end with

∆1 ⇒ α1 ∆2 ⇒ α2
(•R)

∆1 � ∆2 ⇒ α1 • α2

Γ[α1 � α2][α] . . . [α]⇒ β
(•L)

Γ[α1 • α2][α] . . . [α]⇒ β
(Mix)

Γ[∆1 � ∆2] . . . [∆1 � ∆2]⇒ β

By the induction hypothesis, we have the following derivation:

∆1 � ∆2 ⇒ α1 • α2 Γ[α1 � α2][α] . . . [α]⇒ β
(Mix)

Γ[α1 � α2][∆1 � ∆2] . . . [∆1 � ∆2]⇒ β

By induction hypothesis on α1 and α2, we have the following derivation:

∆2 ⇒ α2

∆1 ⇒ α1 Γ[α1 � α2][∆1 � ∆2] . . . [∆1 � ∆2]⇒ β
(Mix)

Γ[∆1 � α2][∆1 � ∆2] . . . [∆1 � ∆2]⇒ β
(Mix)

Γ[∆1 � ∆2] . . . [∆1 � ∆2]⇒ β

(3.2) α = α1 → α2 or α = α1 ← α2. These two cases are similar. Here we show only the
case α = α1 → α2. Let the derivation end with

α1 � ∆⇒ α2
(→ R)

∆⇒ α1 → α2

∆′[α] . . . [α]⇒ α1 Γ′[α2][α] . . . [α]⇒ β
(→ L)

Γ′[∆′[α] . . . [α]� (α1 → α2)][α] . . . [α]⇒ β
(Mix)

Γ′[∆′[∆] . . . [∆]� ∆][∆] . . . [∆]⇒ β

By induction hypothesis, we have the following derivations:

∆⇒ α1 → α2 ∆′[α] . . . [α]⇒ α1
(Mix)

∆′[∆] . . . [∆]⇒ α1

and
∆⇒ α1 → α2 Γ′[α2][α] . . . [α]⇒ β

(Mix)
Γ′[α2][∆] . . . [∆]⇒ β

By induction hypothesis on α1, we have

∆′[∆] . . . [∆]⇒ α1 α1 � ∆⇒ α2
(Mix)

∆′[∆] . . . [∆]� ∆⇒ α2

By induction hypothesis on α2, we have

∆′[∆] . . . [∆]� ∆⇒ α2 Γ′[α2][∆] . . . [∆]⇒ β
(Mix)

Γ′[∆′[∆] . . . [∆]� ∆][∆] . . . [∆]⇒ β

(3.3) α = α1 ∧ α2 or α = α1 ∨ α2. These two cases are similar. Here we show only the case
α = α1 ∧ α2. Let the derivation end with

∆⇒ α1 ∆⇒ α2
(∧R)

∆⇒ α1 ∧ α2

Γ[α1 ? α2][α] . . . [α]⇒ β
(•L)

Γ[α1 ∧ α2][α] . . . [α]⇒ β
(Mix)

Γ[∆] . . . [∆]⇒ β

By induction hypothesis, we have the following derivation:

∆⇒ α1 ∧ α2 Γ[α1 ? α2][α] . . . [α]⇒ β
(Mix)

Γ[α1 ? α2][∆] . . . [∆]⇒ β
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By the induction hypothesis on α1 and α2, we have

∆⇒ α1

∆⇒ α1 Γ[α1 ? α2][∆] . . . [∆]⇒ β
(Mix)

Γ[∆ ? α2][∆] . . . [∆]⇒ β
(Mix)

Γ[∆ ? ∆][∆] . . . [∆]⇒ β
(?C)

Γ[∆] . . . [∆]⇒ β

This completes the proof.

Corollary 3 (Subformula Property). If GRBL ` Γ⇒ α, then there exists a derivation of Γ⇒ α
in GRBL in which every formula is a subformula of formulas in Γ ∪ {α,>,⊥} .

Theorem 10 (Disjunction Property). For all RBL-formulas α and β, if GRBL ` > ⇒ α ∨ β,
then GRBL ` > ⇒ α or GRBL ` > ⇒ β.

Proof. Assume GRBL ` > ⇒ α ∨ β. Furthermore, Gm
RBL ` > ⇒ α ∨ β. By Theorem 9,

the last rule of a mix-free derivation of > ⇒ α ∨ β can be only (∨R) or (?C). Assume
the last application of (∨R) is >? . . . ?> ⇒ α ∨ β. Furthermore, the premiss of (∨R) is
>? . . . ?> ⇒ α or >? . . . ?> ⇒ β. By (?C), GRBL ` > ⇒ α or GRBL ` > ⇒ β.

If rules for • and← are dropped from GRBL, we get the sequent calculus GBPL with
two structure operators ? and �. Thus, GBPL can be taken as a sequent calculus for basic
propositional logic. We have the following result:

Theorem 11. For every basic BPL-sequent α⇒ β, SBCA ` α⇒ β if and only if GBPL ` α⇒ β.

Proof. Let α ⇒ β be a basic BPL-sequent. By Theorem 7, SBCA ` α ⇒ β if and only if
SRBL ` α ⇒ β. Clearly SRBL ` α ⇒ β if and only if GRBL ` α ⇒ β. By the subformula
property of GRBL, GRBL ` α⇒ β if and only if GBPL ` α⇒ β.

Finally, we consider the consequence relations of sequent calculi GRBL and GBPL.
A sequent Γ ⇒ α is called a consequence of a finite set of sequents Φ in GRBL (notation:
Φ `GRBL Γ ⇒ α) if there exists a derivation of Γ ⇒ α in GRBL from sequents in Φ.
The consequence relation of GBPL is defined similarly. We have shown that RBA has the
FEP (Theorem 5). This property implies the universal finite model property (cf. Section 3),
which yields the SFMP (cf. e.g., ([19], Chapter 6). It follows that GRBL has the strong finite
model property (SFMP). That is, for every finite set of sequents Φ, if Φ 6`GRBL Γ⇒ α, then
there exists a finite RBA model M = (A, µ) such that all sequents in Φ are true but Γ⇒ α is
not true in M. This result follows immediately from the finite embeddability property of
RBA.

Theorem 12. The consequence relations of GRBL and GBPL are decidable.

Proof. By the FEP of RBA, we get the SFMP of GRBL and so the SFMP of GBPL. Thus,
consequence relations of GRBL and GBPL are decidable.

6. Concluding Remarks

The present paper makes several contributions to the study of subintuitionistic logics.
First, we introduce residuated basic algebras and show the finite embeddability property.
Second, the residuated basic logic is shown to be a conservative extension of basic propo-
sitional logic. Third, we introduce a cut-free sequent calculus GBPL for residuated basic
algebras. Finally, the consequence relation of GRBL is decidable.

Residuation often appears in algebraic structures, and residuated logics have been
developed. Lambek calculi are typical systems for some residuated algebras. The residuated
basic logic given in the present paper is obtained by introducing the binary operator •
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such that the implication in basic propositional logic is one of the right residuals. There
are some relevant results in the literature. For example, a logic for residuated paritially
ordered sets with a top was developed in e.g., [28]. In the setting of fuzzy logic (cf. e.g., [29]),
residuated fuzzy logics arising from continuous t-norms without non-trivial zero divisors
and extended with an involutive negation are developed in [30]. Hájeck’s basic logic is
quite different from Visser’s basic propositional logic since the latter was developed from
the study of formal provability. The workings of residuated basic logic in the study of
provability need further exploration.

There are some interesting problems for future work. It is already known that intu-
itionistic logic is embedded into basic propositional logic by a bounded translation [31].
Using the sequent calculus G4ip for intuitionistic logic (cf. [32]) and GRBL for residuated
basic logic, we could give a purely proof-theoretic proof of this result. Embedding results
of this kind could be explored in an extended setting. For example, the embedding of
propositional logics into modal logics could be explored by proof-theoretic methods. We
can also consider extending the approach given in this paper to more extensions of basic
propositional logic. The general question is to determine subintuitionistic propositional
logics, which can be formalized as analytic Gentzen-style sequent calculi. Using such
sequent calculi, we may obtain the logical properties of these logics.
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