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Abstract: The inverse Weibull model is a simple and flexible model used for survival analysis,
reliability theory, and other scientific fields. The main problem in this context is the estimation of
the model parameters. In this study, a modified version of the maximum likelihood estimator is
presented. The idea behind it is that the likelihood equation for the shape parameters of the model is
biased; therefore, an unbiased version was defined. The new estimator is based on the definition of
an unbiased likelihood equation. Simulation results show that the new modified estimator for the
shape parameter has a smaller mean square error. Finally, the proposed estimator and the maximum
likelihood estimator were compared in the analysis of the three real data sets.
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1. Introduction

The inverse Weibull (IW) model, also known as the Fréchet distribution or extreme
value distribution of type II, is a simple and very flexible statistical model and plays an
important role in reliability theory, survival analysis, reliability engineering and extreme
value analysis. For a working component or living creature, the HR function at time x
gives the instantaneous risk of fail or die at x given survival up to x. One of the most
important reliability features of the IW model is that its hazard rate (HR) function exhibits
a unimodal form (first increasing, then decreasing). The well-known Weibull model, which
is another important model in reliability theory and survival analysis. shows increasing
or decreasing HR function and is not suitable for data with unimodal HR function. So,
we should consider a unimodal HR model like IW for analyzing data with unimodal HR
function. In terms of the HR form, the IW model is suitable for lifetime data related to
cancer events, floods, and earthquakes (see Jiang et al. [1] for a general study of unimodal
HR models). The IW model was used to analyze several real data examples. For example,
Keller et al. [2] analyzed engine data sets from six different manufacturers and showed that
the model provided a better description of the data under consideration than the Weibull
model. Akgul et al. [3] also applied the IW model to wind speed data.

The IW model is the topic of many studies, e.g., Calabria and G. Pulcini [4] studied
some statistical properties of the IW distribution specifically related to censored samples,
Jiang et al. [5] considered a mixture model, a competing risk model and a multiplicative
model with two IW distributions, Mahmoud et al. [6] studied the order statistics of the
IW distribution, Sultan et al. [7] considered a mixture of two IW model, studied some
reliability properties of it, proved the identifiability property of the mixture model and
discussed the estimation of the model by the EM algorithm, Balakrishnan and M. Kateri [8]
studied the maximum likelihood estimation of the IW model parameters for complete
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and censored data. In addition, Kundu and Howlader [9] presented a Bayesian inference
regarding the IW distribution for censored data of type II; Gusmão et al. [10] introduced
a new generalization of the IW distribution. Sultan et al. [11] investigated Bayesian and
maximum likelihood estimation of the IW model under progressive type-II censoring,
Kim et al. [12] discussed non-informative priors for the IW distribution, Loganathan
and Uma [13] compared maximum likelihood estimators (MLE), least squares errors and
weighted least squares error estimators for estimating the parameters of the IW model.
Based on their simulation results, the MLE outperformed the other two candidates in
terms of mean squared error (MSE), Ramos et al. [14] proposed a new long-term Fréchet
distribution and used the MLE to estimate the parameters, Singh and Tripathi [15] estimated
the parameters of the IW distribution under progressive type I interval censoring, Pedro
et al. [16] studied the IW model from the point of view of estimation and application,
Alkarni et al. [17] proposed an extended IW distribution, Kazemi and Azizpoor [18] and
Nassar and Abo-Kasem [19] discussed the problem of estimating the parameters of the
IW model for censored data, and Jana and Bera [20] compared the MLE with the Bayes
estimator for estimating the parameters of the IW model.

Recently, Jokiel-Rokita and Piatek [21] proposed and studied a modified MLE (MMLE)
for estimating the parameters of the Weibull model. They modified the likelihood equation
for the shape parameter to be unbiased and compared the bias and MSE of the modified
estimator with the ordinary MLE.

In this study, we introduce an MMLE to estimate the parameters of the IW model.
Simulation results show that this modification improves the MLE in terms of bias and
MSE. The remainder of this paper is organized as follows. Section 2 defines the MMLE
and discusses its properties. Section 3 summarizes the results of the simulation studies
that examined the behavior of the MLE and MMLE, and their comparison. Section 4
analyzes three real data sets and compares the MLE and MMLE. Finally, Section 5 concludes
the paper.

2. Modified MLE

The inverse Weibull (IW) model, also known as the Fréchet distribution or extreme
value distribution of type II, is characterized by the following probability density function
(PDF):

f (x) = αλαx−α−1exp
{
−
( x

λ
)−α

}
, α > 0, λ > 0, x ≥ 0. (1)

It is an important model in reliability theory, survival analysis, reliability engineering
and extreme value analysis. Its hazard rate (HR) function is

h(x) =
αλαx−α−1

exp
{( x

λ )
−α
}
− 1

, α > 0, λ > 0, x ≥ 0. (2)

Assume an independent and identically distributed realization of the IW model (1).
The log-likelihood function with respect to the IW model is

l(α, λ) = nlnα + nαlnλ− (α + 1)∑n
i=1 lnxi −∑n

i=1 λαx−α
i . (3)

The likelihood equations for α and λ are

n
α
+ nlnλ−∑n

i=1 lnxi + ∑n
i=1 λαx−α

i ln
xi
λ

= 0, (4)

and nα

λ
−∑n

i=1 αλα−1x−α
i = 0. (5)
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By solving Equation (5) for λ, the MLE for the scale parameter equals

λ̂ =

(
n

∑n
i=1 x−α̂

i

) 1
α̂

, (6)

where α̂ is the MLE of α.

Lemma 1. The MLE of α can be calculated by solving the following equation:

∑n
i=1 x−α

i +
1
n∑n

i=1 x−α
i ∑n

i=1 lnx−α
i −∑n

i=1 x−α
i lnx−α

i = 0. (7)

Proof. Equation (4) is considered to provide a new equation just in terms of the shape
parameter α.

By (6), we substitute λ by λ =

(
n

∑n
i=1 x−α

i

) 1
α

in Equation (4) and multiply both sides

by α
n ∑n

i=1 x−α
i . Then, we obtained the following equation:

n
∑

i=1
x−α

i +
n
∑

i=1
x−α

i ln
(

n
∑n

i=1 x−α
i

)
− α

n

n
∑

i=1
x−α

i

n
∑

i=1
ln xi +

α
n

n
∑

i=1
x−α

i

n
∑

i=1

(
n

∑n
i=1 x−α

i

)
x−α

i lnxi

− α
n

n
∑

i=1
x−α

i

n
∑

i=1

(
n

∑n
i=1 x−α

i

)
x−α

i
1
α ln
(

n
∑n

i=1 x−α
i

)
= 0.

Equation (7) can be obtained after some straightforward simplification. �

A major drawback of Equation (7) is that it is not unbiased for the estimation of α and
λ, i.e.,

Eα,λ

(
∑n

i=1 X−α
i +

1
n∑n

i=1 X−α
i ∑n

i=1 lnX−α
i −∑n

i=1 X−α
i lnX−α

i

)
= λ−α 6= 0. (8)

As a result, the following lemma formulates this problem and proves it. The problem
is more strict for larger λ−α.

Lemma 2. A modified unbiased version (MUV) of Equation (7) is

MUV =
n− 1

n ∑n
i=1 X−α

i +
1
n∑n

i=1 X−α
i ∑n

i=1 lnX−α
i −∑n

i=1 X−α
i lnX−α

i = 0. (9)

Proof. It can be checked that, see Appendix A,

E
(
X−α

i
)
= λ−α, (10)

E
(
lnX−α

i
)
= ψ(1)− lnλα, (11)

and
E
(
X−α

i lnX−α
i
)
= λ−α(ψ(1) + 1− lnλα), (12)
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where ψ is the well-known digamma function. Now, the expectation (8) could be simplified
as in the following:

E
(
∑n

i=1 X−α
i
)
+ E

(
1
n ∑n

i=1 X−α
i ∑n

i=1 lnX−α
i

)
− E

(
∑n

i=1 X−α
i lnX−α

i
)

= nλ−α + E
(

∑n
i=1 ∑n

j=1,i 6=j X−α
i lnX−α

j

)
+ E

(
n
∑

i=1
X−α

i lnX−α
i

)
−nλ−α(ψ(1) + 1− lnλα)
= nλ−α + (n− 1)λ−α(ψ(1)− lnλα) + λ−α(ψ(1) + 1− lnλα)
−nλ−α(ψ(1) + 1− lnλα)

(13)

= λ−α.

Similarly, it is straightforward to check that

E
(

n− 1
n ∑n

i=1 X−α
i +

1
n∑n

i=1 X−α
i ∑n

i=1 lnX−α
i −∑n

i=1 X−α
i lnX−α

i

)
= 0, (14)

that is (9) shows an unbiased equation. �

As a general approach, when one or some of the likelihood equations are biased, we
may transform them to a MUV. However, the general approach is the same for all scenarios
and models, but the transformation may differ.

The following result guarantees the existence of a unique solution for the proposed
unbiased equation.

Theorem 1. The MUV has a unique solution.

Proof. The proof follows completely similarly to the problem of existence and uniqueness
of the MLE discussed by Balakrishnan and Kateri [8] and Jana and Bera [20]. �

Let
∼
α be the answer of the unbiased equation (9) that is the MMLE of α, then the

MMLE of λ is defined by

∼
λ =

 n

∑n
i=1 x−

∼
α

i

 1
∼
α

. (15)

Theorem 2. The MMLE of (α, λ) is consistent.

Proof. Let

η(α; X) = ∑n
i=1 X−α

i +
1
n∑n

i=1 X−α
i ∑n

i=1 lnX−α
i −∑n

i=1 X−α
i lnX−α

i . (16)

Clearly, η(α; X) is a continuous function in terms of α. On the other hand the left
side of (9) converges almost surely to whatever η(α; X) converges. Now, since α̂, which
is calculated by solving the equation η(α; X) = 0, is consistent, we can conclude

∼
α is

consistent too. Then, the consistency of
∼
λ follows by the consistency of

∼
α. �

3. Simulations

The efficiency and consistency of MLE and MMLE are compared using a simulation
study. Three sample sizes, n = 25, 50, 100, and different parameter values are considered.
In each run, r = 5000 replicates of samples are simulated with the selected sample size
and parameter values. We use the uniroot function built into R to compute the parameter
estimates. Table 1 shows the simulation results. For α, MSE shows smaller values for
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MMLE than for MLE, especially when the sample size is small, suggesting that MMLE
improves the estimate of α.

Table 1. The bias and MSE of MMLE and MLE.

n

Method
25 50 100

α,λ B MSE B MSE B MSE

MLE

1, 20
0.0601 0.0346 0.0294 0.0152 0.0146 0.0067
0.8405 21.9961 0.3677 9.7325 0.1833 4.7483

1.1, 2
0.0684 0.0432 0.0313 0.0180 0.0153 0.0079
0.0693 0.1778 0.0321 0.0770 0.0158 0.0367

0.5, 10
0.0300 0.0087 0.0141 0.0036 0.0067 0.0016
1.2684 28.9262 0.6244 11.0262 0.2709 4.9036

1.5, 0.5
0.0928 0.0826 0.0373 0.0316 0.0217 0.0154
0.0106 0.0055 0.0052 0.0026 0.0021 0.0012

MMLE

1, 20
0.0307 0.0312 0.0157 0.0139 0.0073 0.0065
0.8759 22.5114 0.4094 9.2799 0.2726 4.6273

1.1, 2
0.0350 0.0363 0.0161 0.162 0.0088 0.0077
0.0894 0.1884 0.0440 0.0809 0.0186 0.0399

0.5, 10
0.0181 0.0080 0.0065 0.0033 0.0041 0.0016
1.4493 30.9124 0.7504 11.5184 0.3412 5.2525

1.5, 0.5
0.0497 0.0697 0.0249 0.0309 0.0122 0.0145
0.0137 0.0059 0.0085 0.0027 0.0035 0.0012

On the other hand, MLE for λ yields smaller MSE values than MMLE for the most
frequently selected parameter values. Figure 1 shows the MSE for biased and unbiased
estimators of α for different sample sizes and parameter values. It shows a significant
improvement of the unbiased estimator, especially for small sample sizes. Figure 1 also
shows the MSE for λ. Both figures show how the MSE of MLE and MMLE decrease with
sample size.

Applying the bias and MSE in Table 1, the variance of the estimators is computed and
gathered in Table 2. However, we expect that reducing the bias may increase the variance,
it is observed that the variance of the MMLE of α is smaller than the variance of MLE. But,
for λ, the reverse is true.

Table 2. The variance of MMLE and MLE. In each cell, the first and the second numbers show the
variance of α and λ, respectively.

n

Method
25 50 100

α, λ Var Var Var

MLE

1, 20 0.0309, 21.2896 0.0143, 9.5972 0.0064, 4.7147
1.1, 2 0.0385, 0.1729 0.0170, 0.0759 0.0076, 0.0364

0.5, 10 0.0078, 27.3173 0.0034, 10.6363 0.0015, 4.8302
1.5, 0.5 0.0739, 0.0053 0.0302, 0.0025 0.0149, 0.0011

MMLE

1, 20 0.0302, 21.7442 0.0136, 9.1122 0.0064, 4.5529
1.1, 2 0.0350, 0.1804 0.1617, 0.0789 0.0076, 0.0395

0.5, 10 0.0076, 28.8119 0.0032, 10.9553 0.0015, 5.1360
1.5, 0.5 0.0672, 0.0057 0.0302, 0.0026 0.0143, 0.0011



Axioms 2023, 12, 961 6 of 13

Axioms 2023, 12, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. Comparison of MSE for biased and unbiased estimators of 𝛼 for different sample sizes 
and parameter values. 

Applying the bias and MSE in Table 1, the variance of the estimators is computed and 
gathered in Table 2. However, we expect that reducing the bias may increase the variance, 
it is observed that the variance of the MMLE of 𝛼 is smaller than the variance of MLE. 
But, for 𝜆, the reverse is true. 

Table 1. The bias and MSE of MMLE and MLE. 

  𝒏 

Method 
 25 50 100 𝜶, 𝝀 B MSE B MSE B MSE 

MLE 

1, 20 
0.0601 0.0346 0.0294 0.0152 0.0146 0.0067 
0.8405 21.9961 0.3677 9.7325 0.1833 4.7483 

1.1, 2 0.0684 0.0432 0.0313 0.0180 0.0153 0.0079 
0.0693 0.1778 0.0321 0.0770 0.0158 0.0367 

0.5, 10 0.0300 0.0087 0.0141 0.0036 0.0067 0.0016 
1.2684 28.9262 0.6244 11.0262 0.2709 4.9036 

1.5, 0.5 0.0928 0.0826 0.0373 0.0316 0.0217 0.0154 
0.0106 0.0055 0.0052 0.0026 0.0021 0.0012 

MMLE 
1, 20 0.0307 0.0312 0.0157 0.0139 0.0073 0.0065 

0.8759 22.5114 0.4094 9.2799 0.2726 4.6273 

1.1, 2 0.0350 0.0363 0.0161 0.162 0.0088 0.0077 
0.0894 0.1884 0.0440 0.0809 0.0186 0.0399 

0.
01

0
0.

02
0

0.
03

0

n

M
S

E

α=1, λ=20

25 50 100

●

●

●

●

Unbiased
Biased

0.
01

0
0.

02
0

0.
03

0
0.

04
0

n

M
S

E

α=1.1, λ=2

25 50 100

●

●

●

●

Unbiased
Biased

0.
00

2
0.

00
4

0.
00

6
0.

00
8

n

M
S

E

α=0.5, λ=10

25 50 100

●

●

●

●

Unbiased
Biased

0.
02

0.
04

0.
06

0.
08

n

M
S

E
α=1.5, λ=0.5

25 50 100

●

●

●

●

Unbiased
Biased

Figure 1. Comparison of MSE for biased and unbiased estimators of α for different sample sizes and
parameter values.

4. Applications

In this section, three real-world data sets are analyzed. MLE and MMLE are compared
using some well-known statistics, including the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC), Kolmogorov–Smirnov (KS), Cramer–Von Mises
(CVM), and Anderson Darling (AD).

4.1. Repair Times of an Airborne Communication Transceiver

Table 3 contains 46 observations of repair times in hours for an airborne communication
transceiver. This data set has been studied by Alven [22] and Meat et al. [23]. Here we fit
the IW model to the data and estimate the parameters of the IW model by MLE and MMLE.
The AIC, BIC, KS, CVM, and AD statistics were calculated. The results are summarized in
Table 4 and show that the MMLE outperforms the MLE based on the KS, CVM, and AD
statistics. Also, Table 4 shows the results of fitting the data to the Weibull, gamma and
Pareto models. The AIC, BIC, KS, CVM and AD all show that the IW provides a better fit
than these alternative models. Figure 2 shows the empirical and estimated model function,
which graphically shows a good fit and confirms the small values of the KS, CVM, and
AD statistics for both estimators. Figure 3 shows the empirical and estimated CDF for the
repair times data and Figure 4 shows the histogram of the repair times data along with
estimated PDF and the estimated HR function, which shows an upside down form.
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Table 3. Repair times (hour) for an airborne communication transceiver.

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5
0.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0
0.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0
0.5 8.8 9.0 10.3 22.0 24.5

Table 4. Results of estimating IW and some alternative models parameters by MLE and MMLE for
repair times data.

Model Method ^
α

^
λ AIC BIC KS

p-Value
CVM

p-Value
AD

p-Value

IW MLE 1.0127 1.1298 205.38 209.04 0.0807
0.9256

0.0510
0.8726

0.3570
0.8895

IW MMLE 1.0000 1.1362 205.39 209.05 0.0760
0.9530

0.0470
0.8962

0.3461
0.8994

Weibull MLE 0.8986 0.3337 212.93 216.59 0.1204
0.5170

0.1203
0.4956

0.8874
0.4214

Gamma MLE 0.9324 0.2585 213.86 217.51 0.14545
0.2848

0.17532
0.3216

1.1042
0.3066

Pareto MLE 0.2825 2.5981 209.90 213.56 0.1274
0.4442

0.0710
0.7478

0.6194
0.6289
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Figure 2. Comparison of MSE for biased and unbiased estimators of λ for different sample sizes and
parameter values.
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Figure 4. (Left) The histogram of the repair times data along with estimated PDF. (Right) The
estimated HR function, which shows an upside down form.

Moreover, three alternative models are fitted to the data and the MLE of the parameters
are computed and estimated.

4.2. Maximum Flood Levels of the Susquehenna River

Table 5 shows the maximum flood levels in millions of cubic feet per second of
the Susquehanna River at Harrisburg, Pennsylvania, over 20 years from 1890 to 1969.
Maswadah [24] and Jana and Bera [20] analyzed this data set using the IW model. Here we
compare the MLE and MMLE to estimate the IW parameters.
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Table 5. Maximum flood levels of the Susquehenna river (in millions of cubic feet per second).

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

The results of the analysis are summarized in Table 6. Based on the results, the KS,
CVM, and AD statistics show that the empirical model is closer to the MMLE estimate of
CDF. The results of fitting the data to three alternative models are included in the table
too and indicate a better fit for IW. The empirical and estimated CDF, histogram, and HR
functions are shown in Figures 5 and 6.

Table 6. Results of estimating IW and some alternative model parameters by MLE and MMLE for
maximum flood level data.

Model Method ^
α

^
λ AIC BIC KS

p-Value
CVM

p-Value
AD

p-Value

IW MLE 4.4132 0.3583 −28.19 −26.20 0.1560
0.7151

0.0546
0.8532

0.3104
0.9294

IW MMLE 4.1861 0.3594 −28.16 −26.17 0.1488
0.7678

0.0520
0.8692

0.2973
0.9395

Weibull MLE 3.5259 14.45 −22.53 −20.54 0.1987
0.4081

0.1400
0.4243

0.8215
0.4641

Gamma MLE 13.44 31.77 −26.62 −24.63 0.1641
0.6538

0.0712
0.7498

0.4503
0.7958

Pareto MLE 1.48× 10−7 0.4239 9.5989 11.59 0.4647
0.0003

1.0582
0.0014

5.053
0.0027
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Figure 6. (Left) The histogram of the maximum flood levels data and the estimated PDF. (Right) The
estimated HR function for this data set.

4.3. Duration of Remission Achieved by a Drug

Table 7 reports the duration of remission achieved with a drug used to treat 20 leukemia
patients. See Wu and Wu [25] and Jana and Bera [20] for more details. Here we investigate
whether the considered data set can be fitted to the IW model. We also compare MLE and
MMLE for estimating the parameters.

Table 7. Duration of remission achieved by a drug.

0.158 4.025 5.170 11.909 4.912 4.629 3.955 6.735 3.140 12.446
0.777 6.321 3.256 8.250 3.759 5.205 3.071 3.147 9.773 10.218

The results in Table 8 show that MMLE is a better fit based on the KS, CVM, and AD
statistics. Moreover, the results show that the IW describes the data better than Weibull,
gamma and Pareto models.

Table 8. Results of estimating IW and some alternative model parameters by MLE and MMLE for
duration of remission data.

Model Method ^
α

^
λ AIC BIC KS

p-Value
CVM

p-Value
AD

p-Value

IW MLE 2.7192 4.4427 95.89 97.89 0.1304
0.8428

0.0555
0.8478

0.4292
0.8176

IW MMLE 2.6292 4.4652 95.93 97.92 0.1195
0.9058

0.0503
0.8798

0.3884
0.8586

Weibull MLE 2.2434 0.0128 101.06 103.06 0.1957
0.3783

0.1291
0.4633

0.7696
0.5017

Gamma MLE 4.8300 0.7863 98.97 100.96 0.1792
0.4868

0.1140
0.5243

0.6937
0.5621

Pareto MLE 4.01× 10−7 6.1430 116.61 118.60 0.3934
0.0026

0.5500
0.0287

2.8692
0.0324

The empirical and estimated CDF, histogram, and HR functions are shown in Figures 7
and 8.
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Axioms 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

The empirical and estimated CDF, histogram, and HR functions are shown in Figures 
7 and 8. 

 
Figure 7. The empirical and estimated CDF for the duration of remission data. 

 

Figure 8. (Left) The histogram of the duration of remission data and the estimated PDF. (Right) The 
estimated HR function for this data set. 

5. Conclusions 
The IW model is a simple but sufficiently flexible model for analyzing data from sev-

eral scientific fields, such as degradation of mechanical components, cancer events, and 
events related to floods and earthquakes. In addition, several real-world data sets have 
demonstrated the applicability of the IW model. However, the main problem in this in-
vestigation was the estimation of the model parameters. In this study, a modified version 
of MLE is presented. The idea behind it is that the likelihood equation for the shape pa-
rameters of the model is biased; therefore, an unbiased version was defined. Some results 
of the modified estimator are presented here. The MLE and the modified estimator are 
compared using a simulation study. The simulation study confirmed that the modified 
estimator is better than the MLE with respect to the MSE. Finally, the IW was fitted to 
three real data sets and the MLE and the modified estimator were compared. Recently, 

4 6 8 10 12

0.0
0.2

0.4
0.6

0.8
1.0

x

Dis
trib

uti
on

 fu
nc

tio
n

MLE: a = 2.7192, b = 4.4427
MMLE: a = 2.6292, b = 4.4652

x

D
en

si
ty

0 2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35 MLE: a = 2.7192, b = 4.4427

MMLE: a = 2.6292, b = 4.4652

4 6 8 10 12

0.
20

0.
25

0.
30

0.
35

x

H
az

ar
d 

ra
te

 fu
nc

tio
n

MLE: a = 2.7192, b = 4.4427
MMLE: a = 2.6292, b = 4.4652

Figure 8. (Left) The histogram of the duration of remission data and the estimated PDF. (Right) The
estimated HR function for this data set.

5. Conclusions

The IW model is a simple but sufficiently flexible model for analyzing data from
several scientific fields, such as degradation of mechanical components, cancer events,
and events related to floods and earthquakes. In addition, several real-world data sets
have demonstrated the applicability of the IW model. However, the main problem in
this investigation was the estimation of the model parameters. In this study, a modified
version of MLE is presented. The idea behind it is that the likelihood equation for the
shape parameters of the model is biased; therefore, an unbiased version was defined.
Some results of the modified estimator are presented here. The MLE and the modified
estimator are compared using a simulation study. The simulation study confirmed that
the modified estimator is better than the MLE with respect to the MSE. Finally, the IW
was fitted to three real data sets and the MLE and the modified estimator were compared.
Recently, the maximum distance product and Bayesian function methods based on distance
products have become very popular among researchers in the field of lifetime analysis. In
some cases, the distance function product has been shown to have an advantage over the
likelihood function in both classical and Bayesian methods. Therefore, we propose to study
the estimation problems of the IW distribution using the maximum distance product to
estimate unknown parameters and the associated reliability and hazard rate functions. A



Axioms 2023, 12, 961 12 of 13

Bayesian method based on the likelihood and the product of the distance functions was
also proposed. For the Bayesian methods, we can use the Lindley approximation and the
Markov chain Monte Carlo technique, and find the approximate confidence interval of the
maximum likelihood and the maximum distance product, and the highest posterior density
of the Bayesian method based on the likelihood and the distance product. In addition,
more complex models such as high-dimensional survival data with measurement errors
are important in reliability engineering. All these and other topics remain open for future
research related to this study.
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Appendix A

Here, the expectations of Equations (10)–(12) are verified. For simplicity, let Y = Xα
i ,

where Xi follows the IW model. Then, the PDF of Y is

f (y) = λαy−2e−λαy−1
, y > 0.

Now,
E
(
X−α

i
)
= E

(
Y−1)

=
∫ ∞

0 λαy−3e−λαy−1
dy

=
∫ ∞

0 λαte−λαtdt = λ−α,

which shows (10). To verify (11), we can write

E
(
lnX−α

i
)
= E

(
ln Y−1)

=
∫ ∞

0 ln y−1λαy−2e−λαy−1
dy

=
∫ ∞

0 ln te−tdt− ln λα
∫ ∞

0 e−tdt
= ψ(1)− lnλα,

which confirms (11). Note that the third equation applies the transformation t = λαy−1 and∫ ∞
0 ln te−tdt = ψ(1) shows the digamma function. Similarly, to verify (12), we have

E
(
X−α

i lnX−α
i
)
= E

(
Y−1 lnY−1) = ∫ ∞

0 ln y−1λαy−3e−λαy−1
dy

=
∫ ∞

0 ln(tλ−α)λα(tλ−α)
3e−tλαt−2dt

= λ−α
(∫ ∞

0 t lnte−tdt− ln λα
∫ ∞

0 te−tdt
)

= λ−α(ψ(1) + 1− lnλα),

which confirms (12). The third equation obtains by the transformation t = λαy−1. Note
that

∫ ∞
0 t lnte−tdt = ψ(2) = 1 + ψ(1) by the digamma function properties.
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