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1. Introduction

If0 <Yy a2, <coand 0 < Y0, b2 < oo, then we have the well-known Hilbert's
inequality with the best value 7 as follows (cf. [1], Theorem 315):

© o amby ) ) ) 21/2
<n(Y Y B . (1)
mgln;lm"'” mgl mngl !

Assuming that 0 < [~ f?(x)dx < coand 0 < [;° g*(y)dy < oo, we still have the inte-
gral analogue of (1) named in Hilbert’s integral inequality as follows (cf. [1], Theorem 316):

./ooo ./om de‘iy <7 /Ooo 2 (x)dx /000 g (y)dy)'?, )

where 77 is the best value. (1) and (2), with their extensions, played an important role in
real analysis. Among them, the paper [2] studied the generalizations of (1) and (2), and the
papers [3,4] considered the properties of m-linear Hilbert-type inequality and two kinds of
Hilbert-type inequalities involving differential operators.

A half-discrete Hilbert-type inequality was provided in 1934 as follows: If K(x) (x > 0)
is decreasing, p > 1,% + % =1,0< @(s) = [ K(x)x*"ldx < oo, f(x) > 0, satisfying

0< /ff”(x)dx < oo,
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then (cf. [1], Theorem 351)

E”” 2/ n)f(0d) < (> / £P(x 3)

Some new generalizations and applications of (3) were provided by [5,6] in recent years.
In 2006, by means of the summation formula, Krnic et al. [7] gave a generalization of
(1) with the kernel as min) 1 (0 < A <4).In 2019, following [7], Adiyasuren et al. [8] gave

a generalization of (1) involving two partial sums. In 2016-2017, Hong et al. [9,10] obtained
some equivalent statements of the generalizations of (1) and (2) with the best values related
to a few parameters. Two similar results were provided by [11,12]. Among them, the
paper [11] considered multidimensional Hardy-type inequalities in Holder spaces, and
the paper [12] studied a new form of Hilbert’s integral inequality. To further understand
the theory of this field and cite some useful related papers, please see Yang’s book [13].
Recently, Hong et al. [14] gave a new half-discrete multidimensional inequality involving
one multiple upper limit function as an application.

In this article, following the idea of [7,8], by means of real analysis, the way of in-
troduced parameters and the transfer formulas, two new multidimensional Hilbert-type
integral inequalities with the nonhomogeneous kernel as H(||x||3!||y| |/)5‘2) (A1, A2 #0) are
given, which are some new extensions of the Hilbert-type integral inequalities in the two-
dimensional case. Some equivalent statements of the best possible constant factor and a
few parameters related to the new inequalities are provided. Furthermore, two corollaries

regard the kernel, represented as k, (||x| \21, [ly| |22) (A1, Az #0), are considered, and some
new inequalities in a few particular parameters are obtained.

2. Some Lemmas
In what follows, we assume that ip,jo € N: = {1,2,---},p > 1,% +% =1,
0'1,0’€RZ—( OOOO) ‘:Ul—i- )\1,)\27&006ﬁ€R+—(000)

1

ip x .
Ielli= (2 ") (= (oo ) € RY),
1=

™=

Jo ‘
lyllp == <'21 yi1F) (y= (-~ yp) € R0).
j=
Two functions f(x),g(y) > 0, satisfying

0< [ IxlFO MO0 ()ax <0and 0 < [ " [y |30~ g1 (y)dy < oo.

?
We also suppose that H(u) is a nonnegative measurable function in R, such that for
any 7 € R,
K(y) = / H(u)u"du > 0,
0

which means that there exists a positive constant T > 1, satisfying fOT H(u)u1du > 0.
If M > 0, ¢(u) (1 > 0) is a nonnegative measurable function, then the following
transfer formula was provided (cf. [2], (9.3.3)):

io X, Mlgl"lo(l) 0
. ) . v 2 Ydxy - dxj, = ———&2 Y15, (4
/ /{xER'E;O<Z;01(ﬁ)"‘<1} IP(ZZZ;(M) ) X1 Xig = ZOF(EU) / lp(u>u u 4)
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1
In particular, (i) in view of ||x]||, = M[Z;O L (3D, by (4), we have

1

Jdx = 1 MY () Y -
Jo 0l = g [ [ e 9IS ()

M
MioTo(1y /1 i vl Tl 0 ‘
= lim ﬁ/ (p(Mu%)uEO*lduv*A:Au ¢/ ¢(v)v" " dy; (5)
W (2) w0 Ir(2) 1
(ii) for p(u) = ¢(Mu %) = 0. > 545, by (4), we find

Mio ig( 1 . ; I‘i[) 1 1 ,
[ ol ar= 2T / " (b = [ () ta; ©
{xeRY,[[x| | <1} aioT () Jo ado=1T (10 Jo

_ Miorio(l) 1 1 g rio(l) 0o -
i dx =1 — 8 Mu« )y« ‘dy =—2- =140, 7
Fert oy 20l = fim St [ gty = )/ plo)ot @

M—yo00 0{101—'(%0) T [)(10*11—'(%0 J1

For given the main results, we obtain the following weight functions:

(io) . r'o(1/a) (o) ._ _To(1/p) ;
Lemma 1. Setting L, := 0 T (io/a) and L/3 = ST /B we have the following

expressions of the we1ght functions:

w(@y)i= [ H ) el = 10K e (g e v, 9)

o ]

Aot —i - K(o B ;
@(er, )= [ BRI Il Py = L TN (e RY). )

Proof. By (5), for M > 0, we have

M
wlo) = Jm MY o e HOTE G )
) AMo—ig
10 ) o
X ['21 (3)"] dxq - - - dx;,
=

. MioT(1/ el A A Ala—io i
- SR HO S g
— lim T'o(1/a) M/\lafo M/\lHyHAzu 1 )u 1 _1du

M—s0o®’0T (i /a)

(10)

A
Setting v = MM ||y |g2u71 in the above integral, for A1 > 0, we obtain

(1/“) Ao *© o—1
|)\ |DCZO 1F<ZO/ZX>|| ||[§ /O H(U)U dv/

namely, (8) follows. For A1 < 0, by (10), we still can obtain (8). In the same way, for A, # 0,
we obtain (9).
This proves the lemma. [

w(o,y) =
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Lemma 2. For b € R, we have the expressions as follows:

1 ( )
Ll ;:/ o Hbe lo dx = E b>0’ (11)
{xeRY ||x[la<1} 00,b <0

) 17 (io)
L= [ x|l odx = { La” >0, (12)
{xeRY,||x|[x>1} 00, b <0

Proof. By (6), for M > 0, we have

io

Ll f f{xER ZIO ) < a} [Z(%> ]

,' 0 1
. Morio(1/a) Mb—io [MT i Lo,l . MPTT (1/a) pam o, b1
= lim o i e duy = lim S—"22 (M e du.

M—sco 0T (ig/ ) f M—c0 zx’or(io/ﬂé) fO

O - lodxy - - - dx;,

For b > 0, we find L1 = %ngo); for b < 0, it follows that L1 = co. Hence, (11) follows.
In the same way, by (7), for M > 0, we have

io b
Xj \& 0
f f{xeR’O x)”‘> 1 }[Z(H) }
— lim Miorfo(1/a¢) _p Iof in 1du — lim M~ brfo(l/zx)fL u%h_ldu.
M—co &'0T(ig/a) M—oo a’T(ip/a) * me

s dxio

Forb > 0, we find L, = %Lﬁf“ ; for b < 0, it follows that Ly = co. Hence, we have (12).
This proves the lemma. [J

In view of (6) and (7), we give the following expressions:

Lemma 3. (i) If oy > o, then for 0 < ¢ < 07 — 0, we have

~ A (o1—5)—ig [ A Ay —jo |

I = s/ b / , H(||x||5! dy|dx = oo; 13

S . ety PRI e 3
(ii) If oy < o, then for 0 < € < 0 — 0y, we have

A Aa(o1—E)—jo [ A A M(o+E)—ip ]

I = s/ . 7 / . H(||x|[! 2)||x P2 P dy | dx = oo 14

e (verlyl[2>1) yllg | ieer <1y (Il Ty 1Tg*) x| | (14)

(iii) If oy = o (in (13)), then

M(o—£)—ig A A A2(0+E)—jo
Ie = Sf{xGRirO}HxHyZl}HxH“ b [f{yGRj0'||yH)‘2<1} H(||x||¢x1||y||ﬁz)||y||ﬁ q

> L é)lA(/\)‘+o(l)(s—>0+).

dyld
yldx 15)

Proof. (i) By (6), for M, A, > 0, we have
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A M(o1+5) A A A (o+E)—jo
Ot = Ty HORIR Gy
—HHM@+$I~J HOl e, () )
= [|X||a GRjO;0<Z§0:1(yMj)ﬁ§M*ﬁ} X||a j=1\M
S Bl £Y_i
XM ]O[ZJO (y]) ]ﬁ[ 2(t7+,4) ]O]dyl"'d}/jo
Ay Lnaoe+5)-jol fo_
=|x ||1x oty M- Ag;z?(oj(l/g) ﬁH(||x||21MAzuﬁ2)MAz(cr+ )=jo, B /Oug du
—00 0
3 Ae+3) - A 1 €
= el i MO (8 )i B b
— 00 0
A
Setting v = ||x]| |§1MA2uF2 in the above expression, in view of A, > 0, it follows that
A
/\] _ /\1((71 ||xHa1 (0'+§)—1
h(l|x][e") = || I | Hpr o, (16)
For Ay < 0, by (7), we obtain
A A(ot1E) A Ay ~Jo
) = 16y oy BRI I 1y
A
_ 1o+5 Masharsio  (YiyP P
=l @ g ek, ey HORIMEE G

ﬁ 1 £y_
« M2+ 5o [E;O . (ILJ) I glA2(c+7) Jo]dy1 - dyj,

Mlo+3) . mMioTio(1/ Ao+ E)—i %[Az(ﬂé)ﬂ’o] o _q

= Il M%wzm@%ﬁHMﬁHuuuthuﬂM4“”q>mu o
AM(op+£ Me+£) -~

= ||x]|| (1) lim w H(||x 1M)‘Zuf3 uﬁ Aale+) =1,
1 M ﬁ

M—c0 ﬁmr(]O//5

. A LT . . . .
Setting v = ||x||," M*2u# in the above expression, in view of A < 0, it follows that

Aq(
Wl = =gl [

In view of (16) and (17), we have

A
[lx[la

(U)U(U+§)_1dv. (17)

I :.E/ ) x| [ZMEo R (||| M) da
N [ R (D

tomonae) i Il 6
S el eI [ H(0)ol ) ol
T Al SR a1y 0
For A1 > 0 by (7), we have for M > 0 that

a. —Aq(c—op+e)
I, = M%L(“’) M—M(o—01+e)—ig [Zlo (%) ]M

o

I .f{xeR’E;Z?il () =M=}
MIER, (G ey
% [foM X2, (3 ] H(U)y((7+q) 1dv]dx1 .. 'dxio

— € L(]O) llm Miorio(l/“)

—Aq(c—0q+e)—ip
. — 13
|)\2| P Moo Dclor(io/ﬂc) M«

M—/\l (o—0op+€)—ig u

MMy
[/0 " H(0)0 ) o) du

A

— e 1) i MMt 0 (1)) s (et LN MMud (C+8)-1
= pLg Jim M S L [fo H(v)o" ) do]du
M
t:MEMT (jo) z i
= |/\1€/\2|Lﬁ 0) f t—(o—c1+e) f H dv]d
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For Ay <0, M > 0, by (7), we still have
€ (]0)/ / —A (0’—0’ +e)—i ip XX M
— I Ce . ) N MM 1 0 : ad 2 a
P {xeR0<, (3) <M~} i (M) ]

&

MMIZR, ()7 .
X [/O T H©)o D ol - dxg

>

M

. 1 lo 1) —i M)‘l = . ;
- LL(]O) lim M/ MM e—orte)—i w[/ u H(v)v(0+§)_1dv]u70_1du
|A2] P Moo aioT(ip/a) Jo
A
_ e (o) g MMt 01/ oM e g oMM (0+2)-1
= Darls I\/lllinoo «0T (ig /) o U [Jo H(v)o" "7’ do]du
M
t=MMuw (jo) 7 (io) + (U+
a \/\1£A2\L La f (7=t f H(v dv]dt-

Hence, we have

L> ﬁngngw/T (=a1+e) 1dt/ “ldo(T > 1), (18)

Satisfying fOTH(v)v(UJr%)_ldv > 0.Foro — 07 +¢ < 0,wehave [t~ (=178 =17t = oo,
in view of (18), we have I, = co. Hence, we have (13).

(ii) In the same way, by the symmetry, we have (14).
(iii) If o7 = o, then in view of (18), by Fubini theorem and Fatou lemma (cf. [15]),

we obtain
(jo) 7 (io)
.Slil‘(r)}rlE N elir(?* ‘/\1)‘2| L La
<A 1[f5H<v> FO N doldt + [ [ H(o)o!  dolt)
= lim i LV L LG H)o " o+ [ () t-s-ldoH(v)v(”*%)‘ldv]
-1 ) —&)—1
= \/\11)\2|L/(5]0) (10)81;%1[ H(v ( 2 dv+ [ H(v)v(a v do]
1 (o) lo / o+g / =15y _ 7o)y (o) K(o)
|A1A2|L lim H(v)v o+ lim H(v)v” dv) = L, Lg EE

e—0t+ e—0t

namely, (15) follows.
The lemma is proved. [J

By Lemma 1, we obtain the following main inequality:

Lemma 4. If K(7) € R4 (7 € {07,0}), then we have the following inequality

, 1 , 1
= Jyio Sy H IIXIIalIIyIIAZ)f(X)g(y)dxdy< (g0 Ky ({0 Ky

o 1 (19)
%[ xR0 fr ()] [ijg||y\|7§fﬂ*“">*10gq<y>dyr'.

Proof. By Holder’s inequality (cf. [16]), we have

[y (271 0P (\yo=ig)/q

1)1 (AMo—ig)/q f(x)”‘|‘|;||||(lj\201—]0)/pg(y)]dxdy
B

A A
I= fng fR"g H([|x[[2* [lyl15*)]
A201—jo

< Uy Uy HOII2 9113 >|'|'“ dy)fP (x)dx} 7



Axioms 2023, 12,956 7 of 13

Aqo—i
[[x]la?" "

1
X {fRJE UR? H(||x||21Hyng)de}gq(y)dy}q
p

==

= [0 @, 0)| ][~V ()]
+

==

<o @@ 0)

If (20) pertain to the form of equality, then (cf. [16]), there exist constants A and B,
satisfying they are not both zero, and

Iyl 52" x| .
- F  fP — q H 0 0
||x||£c7\1f7*i0)(l’*l) X ||y||/(5/\2f71*]'0)(q*1)g <y)a.€'mR+ x R+.

Assuming that A # 0, there existsa y € R , such that

O\ ) i Bgf e
][5 OND o Almgq(ifﬁljw"ﬂ'a”” " 0acinRY,
B

which contradicts that

0< /',- [l [FE0 M0 21 () dx < oo,
R
In fact, by (11) and (12), for b = A1(0 — 07) € R, we have

b—ig _/ b—io b—ig 5.
| x dx = . X dx+/ . X dx = oo.
/R’E” o {xeR'E;HxHaSl}H o {xGR'E;HxHazl}H o

By (8) and (9), we obtain (19).
This proves the lemma. [J

Remark 1 (i) In particular, for ¢ = 10 in (19), we have & = o,
oV Vi
0< [ IR0 )ax < 0,0 < [ IWIEY g )y < o
+ +

and the following:

By

1
(.. A A (o) 1 yp 7o) 1
I= le+0 fR'f H(\|x\|,xl||y||/52)f(x)g(y)dxdy< (Lﬁo |/\2‘) (Ly’ |)\1|) K(o)

. . 1 . . 1 (21)
X[ oo Il [EO71D 70 2 ()] [ gy Nyl 57027 g7 (y)dy) .
+ +
(if) By Holder’s inequality (cf. [16]), we still have
0 1,0
0< K(@') = K(% —|—1%) :lfo H(u)up""q 1du
01— o—
= [P Hw) (w7 ) (w7 )du
o 1 o 1 1 1
< ([ Hu )" ([ H@u )" = (K@) (K@)T <o @2)
0 0

Now, we use Lemmas 2 and 3 to show the best value in the key inequality (21).

. 1 . 1
Lemma 5. For K(0) € R4, (Lfgj[’) I)%z\) g (LSO)%) TK (o) in (21) is the best value.
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80f13
Proof. For any € > 0, we set
. A0+ 5) =
=1 el <1 T i <
fe(x) =13 mle-5)=i gely) == Ve b
7 e > 1, 0. llyllg* > 1.
By (11) and (12), we have
o L
L O PN [
. |)‘1‘€7i0d /\ O
= f{XERIE;I\XIIa§1}||x||a/\ ‘ x, A < . ngo)l
Jixera, =1y x| M, A >0 P
+i11xls=
qGo—0)—jo ,q _ Aoe—io s 1o
S IRl ydy = /{yeR@;Hngq}||y||ﬁ ty= o tf

If there exists a positive constant

Polral” 2 Al
. 1 . 1
such that (21) is valid as we replace (Lg(’) i /\12‘ )P (L,EJO) i Al1| )"K(c) by M, then in particular,

by (15), we have

(io) 1 (jo) K(7) _ M| [y A
WL S e s k= [ [ HORIR )£ (g w)edxdy

1 1
o . . ,
< eM[ [ 1|80 fer ()] [l e (y)ay)”

1 1
_ (fo) 1 P 7o) 1 N4
=ML 5" (L )

For ¢ — 07, it follows that

is the best possible constant factor of (21).
This proves the lemma. [

3. Main Results and Two Corollaries

Theorem 1. For p > 1, % + % = 1, if there exists M (> 0), satisfying the following inequal-
ity holds:

= Jio Jp HUIIR 915 F(0)g )y o

==

) , 1 . .
< M{J [[ell27 7 ()] [ Nyl 879y

7
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then we have 04 = 0 and M > 0. Hence, K(¢) € Ry and

is the best value of (24) (for o7 = 0).
Proof. If 07 < o, then for any € > 0, we set

_ 0,[]x|at < 1
fe(x) := A(al—g)l—io

A
[1%[|a Alxllat =1,

/\2(0’ /\2
~ <1,
RPN ||y|| <

0, [yl

By (8), (18) and (19), we have

w=Te=ef [ HORIRIEIF00Rr)dxdy

Q=

1
ig—A101)—ip 71 » o—A
< M [ [l [EOTM VTR )] [ Nyl [F g ()

. 1
x|l dx) 7 (f g ldy)? <

v
1
. q
werbiz<ny Y1ls

= eM(J g5 |

which is a contradiction.
If ;71 < 0, then for any € > 0, we set

(7+
ﬁ(::);:{ elle™ 770 i <1,
0,||x||“ >1,
A
o) 0, [lyll5* <1,
ely) = Aa(e=5)=i
lylly " Iyl > 1.

By (9), (18) and (19), in the same way, we still obtain a contradiction.

Hence, we have o7 = 0.

For o7 = o in (19), replacing f(x)(resp.g(y)) by fe(x)(resp.ge(y)) in Lemma 5 and
following the proof of Lemma 5, for K(c) > 0, we still find

1 1
Go) L P plo) 1 7
0<(Lﬁ |)\2|) (Ly |/\1|) K(o)< M < oo,
which follows that
1 _1 1 _1
i p q
0<K(0) < M(Lg")—Mz') (L&’O)—’M) < oo

By Lemma 5, (L°
(for o = 0).
This proves the theorem. []

=
~|
N |

Theorem 2. For K(17) € Ry (7 € {0,01}), we have the following equivalent statements:
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(i) Both (K(al))% (K(O’))% and I((%1 + ) are independent of p, q;

q
unmm»ﬂwwﬁsm%+gx (25)
(iii) o =03
. 1 X 1
(iv) The constant factor (L/(gj0> K|§g1‘) )" (L,(Xl(’) &‘fl)) 7 in (19) is the best value;

A
(v) there exists a constant M, such that (24) holds.

Proof. (ii)=-(iii). By (25), it follows that (22) protains the form of equality. Then, there
exist A and B, satisfying they are not both zero and Au”1~1 = Bu’~la.e. in Ry (cf. [16]).
Supposing that A # 0, we have u177 = %a.e. in Ry, and then 07 — 0 = 0, namely, o7 = 0.

(iii))=(iv). In view of Lemma 5, we obtain (iv).

. 1 . 1
(iv)=>-(ii). If the constant factor (LgO) %) g (LSZO) %) 7 in (19) is the best value, then
by (21) (for o = 0), we have

1 1 F 1
(L(JO)K(Ul))p(L(Io)@)q < (L) 1 )”(Lyo)i)q[((a) €R,,

Pl “ Ml PNl A1
namely, (25) follows. Hence, it follows that (ii) < (iii) < (iv).
(i)=(ii). By (i), we find
(K(e1))? (K(0))7 = lim lim (K(e1))7 (K(0))1 = K(©),
p—roog—1
and then, in view of Fatou lemma (cf. [15]), we have
(K(o1))? (K(@))T= K(¢) = K(lim 27 4 o) < imK(2 =T v o) = k(2 + ),
p—oo p—oo p q

namely, (25) follows.

(iii)=-(i). For 01 = o, both (K(0y))? (K(U))% and K(% + %) equal K(c), which are
independent of p, 4. Hence, we have (i) (ii) < (iii) < (iv).

(v)=(iii). By Theorem 1, for K(17) € R4 (y = 0,0)1, we still have 07 = 0.

1 1

(iii)=(v). If iy = 0, then by Lemma 5, we set M > (Lgo) ﬁ) g (L,ng) ﬁ)ﬁK(a), and
then (24) holds. Hence, we have (iii)<(v).

Therefore, we have (i)< (i) < (iii) < (iv) < (V).

This proved that theorem. [

Replacing Aq to —A1 in Theorems 1 and 2, setting H(v) = k) (1,v), where k) (u,v) isa
homogeneous function of degree —A, such that ky (tu, tv) = t~*k; (u,v) (t,u,v > 0), and

Ky(n) == /0 ka(1,w)u tdu > 0(p = A — p,0).

A—p +

Forp=A-o0,0="F+5a=A~0= % + %,replacing ||x||2** £ (x) to f(x), by

calculation, we have
Corollary 1. If there exists M(> 0), such that the following inequality holds:
A A
Jrio Jeio FaClIx[I&" Iyl 15%) f ()8 (y) dxdy
+ TR+

< MU 1l PEME0 oy 21 [ (p1al0—A20) o g 21T (26)
< M[Jj 11 £ Il ()],
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. 1 . 1
then we have y + 0 = A, and (LgO) I?%zl) ! (LS:O) ﬁ) "Ky(0) (€ (0, M]) is the best possible
constant in (26) (for y + o0 = A).

Corollary 2. For K, (1) € Ry (17 € {(T A — u}), the following statements are equivalent:

(I) Both (K/\(/\—y))%(K (o ))‘i and K)\(A k + ) are independent of p, g;
() (K3(A = )7 (Ka(0))F <Kn (S L4 D) @)

() p+0 = A;

. 1 . 1
(IV) the constant factor (LEO) KA ) ( L) Kalo) )? in the following inequality

T T a2 ) £ (<) )y

. 1 , 1
< (LESJO) KA‘(//\\J,”) ) r (L,EZO) K‘A/\(I“T) ) q (28)

. i 1 L 1
e O T T ] e (O

is the best possible;
(V) there exists a constant M, such that inequality (26) holds.

Example 1. Setting h(u) = k(1,u)A (A > 0;u > 0), we find

(1+ (1+u)*
K(n) = fw“" du=B(n,A—1n) ERL(0<n <A)
H(quluyu ) %,kA(IIxIIA%IIyIIAZ):%-
: A+ ) R

Example 2. (i) For A,y > 0, we set H(u) =k, (1,u) = =% (u > 0). We find

1—urtr
_ T Y2 TA TA2
H(|Ix | yll) = : L'ﬁ”f;”y”mwwlixlia'llyllw ”HHM Mmmz
L= Il [yl [ =yl

In particular, for v = A, we have

1 A 1
H(|Ixl[a" lyl[g) = gk R ) = ——5 o
g + [l [y g™ [lxl[a™ + 11yl
(ii) In view of (cf. [17]):
1 & 1
coty = —+ Z x+nk)(xe(0,71)),
for b € (0,1), by Lebesgue term by term theorem (cf. [14], we find
co b1 [e°) hl
Ah5—10£1[ud“:fo 1b_1ub
b1 1w fo T=dv = [ uooljil du
fl Yy (ukb-1 Mkfh)du =y fol(ukerfl — k=YY dy
k=0 k=0

— 1 _ 1 1 1
Z (55 — w1=s) =7l L (5= + k)]

= 7TCOt7Tb €R:=(—o00,0).
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Note . For b € (0,3), Ay > 0;forb € (3,1), Ay < 0; Ay = 0.
(iii) For # € (0, A), by (ii), we obtain (cf. [18])

K(n) = Ka(n) = O”H(u)u'i_ldu: © 1-u¥_,n-1gy,

0 1-— /\H

o nty
v:u_/\ﬂ 1 00 Aty ldU oo U)L+7 dU
= I\ Jo 1= 0 1o

= & [cot(%) — cot( L) |
= 7 [cot(Aﬂ) + cot( =5 n(’\ ) )} € R;.

In particular, for v = A, we obtain

K() = K (1) = 57 cot(Gh) +eor( | = T
A

We can use Examples 1 and 2 as the particular kernels to Theorems 1 and 2 and
Corollaries 1 and 2.

4. Conclusions

In this article, following the idea of [7,8], by means of the technique of real analysis,
the way of introduced parameters, and a few useful formulas, two new multidimensional
Hilbert-type integral inequalities with the nonhomogeneous kernel as

(|||l ly[[57) (A1, A # 20)

are given in (19) and (24), which are some new extensions of the Hilbert-type integral
inequalities in the two-dimensional case. Some equivalent statements related to the two
inequalities, the best value and several parameters are provided in Theorem 2. Two

corollaries about the homogeneous kernel as k) (||x| |£1, [yl |£2) (A1, A # 20) are given in

Corollaries 1 and 2, and some new inequalities in particular parameters are obtained in
Examples 1 and 2.
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