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Abstract: The classical Belinskii theorem implies that any sufficiently regular function µ(z) on the
extended complex plane Ĉ with a small C1+α norm generates via the two-dimensional Cauchy integral
a quasiconformal automorphism w of Ĉ with the Beltrami coefficient µ̃ = µ+O(‖µ‖2). We consider µ

supported in arbitrary bounded quasiconformal disks and show that under appropriate assumptions
of µ, this automorphism explicitly provides the basic curvelinear quasi-invariants associated with
conformal and quasiconformal maps, advancing an old problem of quasiconformal analysis.
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1. Preliminaries
1.1. Preamble

An important, open problem in geometric complex analysis establishing algorithms for
explicit or approximate determination of the basic curvilinear and analytic quasi-invariant
functionals intrinsically connected with conformal and quasiconformal maps, such as their
Teichmüller and Grunsky norms, Fredholm eigenvalues and the quasireflection coefficients
of associated quasicircles. It is important also for the potential theory. The investigations in
this field of complex analysis were originated by the classical works of Ahlfors, Schiffer,
Kühnau, Schober and continued by many other mathematicians. However, the problem
has not been solved completely even for convex polygons.

This problem has intrinsic interest also in view of its connection with the geometry
of Teichmüller spaces and with the approximation theory. It is crucial also for numerical
aspects of quasiconformal analysis.

The present paper is connected with the author’s investigations in this direction
(see, for example, [1]) and considers the classes of univalent holomorphic functions not
admitting the canonical Teichmüller extremal extensions. We give a complete solution of
the indicated problem for some natural broad classes of Beltrami coefficients supported
in the generic quasiconformal domains. All previous results were obtained only for the
canonical unit disk D = {|z| < 1}.

Our approach is different and involves the deep results from Teichmüller space theory
and complex differential geometry.

1.2. Some Invariants and Norms of Univalent Functions with Quasiconformal Extension

Consider the collection ΣQ of univalent functions on the disk D∗ = {z ∈ Ĉ : |z| > 1}
with expansions

f (z) = z + b0 + b1z−1 + . . .
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having quasiconformal extensions across the boundary unit circle S1 = ∂D∗ to the whole
Riemann sphere Ĉ = C∪ {∞}.

To have compactness of this class in the topology of locally uniform convergence on
C, we add the third normalization condition f (0) = 0.

The Beltrami coefficients of these extensions are supported in the unit disk D and run
over the unit ball

Belt(D)1 = {µ ∈ L∞(C) : µ(z)|D∗ = 0, ‖µ‖∞ < 1}.

Each µ ∈ Belt(D)1 determines a unique homeomorphic solution to the Beltrami equa-
tion ∂w = µ∂w on C (quasiconformal automorphism of Ĉ) normalized by the assumptions
wµ ∈ ΣQ, wµ(0) = 0.

One of the important invariants intrinsically connected with univalence is the Schwarzian
derivative

Sw(z) =
(w′′(z)

w′(z)

)′
− 1

2

(w′′(z)
w′(z)

)2
, z ∈ D∗.

As it is well known (see [2]), these derivatives belong to the complex Banach space
B = B(D∗) of hyperbolically bounded holomorphic functions in the disk D∗ with norm

‖ϕ‖B = sup
D

(|z|2 − 1)2|ϕ(z)|.

In the case of functions f µ ∈ ΣQ, their Schwarzians S f µ run over a bounded domain
in B modeling the universal Teichmüller space T. The space B is dual to the Bergman
space A1(D∗), a subspace of L1(D∗) formed by integrable holomorphic functions (quadratic
differentials ϕ(z)dz2) on D∗. Note that ϕ(z) = O(z−4) near z = ∞. For the needed results
from Teichmüller space theory, see [3–5].

The importance of the differential invariant Sw(z) in mathematics is essentially caused
by its Moebius invariance. The chain rule for Schwarzians yields

Sw2◦w1(z) = Sw2(w1)(w′1(z))
2 + Sw1(z),

which, for a fractal linear map σ(w), implies Sσ◦w(z) = Sw(z).
The Taylor coefficients bj of f ∈ ΣQ reflect the fundamental intrinsic features of these

functions following their conformality. There is also another important coefficient collection
naturally prescribed to normalized univalent functions in the disk. Namely, one defines for
any f ∈ ΣQ its Grunsky coefficients αmn from the expansion

log
f (z)− f (ζ)

z− ζ
=

∞

∑
m,n=1

αmnz−mζ−n, (z, ζ) ∈ (D∗)2, (1)

where the principal branch of the logarithmic function is chosen. These coefficients satisfy
the inequality ∣∣∣ ∞

∑
m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1 (2)

for anysequence x = (xn) from the unit sphere S(l2) of the Hilbert space l2 with norm

‖x‖ =
(∞
∑
1
|xn|2

)1/2; conversely, the inequality (2) also is sufficient for the univalence of a

locally univalent function in D∗ (cf. [6,7]).
The minimum k( f ) of dilatations k(wµ) = ‖µ‖∞ among all quasiconformal extensions

wµ(z) of f onto the whole plane Ĉ (forming the equivalence class of f ) is called the
Teichmüller norm of this function. Hence,

k( f ) = tanh dT(0, S f ),
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where dT denotes the Teichmüller–Kobayashi distance on the space T. This quantity
dominates the Grunsky norm

κ( f ) = sup
{∣∣∣ ∞

∑
m,n=1

√
mn αmn( f )xmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

by κ( f ) ≤ k( f ). For most functions f , we have the strong inequality

κ( f ) < k( f )

(moreover, the functions satisfying this inequality form a dense subset of Σ, see [8]),
while the functions with the equal norms play a crucial role in many applications of
quasiconformal analysis. Thus, it is important to find some broad collections of univalent
functions with κ( f ) = k( f ).

These norms coincide only when any extremal Beltrami coefficient µ0 for f (i.e., with
‖µ0‖∞ = k( f )) satisfies

‖µ0‖∞ = sup
{∣∣∣ ∫∫

D
µ0(z)ψ(z)dxdy

∣∣∣ : ψ ∈ A2
1(D), ‖ψ‖A1(D) = 1

}
= κ( f ) (z = x + iy). (3)

Here, A1(D) denotes the subspace in L1(D) formed by integrable holomorphic func-
tions (quadratic differentials ψ(z)dz2 on D, and A2

1(D) is its subset consisting of ψ with
zeros of even order on D, i.e., of the squares of holomorphic functions (see [9–11]). Note
that, due to [9], every ψ ∈ A2

1(D) has the form

ψ(z) =
1
π

∞

∑
m+n=4

√
mn xmxnzm+n−2 (4)

and ‖ψ‖A1(D) = ‖x‖l2 = 1, x = (xn).
Note that all notions introduced above are also valid for the univalent functions F(z)

in the unit disk D normalized by F(0) = 0, F′(0) = 1 (extending quasiconformally onto
D∗). Their inversions fF(z) = 1/F(1/z) belong to ΣQ and are zero free on D∗. The Grunsky
coefficients of these functions (and other related notions) are defined similar to (1) and
κ(F) = κ( fF), k(F) = k( fF). But it is technically more convenient to deal with the class ΣQ.

1.3. Generalization of Grunsky Inequalities

The method of Grunsky inequalities has been generalized in several directions, even to
bordered Riemann surfaces X with a finite number of boundary components (see [7,12,13]). We
consider these inequalities in unbounded simply connected hyperbolic domains, for which
a quasiconformal variant of this theory has been developed in [10].

Let L ⊂ C be an oriented bounded quasicircle separating the points 0 and ∞. Denote
its interior and exterior domains by D and D∗ (so 0 ∈ D, ∞ ∈ D∗). Then, if δD(z) denotes
the Euclidean distance of z from the boundary of D and λD(z)|dz| is its hyperbolic metric
of Gaussian curvature −4, we have

1
4
≤ λD(z)δD(z) ≤ 1

(the right-hand inequality follows from the Schwarz lemma and the left from the Koebe
one-quarter theorem).

For such a domain D∗ 3 ∞, one must use instead of (1) the expansion

− log
f (z)− f (ζ)

z− ζ
=

∞

∑
m,n=1

βmn

χ(z)m χ(ζ)n ,
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where χ denotes a conformal map of D∗ onto the disk D∗ so that χ(∞) = ∞, χ′(∞) > 0.
By Milin’s univalence theorem [7], generalizing the Grunsky result for the disk, a holomor-
phic function

f (z) = z + const+O(z−1)

in a neighborhood of z = ∞ is extended to a univalent function on the domain D∗ if and
only if its coefficients βmn satisfy

sup
{∣∣∣ ∞

∑
m,n=1

βmn xmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
≤ 1.

Accordingly, the generalized Grunsky norm is defined by

κD∗( f ) = sup
{∣∣∣ ∞

∑
m,n=1

βmn xmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

.

The coefficients βmn relate to holomorphic functions ϕn(z) in D whose derivatives
ϕ′n(z) form a complete orthonormal system in A2(D); in the case of D = D, one can use
the powers zn, n = 0, 1, . . . .

We now consider the class ΣQ(D∗) of univalent functions in domain D∗ with expansions

f (z) = z + b0 + b1z−1 + . . .

near z = ∞, admitting quasiconformal extensions onto the complementary domain D.
Similar to the above, we subject these extensions to f (0) = 0. Their Beltrami coefficients
run over the ball

Belt(D)1 = {µ ∈ L∞(C) : µ(z)|D∗ = 0, ‖µ‖∞ < 1}.

The corresponding Schwarzian derivatives S f belong to the Banach space B(D∗) of
holomorphic functions on D∗ with finite norm

‖ϕ‖B(D∗) = sup
D∗

λD∗(z)|ϕ(z)|

and fill its bounded subdomain modeling the universal Teichmüller space with the base
point D∗.

For each µ ∈ Belt(D)1, we consider its Teichmüller equivalence class [µ] consisting
of µ ∈ Belt(D)1 such that the maps f ν coincide with f µ on the boundary ∂D of domain
D. These classes are in one-to-one correspondence with the points of the space T, and
the quotient space Belt(D)1/ ∼ with the defining projection µ 7→ [µ] is biholomorphically
equivalent to T.

The extremal Beltrami coefficients µ0, minimizing the dilatation ‖µ‖∞ in the equiva-
lence classes [µ], play a crucial norm in geometric function theory, Teichmüller space theory,
numerical mathematics, etc.

There is a well-known criterion for extremality given by the Hamilton–Krushkal–
Reich–Strebel theorem. We present this theorem and its relation to the Grunsky norm via
the following theorem.

Proposition 1. A coefficient µ0 ∈ Belt(D)1 is extremal in its class (minimizes the dilatation
‖µ|∞) if and only if

‖µ0‖∞ = sup
{∣∣∣ ∫∫

D
µ0(z)ψ(z)dxdy

∣∣∣ : ψ ∈ A1(D), ‖ψ‖A1 = 1
}

(z = x + iy), (5)

while the equality κD∗( f µ) = k( f µ) is valid if and only if

‖µ‖∞ = sup
{∣∣∣ ∫∫

D
µ(z)ψ(z)dxdy

∣∣∣ : ψ ∈ A2
1(D), ‖ψ‖A1(D) = 1

}
. (6)



Axioms 2023, 12, 944 5 of 15

Here, A1(D) denotes the subspace in L1(D) formed by integrable holomorphic func-
tions (quadratic differentials ψ(z)dz2 on D, and A2

1(D) is its subset consisting of ψ with
zeros of even order on D, i.e., of the squares of holomorphic functions.

In addition, if the equivalence class of f is a Strebel point of the space T with base
point D∗, which means that this class contains the Teichmüller extremal extension f k|ψ0|/ψ0

with ψ0 ∈ A1(D), then necessarily, ψ0 = ω2 ∈ A2
1 (cf. [9,10,14,15]).

An important fact is that the Strebel points are dense in any Teichmüller space (see [4]),
which yields, in particular, that the univalent function of any f (z) on D is approximated in
the strong topology of the space T by functions having qusiconformal extensions to Ĉ and
constant regular dilatation in the complementary domain.

In the case of the generic quasidisk D, the representation of elements of the space
A2

1(D) is much more complicated than (4). As was established in [10], every ψ ∈ A2
1(D) is

of the form

ψ(z) =
1
π

∞

∑
m,n=1

xmxn P′m(z)P′n(z)dxdy,

where ‖x‖l2 = ‖ω‖L2 (here x = (xn)) and Pn are well-defined polynomials arising from
the expansion

1
w− z

=
∞

∑
1

P′n(w)ϕn(z),

with ϕn = χn (given above); the degree of Pn equals n. It coincides with the representa-
tion (4) for ψ ∈ A2

1(D).
Even the case of ellipse is complicated. This case has its intrinsic interest, because for

an ellipse, the orthonormal basis {ϕn} indicated above can be given explicitly using the
Chebyshev polynomials of the second kind. We shall describe this example in more detail
in Section 3.

1.4. Substantial Boundary Points and Teichmüller Extremality

Assume that µ0 ∈ Belt(D)1 is extremal in its class but not of the Teichmüller type.
A point z0 ∈ ∂D is called substantial (or essential) for µ0 if for any ε > 0, there exists a
neighborhood U0 of z0 such that

sup
D∗\U0

|µ0(z)| < ‖µ0‖∞ − ε;

so the maximal dilatation k(wµ0) = ‖µ‖∞ is attained on D by approaching this point.
In addition, there exists a sequence {ψn} ⊂ A1(D) such that ψn(z) → 0 locally

uniformly on D but ‖ψn‖ = 1 for any n, and

lim
n→∞

∫∫
D

µ0(z)ψn(z)dxdy = ‖µ0‖∞.

Such sequences are called degenerated.
The image of a substantial point is a common point of two quasiconformal arcs, which

can be of the spiral type.
The Teichmüller extremal Beltrami coefficients do not admit degenerated maximizing

sequences and substantial points (see [4,15]).
As was mentioned above, the equivalence classes [µ] containing the Teichmüller

coefficients correspond to the Strebel points of the space T and are dense on this space.

1.5. Quasiconformal Reflections and Fredholm Eigenvalues

The Teichmüller and Grunsky norms are intrinsically connected with the quasiconfor-
mal reflections, Fredholm eigenvalues and other quasi-invariants of quasiconformal curves.
We briefly outline the main notions and results; for the details, see [8,11,16–18].
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The quasiconformal reflections (or quasireflections) are the orientation-reversing qua-
siconformal homeomorphisms of the sphere Ĉ, which preserve point-wise some (oriented)
quasicircle L ⊂ Ĉ and interchange its interior and exterior domains.

In other words, quasireflections are topological involutions of the sphere Ĉ whose
fixed Jordan curves are the quasicircles.

One defines for L its reflection coefficient

qL = inf k( f ) = inf ‖∂z f /∂z f ‖∞,

taking the infimum over all quasireflections across L. Due to [14,19], the dilatation

QL = (1 + qL)/(1− qL) ≥ 1

is equal to the quantity
QL = (1 + kL)

2/(1− kL)
2,

where kL is the minimal dilatation among all orientation-preserving quasiconformal auto-
morphisms f∗ of Ĉ carrying the unit circle onto L, and k( f∗) = ‖∂z f∗/∂z f∗‖∞.

The reflection with dilatation QL is extremal. A remarkable and very useful fact estab-
lished by Ahlfors is that any quasicircle also admits a Lipschitz-continuous quasireflection
with some coefficient C(qL) (see [19]).

The Fredholm eigenvalues ρn of an oriented smooth closed Jordan curve L ⊂ Ĉ are
the eigenvalues of its double-layer potential, or equivalently, of the integral equation

u(z) +
ρ

π

∫
L

u(ζ)
∂

∂nζ
log

1
|ζ − z|dsζ = h(z),

where nζ denotes the outer normal and dsζ is the length element at ζ ∈ L. These values
are crucial in many applications in various fields of complex analysis, potential theory,
continuum mechanics and physics (see [1,18,20–23]).

The least positive eigenvalue ρL = ρ1 is naturally connected with conformal and
quasiconformal maps and can be defined for any oriented closed Jordan curve L by

1
ρL

= sup
|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

,

where G and G∗ are, respectively, the interior and exterior of L; D denotes the Dirichlet
integral, and the supremum is taken over all functions to be u continuous on Ĉ and
harmonic on G ∪ G∗.

The known basic tools for quantitative estimation of the Freholm eigenvalues ρL of
quasicircles is given by Ahlfors’ inequality

1/ρL ≤ qL,

where qL denotes the minimal dilatation of quasireflections across L [16], and by the
fundamental Kühnau–Schiffer theorem [11,24], which states that the value ρL is reciprocal to
the Grunsky norm κ( f ) of the Riemann mapping function of the exterior domain of L.

Unfortunately, the Ahlfors inequality gives only a rough upper bound for ρL, while
the application of the Kühnau–Schiffer result requires knowledge of the exact value of
the Grunsky norm. Thus, the explicit or even approximate determination of these quasi-
invariants remains an important open problem.

For all functions f ∈ SQ (i.e., univalent in the disk D∗) with k( f ) = κ( f ), we have the
exact explicit values

q f (S1) =
1

ρ f (S1)
= κ( f ). (7)
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We do not touch here the topics concerning the quasireflections across quasi-intervals
or across their finite collections, to which the notion of Fredholm eigenvalues can also
be extended.

1.6. Metrics with Negative Generalized Gaussian Curvature

We shall apply the conformal metrics ds = λ(t)|dt| on the disk D with λ(t) ≥ 0 (called
also semi-metrics), having the negative generalized Gaussian curvature. Such a curvature
is defined for an upper semicontinuous Finsler metric ds = λ|dt| in a domain Ω ⊂ C by

κλ(t) = −
∆ log λ(t)

λ(t)2 , (8)

where ∆ is the generalized Laplacian

∆λ(t) = 4 lim inf
r→0

1
r2

{ 1
2π

∫ 2π

0
λ(t + reiθ)dθ − λ(t)

}
(provided that −∞ ≤ λ(t) < ∞).

Note that this is equivalent to regarding the differential operator ∆ = 4∂2/∂z∂z in the
distributional sense.

Similarly to C2 functions, for which ∆ coincides with the usual Laplacian, one obtains
that λ is subharmonic on Ω if and only if ∆λ(t) ≥ 0; hence, at the points t0 of local
maximum of λ with λ(t0) > −∞, we have ∆λ(t0) ≤ 0. This gives rise to the sectional
holomorphic curvature of a Finsler metric on a complex Banach manifold X, which is
defined as the supremum of the curvatures (8) over appropriate collections of holomorphic
maps from the disk into X for a given tangent direction in the image.

As is well known [25,26], the holomorphic curvature of the Kobayashi–Teichmüller
metric KT(x, v) of the universal Teichmüller space T equals −4 at all points (x, v) of the
tangent bundle T (T) over T. Instead, the holomorphic curvature of metric λκ generated
on D by the Grunsky Finsler structure satisfies the inequality ∆ log λ ≥ 4λ2, where ∆ is
again the generalized Laplacian (see [8]).

We also shall apply the metrics whose generalized curvature satisfies a more gen-
eral inequality

∆ log λ ≥ Kλ2

with K = const > 0.

1.7. Basic Underlying Theorems

First of all, we essentially use the following remarkable result established by P.P.
Belinskii [27], which gives rise to other investigations.

Theorem 1 ([27]). Let a function µ(ζ) be defined on the plane C and C1-smooth, up to the jumps
on a finite number of closed smooth curves. Let

|µ(ζ)| < ε, |∂ζµ| < ε, |∂ζ µ| < ε,

and let either µ(1/ζ) or (ζ/ζ)2µ(1/ζ) satisfy, in a neighborhood of the point ζ = 0, the same
assumptions as the function µ(ζ) in the finite points. Then, for sufficiently small ε > 0, the function

w(z) = z− z(z− 1)
π

∫∫
|ζ|<∞

µ(ζ)dξdη

ζ(ζ − 1)(ζ − z)
(9)

provides a quasiconformal homeomorphism of the whole plane Ĉ, whose Beltrami coefficient is

µ̃ = µ + O(‖µ‖2
∞), (10)
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and this map differs from the map with Beltrami coefficient µ(z) and the same normalization up to a
quantity of order ε2 uniformly in any bounded domain.

This theorem plays a crucial role in the variational calculus for quasiconformal maps.
Its original proof in [27], especially of the estimate (10), is complicated and relates on
the deep results from geometric function theory and from the potential theory. Now
this proof can be essentially simplified and shortened by including the map (9) into a
holomorphic motion of the Riemann sphere Ĉ = C

⋃{∞} and applying the lambda lemma
for such motions.

Theorem 1 involves only sufficiently smooth Beltrami coefficients µ with small norm. It
was recently strengthened by the author and applied to the complex and potential geometry
of the universal Teichmüller space.

Note that Theorem 1 relates to the problem of I.N. Vekua of 1961 on the homeomorphy
of approximate solutions of the singular two-dimensional integral equation intrinsically
connected with the Beltrami equation by constructing quasiconformal maps. Consider in
the space Lp(C) with p > 2 the well-known integral operators

Tρ(z) = − 1
π

∫∫
C

ρ(ζ)dξdη

ζ − z
, Πρ(ζ) = − 1

π

∫∫
C

ρ(ζ)dξdη

(ζ − z)2 = ∂zTρ(z)

assuming for simplicity that ρ has a compact support in C. Then, the second integral
exists as a Cauchy principal value, and the derivative ∂zT generically is understood to be
distributional.

One of the fundamental results of quasiconformal theory is that every quasiconformal
automorphism wµ of Ĉ with ‖µ‖∞ = k < 1 is represented in the form

wµ(z) = z + Tρ(z),

where ρ is the solution in Lp (for 2 < p < p0(k)) of the integral equation

ρ = µ + µΠρ,

given by the series
ρ = µ + µΠµ + µΠµ(Πµ) + . . . . (11)

Denote by µn the n-th partial sum of the series (11), and set

fn(z) = z− 1
π

∫∫
C

µn(ζ)dξdη

ζ − z
.

The question of Vekua was whether all fn also are homeomorphisms.
Theorem 1 solves it positively for the first iteration f1(z), provided that Beltrami

coefficient µ is sufficiently regular.
There is the counterexample of T. Iwaniec, which shows that the smoothness and

smallness assumptions in the Belinskii theorem cannot be dropped completely. A simple
modification of his construction allows us to define ε ∈ (0, 1) and a Beltrami coefficient µ
so that the second iteration

f2(z) = z + Tµ(z) + T(µΠµ)(z)

is not injective in D. The details are exposed in survey [26].
We use here the special case of Theorem 1 for µ ∈ Belt(D)1.
The next underlying result is the following theorem proven in [28].
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Theorem 2. Every Beltrami coefficient µ ∈ Belt(D)1, which belongs to the Sobolev space W1,p(D),
p > 2, and has a substantial point z0 ∈ S1, is extremal in its equivalence class, and the function
f µ|D∗ has equal Teichmüller and Grunsky norms, and

qL1 = 1/ρL1 = κ( f ) = k( f ) = ‖µ‖∞. (12)

This theorem admits a weakened extension to arbitrary quasidisks as follows. Letting
for µ ∈ Belt(D)1, ψ ∈ A1(D),

〈µ, ψ〉D =
∫∫

D
µ(z)ψ(z)dxdy,

we have the following.

Theorem 3 ([28]). Let a Beltrami coefficient µ ∈ Belt(D)1 belong to W1,p(D) with p ≥ 2 and
have a substantial point z0 on the boundary ∂D. Let µ(z)→ 0 for z filling a subarc γ ⊂ ∂D (which
depends on µ) as z approaches γ from inside D. Then, µ is extremal in its equivalence class, and the
Grunsky norm κD∗( f µ) of the function f µ|D∗ also equals ‖µ‖∞, i.e.,

k( f µ) = κD∗( f µ) = ‖µ‖∞ = sup
ψ∈A2

1(D),‖ψ‖A1
=1
|〈µ, ψ〉D|. (13)

The difference between the hypotheses of Theorems 2 and 3 is caused by the fact that
the first step in the proof of Theorem 2 is a special case of Theorem 3 (i.e., it concerns the
Beltrami coefficients µ ∈ Belt(D)1 vanishing on a subarc of S1), while the next steps of this
proof essentially involve a result of Kühnau, which is established only for the canonical
disk D∗.

2. Main Theorem

The main result of this paper is the following theorem, which strengthens Theorem
1 and shows that quasiconformal map wµ̃ defined by integral (9) inherits the main basic
properties brought by the original coefficient µ.

Theorem 4. Let a function µ ∈ Belt(D)1 satisfy the smoothness conditions of Theorem 2. Then
both homeomorphisms wµ and wµ̃ given by the integral

z + Tµ(z) = z− 1
π

∫∫
D

µ(ζ)dξdη

ζ − z

via the Belinskii theorem have equal Teichmüller and Grunsky norms and satisfy the relations (12).

We also give some possible extensions of this important result. One of the inter-
esting open problems here is to describe all bounded convex polygons which obey the
relations (9).

We precede the proof of Theorem 4 by the following important remark. From (8),
we have

w(z) = z + Tµ;

hence, ∂zw = µ, ∂z = 1 + Πµ, and

µ̃ =
∂zw
∂z

=
µ

1 + Πµ
, (14)

which implies, in view of well-known properties of the integral operators, that T and Φ
simultaneously depend holomorphically on complex parameters.
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Proof of Theorem 4. First observe that the Grunsky coefficients αmn( f µ) of functions f µ ∈
ΣQ generate for each x = (xn) ∈ l2 with ‖x‖ = 1 the holomorphic maps

hx( f µ) =
∞

∑
m,n=1

αmn( f µ)xmxn : Belt(D)1 → D, (15)

of the ball Belt(D)1 and of the universal Teichmüller space T into the unit disk D, and

sup
x
|hx( f µ)| = κD∗( f µ). (16)

This holomorphy follows from the holomorphy of coefficients αmn with respect to
µ ∈ Belt(D)1 and S f µ ∈ T and the well-known estimate∣∣∣ M

∑
m=j

N

∑
n=l

βmnxmxn

∣∣∣2 ≤ M

∑
m=j
|xm|2

N

∑
n=l
|xn|2 (17)

which holds for any finite M, N and 1 ≤ j ≤ M, 1 ≤ l ≤ N (see [29], p. 61).

The same is valid for the generalized Grunsky coefficients βmn(S f µ) of the functions
f µ ∈ Σ(D∗) generating the holomorphic maps

hx(S f µ) =
∞

∑
m,n=1

βmn( f µ)xmxn : Belt(D)1 → D (18)

with supx |hx( f µ)| = κD∗( f µ).
The holomorphy of these functions follows from the holomorphy of coefficients βmn

with respect to Beltrami coefficients µ ∈ Belt(D)1 mentioned above using the correspond-
ing estimate ∣∣∣ M

∑
m=j

N

∑
n=l

βmnxmxn

∣∣∣2 ≤ M

∑
m=j
|xm|2

N

∑
n=l
|xn|2

which holds for any finite M, N and 1 ≤ j ≤ M, 1 ≤ l ≤ N; this estimate is a simple
corollary of the Milin univalence theorem (cf. [7], p. 193).

Similar arguments imply that the maps (18) regarded as functions of points ϕµ = S f µ

in the universal Teichmüller space T (with the base point D∗) are holomorphic on T.
Note also that both norms κD∗ and k( f ) are continuous logarithmically plurisubhar-

monic functions on T [28].
Now, given a function f ∈ ΣQ, take its extremal extension f µ (i.e., such that k( f ) =

‖µ‖∞) and set
µ∗ = µ/‖µ‖∞

and pass to maps f tµ∗(z) with |t| < 1. It follows from Theorem 2 that the disk

D(µ) = {tµ/‖µ‖∞ : |t| < 1} ⊂ Belt(D)1

and its image φT(D(µ)) are geodesic (extremal) either from the Teichmüller, Kobayashi
and Carathéodory metrics on T (which are equal on this disk and have the holomorphic
curvature −4). Denote these metrics by τT, dT, cT and their infinitesimal (differential)
forms by FT(ψ, v), λK(ψ, v), λC(ψ, v), respectively.

Using the functions (15) determined by Beltrami coefficients from D(µ), we pull back
the hyperbolic metric

λD(t)|dt| = |dt|/(1− |t|2)

of the disk D, obtaining on this disk the conformal metrics λhx(t)|dt| with

λhx(t) = |h
′
x(t)|/(1− |hx(t)|2).
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All these metrics have at their noncritical points the Gaussian curvature −4. Now,
take the upper envelope of these metrics

λκ(t) = sup{λhx(t) : x ∈ S(l2)} (19)

followed by its upper semicontinuous regularization, which determines a logarithmically
subharmonic metric λκ(t) on the unit disk. This metric is circularly symmetric, i.e., satisfies
λκ(t) = λκ(|t|). Its generalized Gaussian curvature

κλκ (t) ≤ −4

(cf. [8]). In fact, the metric (19) is the differential (infinitesimal) form of the norm κD∗( f ) for
f = f ν ∈ D(µ).

We have the relation

λκ(t) ≤ λK(t) for all |t| ≤ 1, (20)

while the assumption of Theorem 4 gives, by Theorem 2 and equality (16), the relations

λκ(0) = λK(0) = 1. (21)

A refined comparison of these metrics is obtained by applying Minda’s maximum
principle given by the following.

Lemma 1. If a function u : D → [−∞,+∞) is upper semicontinuous in a domain Ω ⊂ C and
its generalized Laplacian satisfies the inequality

∆u(z) ≥ Ku(z) (22)

with some positive constant K at any point z ∈ D, where u(z) > −∞, and if

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂D,

then either u(z) < 0 for all z ∈ D or u(z) ≡ 0 on D.

The proof of this lemma related to the Ahlfors–Schwarz lemma [16] is given in [30];
for its variations, see [31].

We choose a sufficiently small neighborhood U0 of the origin t = 0 and put

M = {sup λK(t) : t ∈ U0}.

Then, in this neighborhood, we have

λK(t) + λκ(t) ≤ 2M.

Consider the function
u = log

λκ
λK

.

Then (cf. [7,31]) for t ∈ U0,

∆u(t) = ∆ log λκ(t)− ∆ log λK(t) ≥ 4(λ2
κ − λ2

K) ≥ 8M(λκ − λK).

The elementary estimate

M log(t/s) ≥ t− s for 0 < s ≤ t < M



Axioms 2023, 12, 944 12 of 15

(with equality only for t = s) implies that

M log
λα(t)
λκ(t)

≥ λα(t)− λκ(t),

and hence,
∆u(t) ≥ 8M2u(t).

It follows that the function u satisfies on U0 the inequality (21) with K = 8M2.
Applying Lemma 1 to u and noting that the equality (20) yields

u(0) = lim
t→0

log
λκ(t)
λK(t)

= 0,

one derives by this lemma that both metrics λκ and λK must be equal on U0, and in a
similar way, their equality on the entire disk D. This proves the infinitesimal version of
Theorem 4.

Finally, to obtain the global version, we apply the following reconstruction lemma for
the Grunsky norm proven in [8], which provides that this norm is the integrated form of
λκ along the Teichmüller extremal disks (Functions (15) and (18) allow one to determine
the metric λκ on the whole space T; it corresponds to another canonical Finsler structure
on the space T generated by the Grunsky coefficients).

Lemma 2. On any Teichmüller extremal disk

D(µ0) = {tµ0/‖µ0‖∞ : |t| < 1} ⊂ Belt(D)1,

we have the equality

tanh−1[κ( f rµ0/‖µ0‖∞)] =

r∫
0

λκ(t)dt.

Integrating the metrics λκ and λα along the extremal disk D(µ∗), one obtains the
required right equality in (4). Other equalities in (4) follow from the classical relations
for quasi-invariants qL and ρL of the curves L = wµ(S1) and L = wµ̃(S1), indicated in
Section 1.3. This completes the proof of the theorem.

3. Extensions of Theorem 4

Theorem 4 can be extended in a weaker form to univalent functions on arbitrary un-
bounded quasidisks D∗ taking the integrals of type (9) over the complementary quasidisks
D with appropriate functions µ compatible with Theorem 3.

As an example, let us consider the integral

f µ(z) = z− 1
π

∫∫
E

µ(ζ)dξdη

ζ − z
,

over the interior E of ellipse with the foci at −1, 1 and semiaxes a, b (a > b). Noting that
an orthonormal basis in the Hilbert space A2(E) of the square integrable holomorphic
functions on E is formed by the polynomials

Pn(z) = 2

√
n + 1

π
(rn+1 − r−n−1) Un(z),

where r = (a + b)2 and Un(z) are the Chebyshev polynomials of the second kind,

Un(z) =
1√

1− z2
sin[(n + 1) arccos z], n = 0, 1, . . .
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(see [32]), one concludes that for any Beltramu coefficient µ satisfying the assumptions of
Theorem 3, the following equalities are valid:

‖µ‖∞ = sup
{∣∣∣∫∫
E

µ(z)
( ∞

∑
0

cnPn(z)
)2

dxdy
∣∣∣ :

∥∥∥∥∥ ∞

∑
0

cnPn(z)

∥∥∥∥∥
A2(E)

= 1
}
= k( f µ) = κE∗( f µ),

where E∗ means the exterior of the indicated ellipse.
We also mention the following useful extension of Theorem 4. Let L ⊂ C be an

oriented closed C1+σ-smooth Jordan curve (hence, a quasicircle), separating the points 0
and ∞ (σ > 0). Denote its interior and exterior domains by DL and D∗L, respectively, and
consider the corresponding spaces A1(DL) and A2

1(DL).

Theorem 5. Let
t 7→ µ(z, t) = tµ0(z) + t2µ1(z) + O(t2)

be a holomorphic map of the ball Belt(DL)1 of itself with µ0(z), satisfying the assumptions of
Theorem 3. Then, for sufficiently small |t| > 0, the function

wt(z) = z− 1
π

∫∫
DL

µ(ζ, t)
ζ − z

dξdη = z− t
π

∫∫
DL

µ0(ζ)

ζ − z
dξdη + O(t2)

determines a quasiconformal automorphism w̃(z, t) of the sphere Ĉ with the complex dilatation

µ(z, t)∗ = tµ0(z) + O(t2) for z ∈ DL

and conformal on D∗L. Its restriction to D∗L has equal Teichmüller and Grunsky norms satisfying

k(w̃(·; t)) = κD∗L
(w̃(·; t)) = |t|+ O(|t|2), (23)

with a uniform estimate of the remainder for |t| ≤ t′0 < t0.

In the case of the disk, this theorem simultaneously implies the approximate values
of the reflection coefficients and Fredholm eigenvalues of quasicircles Lt = w̃(S1; t) and is
valid for all µ0 satisfying the assumptions of Theorem 2.

Some results of such type for Teichmüller coefficients µ0 = |ψ0|/ψ0 with ψ0 ∈ A2
1 were

established in [1].

Proof of Theorem 5. We now have

w(z, t) = z + Tµ(·, t),

and
∂zw(z, t) = µ, ∂zw = 1 + Πµ(·, ),

which yields

µ̃(z, t) =
∂zw
∂zw

=
µ(z, t)

1 + Πµ(z, t)

and this function is holomorphic in t (in the L∞-norm). This determines (at least for
sufficiently small |t|) a holomorphic motion of Ĉ generating the holomorphic disks in the
ball Belt(DL)1 and in the space T.

Similar to the proof of Theorem 4, for either of these disks, one derives the equality
k(wµ̃(·,t)) = κD∗L

(wµ̃(·,t)) and the estimate (23), which proves Theorem 5.
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4. Examples

The question of explicitly constructing the examples illustrating Theorems 4 and 5
(as well as the related results of some other papers in this direction devoted to the char-
acterization of the associated curvelinear functionals) is complicated. The complications
are caused by the requirement that the point z0 ∈ S1, at which the modulus of a given
Beltrami coefficient µ attains its maximum on the closed disk D, must be simultaneously a
substantial point for the corresponding quasisymmetric function f µ|S1.

We provide here such examples combining Theorems 4 and 5, with the results pre-
sented in the survey [1].

Let L ⊂ Ĉ be a closed (oriented) unbounded quasicircle passing through the infinite
point, with the convex interior, which is C1+δ smooth at all finite points (δ > 0) and has,
at infinity, the asymptotes approaching the interior angle πα∞ < 0. It is proven in [1], by
applying the holomorphic motions and the rather deep results from the Finsler geometry
of universal Teichmüller space, that for any such curve, we have the equalities

κ( f ) = k( f ) = qL = 1/ρL = 1− |α∞|, (24)

where f is the conformal mapping function of D∗ onto the exterior domain of L.
These equalities imply that the modulus of the extremal Beltrami coefficient µ of the

prescribed univalent function f ∈ ΣQ attains its maximal value, equal to 1− |α∞| at the
point z0 ∈ S1, which is the image of w = ∞ under the map f−1, and this Beltrami coefficient
is not of the Teichmüller type. Therefore, the point z0 of its maximum is substantial.

Actually, Theorem 4 provides in this case another proof of the equalities (24), but it
does not provide for the maximum the exact value 1− |α∞|. This geometric quantity is
intrinsically connected with the curve L.

A more complicate example is obtained taking the curves L with two angle points:
w0 ∈ C and w = ∞, with the angle openings πα0 > 0 and πα∞ assuming again that
the interior of L is convex. The indicated theorem from [1] provides for such curves the
relations

κ( f ) = k( f ) = qL = 1/ρL = max(1− |α0|, 1− |α∞|).

These equalities yield simultaneously the exact values of the reflection coefficient and
other functionals for the convex curvelinear lunes bounded by two smooth arcs with the
common endpoints a, b because any such lune is a Moebius image of the interior domain
for the above curve L.
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