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Abstract: Recently, Ji et al. established certain fixed-point results using Mann’s iterative scheme
tailored to Gb-metric spaces. Stimulated by the notion of the F -contraction introduced by Wardoski,
the contraction condition of Ji et al. was generalized in this research. Several fixed-point results with
Mann’s iterative scheme endowed with F -contractions in Gb-metric spaces were proven. One non-
trivial example was elaborated to support the main theorem. Moreover, for application purposes, the
existence of the solution to an integral equation is provided by using the axioms of the proven result.
The obtained results are generalizations of several existing results in the literature. Furthermore, the
results of Ji. et al. are the special case of theorems provided in the present research.
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1. Introduction

Fixed-point (fp) theory is a dominant branch of functional analysis, which has an
extraordinary role in non-linear analysis. Certain non-linear equations, such as non-linear
integral and differential equations, model several problems in science and engineering.
Banach [1] introduced a famous theorem known as the Banach contraction principle, in
1922, which has many applications in the Mathematical and Physical sciences. Due to
these applications, Banach’s theorem became a triggering point for researchers. Banach
established an iterative scheme to find the fixed point of a mapping, which inspired
researchers to employ this contraction principle to establish the existence of solutions of
differential equations, integral equations, and certain dynamic programming equations.
The important task of analyzing the existence of solutions to these equations can be resolved
by converting them into an equivalent fp problem. An operator equation Gζ = 0 can be
expressed in terms of the fp equation Qζ = ζ with self-mapping Q and a suitable domain.
For example, to find the roots of f (ζ) = 3ζ3 − 4ζ2 + ζ + 3 = 0, one can reformulate the
problem into the form Qζ = ζ, where Qζ = −3ζ3 + 4ζ2 − 3, and find the fixed point
of the mapping Q. It is clear that, if the mappings Q have fp, then the solution of the
corresponding equation exists. Due to this equivalence of the existence of a solution of
a non-cooperative equilibrium and a couple fixed point, the existence problem of the
non-cooperative equilibrium of two-person games was clarified by Dechboon et al. [2],
applying some coupled fixed-point theorems in partial metric spaces. Younis et al. [3]
established some novel results concerning graph contractions in a more-generalized setting
and, to arouse more interest, provided an application for the existence of a solution to
fourth-order two-point boundary value problems describing deformations of an elastic
beam, the ascending motion of a rocket, and a class of integral equations. It is important to
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note that every Banach contraction is continuous. In 1981, Vul’pe [4] investigated the idea
of b-metric spaces (b-MS) and their topological features. It would be a real benefit if this
article is considered for further research. Czerwik [5] defined this concept formally in 1993
by introducing a condition that was weaker than the third property of MS . Czerwik and
many other researchers generalized the Banach contraction principle using these spaces
(see [6–9]). Mustafa and Sims [10] presented the idea of G-MS in 2006, which was further
generalized by Aghajani et al. [11] by presenting the concept of Gb-MS .

fp iterative schemes present an attractive method to compute the fps of any arbitrary
non-linear algebraic function accurately and efficiently. In 1890, Picard introduced the

simplest iterative scheme where
+∞

∑
p=0
{ζp} is a Picard sequence with initial point ζ0. In 1953,

Mann [12] presented the iterative scheme defined as

ζp+1 = (1− θp)ζp + θpQζp,

where
+∞

∑
p=0
{θp} denotes a sequence based on the real numbers in [0, 1]. This iterative

scheme turns into Picard’s scheme by replacing θp = 1. Iterative methods are often used to
solve the different non-linear equations that can be converted into a fixed-point equation
Qζ = ζ. Mann’s iterative method has been proven to be a powerful method for solving non-
linear operator equations involving non-expensive mapping, asymptotically non-expensive
mapping, and other kinds of non-linear mappings (see [12,13]). Ishikawa [14] generalized
the Mann iterative scheme in the following manners:{

ηp = (1− φp)ζp + φpQζp,
ζp+1 = (1− θp)ζp + θpQηp,

where
+∞

∑
p=0
{θp} and

+∞

∑
p=0
{φp} denote sequences based on the real numbers in [0, 1]. This

Mann iterative scheme turns into Picard’s scheme by replacing φp = 0. Let S be a non-
empty closed convex and bounded subset of a uniformly convex Banach space and Q :
S → S be a non-expensive mapping.

‖Qζ −QΨ‖ ≤ ‖ζ −Ψ‖ for each ζ, Ψ ∈ S .

Then, ζ∗ ∈ S is an fp of Q (see [15]). Unlike in the case of the Banach contraction mapping
principle, trivial examples show that the sequence of successive approximations ζp+1 =
Qζp, ζ0 ∈ S , p ≥ 0, for a non-expensive map Q even with a unique fp may fail to converge
to fp. It is sufficient, for example, to take, forQ, a rotation of the unit ball in the plane around
the origin of the coordinates. Krasnoselski [16] showed that, in this example, one can obtain
a convergent sequence of successive approximations if, instead ofQ, one takes the auxiliary
non-expensive mapping 1

2 (I +Q), where I denotes the identity transformation of the plane,
i.e., if the sequence of successive approximations is defined, for arbitrary ζ0 ∈ S , by

ζp+1 =
1
2
(ζp +Qζp), p ≥ 0. (1)

It is easy to see that the mappingQ and 1
2 (I +Q) have the same set of fps, so that the limit of

the convergent sequence defined by (1) is necessarily an fp ofQ. In 2017, Karakaya et al. [17]
presented the idea of a three-step iterative scheme for the first time as follows:
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Consider a mapping Q : S → S , where S is a convex and closed subset of a normed

space E; the sequence
+∞

∑
p=0
{ζp} ⊆ S is defined by:


wp = Qζp,
vp = (1− θp)wp + θpQwp,
ζp+1 = Qvp, where ζ0 ∈ S

where
+∞

∑
p=0
{θp} is a sequence based on [0, 1] ∈ R.

Inspired by this reality, Sharma et al. [18] presented a new three-step iteration scheme
with better characteristics. This scheme is defined as follows:

For each real number m > 0, ζ0 ∈ E, the sequence
+∞

∑
p=0
{ζp} in E is defined by


zp =

mζp+Qζp
m+1 ,

ηp = Qzp,
ζp+1 = Qηp.

The above scheme is based on the scheme suggested by Kanwar et al. [19] as follows:

ζp+1 =
mζp +Qζp

m + 1
,

where m is any real number greater than zero. Notice that it transforms into the Picard
iteration when m = 0.

Some more literature on such iterative schemes can be seen in [20–27]. Ji et al. [28]
presented the idea of a convex Gb-MS employing the convex structure introduced by
Takahashi [29]. Then, they proved the existence and uniqueness theorem by generalizing
the Mann algorithm to Gb-MS .

Wardowski [30] presented the concept of the F -contraction in 2012 and proved an fp

theorem using this new idea. Afterward, many generalizations have been made to produce
interesting results using the F -contraction. One of them was the generalization of the
F -contraction into the Hardy–Rogers-type F -contraction presented by Cosentino et al. [31].
After that, Asif et al. [32] introduced the F -Reich contraction by removing the third and
fourth condition of the F -contraction of Nadler’s type, defined by Cosentino.

This manuscript is organized in the following manner. In Section 2, preliminaries
and some basic definitions are given for the optimum understanding of the current article.
Section 3 examines the existence and uniqueness of fp theorems with the help of the F -
contraction. To stimulate more interest, one example is provided to support our result.
Finally, the well-posedness of an fp problem is proven. In Section 4, an application is
provided that ensures the existence of a solution to an integral equation by using the axioms
of the provided theorem. The last section is dedicated to the conclusions of the research.

2. Preliminaries

Definition 1 ([5]). Let S 6= φ and d : S × S → [0,+∞) be a mapping, which fulfills the
subsequent properties for every ζ1, ζ2, ζ3 ∈ S :

(1): d(ζ1, ζ2) = 0 if and only if ζ1 = ζ2;
(2): d(ζ1, ζ2) = d(ζ2, ζ1);
(3): d(ζ1, ζ3) ≤ s[d(ζ1, ζ2) + d(ζ2, ζ3)] for every s ≥ 1.

Then, for every s ≥ 1, d and (S , d) represent the b-metric and b-MS , respectively.

Definition 2 ([11]). Let S 6= φ and G : S × S × S → [0,+∞) be a mapping, which fulfills the
subsequent properties for all ζ1, ζ2, ζ3 ∈ S :

(1): G(ζ1, ζ2, ζ3) = 0 if ζ1 = ζ2 = ζ3;
(2): G(ζ1, ζ1, ζ2) > 0 for every ζ1, ζ2 ∈ S with ζ1 6= ζ2;
(3): G(ζ1, ζ1, ζ2) ≤ G(ζ1, ζ2, ζ3) for every ζ1, ζ2, ζ3 ∈ S with ζ2 6= ζ3;
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(4): G(ζ1, ζ2, ζ3) = G(ζ1, ζ3, ζ2) = G(ζ3, ζ1, ζ2) = . . . ;
(5): there exists a real number s ≥ 1 such that G(ζ1, ζ2, ζ3) ≤ s[G(ζ1, η, η) + G(η, ζ2, ζ3)] for

every ζ1, ζ2, ζ3, η ∈ S .

Then, G and (S ,G) are called the Gb-metric and Gb-MS , respectively.

Remark 1 ([11]). It is notable that Gb-MS and b-MS are equivalent topologically. By utilizing
this fact, we can carry many results of b-MS into Gb-MS .

Proposition 1 ([11]). Consider a Gb-MS defined as (S ,G). Then, for every ζ1, ζ2, ζ3, η ∈ S ,
we have:

(1): If G(ζ1, ζ2, ζ3) = 0, then ζ1 = ζ2 = ζ3;
(2): G(ζ1, ζ2, ζ3) ≤ s(G(ζ1, ζ1, ζ2) + G(ζ1, ζ1, ζ3));
(3): G(ζ1, ζ2, ζ2) ≤ 2sG(ζ2, ζ1, ζ1);
(4): G(ζ1, ζ2, ζ3) ≤ s(G(ζ1, η, ζ3) + G(η, ζ2, ζ3)).

Definition 3 ([33]). Consider a Gb-MS defined as (S ,G). We say that {ζp} ⊆ S is a G-Cauchy
sequence (cs) if, for all ε > 0, there exists N ∈ N such that, for all l,m, n ≥ N, G(ζl, ζm, ζn) < ε.

Definition 4 ([11]). Consider a Gb-MS defined as (S ,G). If there exists ζ ′ ∈ S such that
lim

p,k→+∞
G(ζp, ζk, ζ ′) = 0, then a sequence {ζp} ⊆ S is said to be convergent in S .

Remark 2. (S ,G) is called a complete Gb-MS if every cs in S is convergent.

Proposition 2 ([11]). Consider a Gb-MS defined as (S ,G). Then, the following are equivalent:

(1) The sequence {ζp} is a cs.
(2) For all ε > 0, there exists p0 ∈ N such that G(ζp, ζk, ζk) < ε for any p, k ≥ p0.

Definition 5 ([11]). A Gb-MS is called symmetric if G(ζp, ζk, ζk) = G(ζk, ζp, ζp) for every
ζp, ζk ∈ S .

Definition 6 ([10]). Consider two Gb-MS defined as (S1,G1) and (S2,G2). Then, f : (S1,G1)→
(S2,G2) is G-continuous at a point ζ ′ ∈ S if, for every ζ1, ζ2 ∈ S and ε > 0, there exists δ > 0
such that G1(ζ

′, ζ1, ζ2) < δ implies G2( f ζ ′, f ζ1, f ζ2) < ε.

Proposition 3 ([11]). Consider two Gb-MS defined as (S1,G1) and (S2,G2). Then, f : (S1,G1)→
(S2,G2) is G-continuous at a point ζ ′ ∈ S if and only if f (ζp) is G-convergent to f (ζ ′) whenever
{ζp} is G-convergent to ζ ′.

The convex structure (CST ) in G-MS was presented by Norouzian et al. [34].

Definition 7 ([34]). Consider a G-MS defined as (S ,G). A mapping v : S × S × S × [0, 1]×
[0, 1]× [0, 1]→ S is a CST on S if, for each (ζ1, ζ2, ζ3; µ1, µ2, µ3) ∈ S ×S ×S × [0, 1]× [0, 1]×
[0, 1] with µ1 + µ2 + µ3 = 1, then v(ζ1, ζ2, ζ3; µ1, µ2, µ3) ∈ S, where v(ζ1, ζ2, ζ3; µ1, µ2, µ3) =
µ1ζ1 + µ2ζ2 + µ3ζ3. If v is a CST on S , then (S ,G, v) is a convex G-MS .

Definition 8 ([28]). Let (S ,G) be a Gb- MS and a mapping Q : S → S . We say that {ζp} is a
Mann sequence if

ζp+1 = v(ζp,Qζp; θp), p ∈ N0,

where ζ0 ∈ S and θp ∈ [0, 1].

However, iterative methods are important for finding the fps of non-expansive map-
pings. In particular, the Mann iteration is one of the numerous methods of fp to find the
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approximations of the fp problems using iterative schemes. Mann’s iterative scheme is
defined as

ζp+1 = θpζp + (1− θp)Qζp, θp ∈ [0, 1].

Definition 9 ([28]). Let (S ,G) be a Gb- MS with constant s ≥ 1 and I = [0, 1]. A mapping
v : S × S × I → S is called a CST on S if, for all ζ1, ζ2, ζ3, η ∈ S and θ ∈ I,

G(η, ξ, v(ζ1, ζ2; θ)) ≤ θG(η, ξ, ζ1) + (1− θ)G(η, ξ, ζ2). (2)

(S ,G, v) is said to be a convex Gb-MS .

Next, we give some examples of a convex Gb-MS .

Example 1. Let S = Rn, and define a b-metric d : S × S → [0,+∞) for all ζ, Ψ ∈ S by

d(ζ, Ψ) =
n

∑
i=1

(ζi −Ψi)
2,

for each ζ = (ζ1, ζ2, . . . , ζn) ∈ S and Ψ = (Ψ1, Ψ2, . . . , Ψn) ∈ S and define the mapping
v : S × S × [0, 1]→ S by

v(Ψ, ζ; µ) =
Ψ + ζ

2
.

Then, (S , d) is a convex b-MS with s = 2. Define a Gb-metric G : S × S × S → [0,+∞) by

G(Ψ, ζ, η) = max{d(Ψ, ζ), d(Ψ, η), d(η, ζ)} for all Ψ, ζ, η ∈ S .

For each ζ, Ψ, α, β ∈ S , we have

G(ζ, Ψ, v(α, β; θ)) =max{d(ζ, Ψ), d(ζ, v(α, β; θ)), d(Ψ, v(α, β; θ))}
≤max{d(ζ, Ψ), θd(ζ, α) + (1− θ)d(ζ, β), θd(Ψ, α) + (1− θ)d(Ψ, β)}
≤θ max{d(ζ, Ψ), d(ζ, α), d(Ψ, α)}+ (1− θ)max{d(ζ, Ψ), d(ζ, β), d(Ψ, β)}
=θG(ζ, Ψ, α) + (1− θ)G(ζ, Ψ, β).

Hence, (G,S , v) is a convex Gb-MS with s = 2p−1.

Example 2. Let S = R, and define a Gb-metric G : S × S × S → [0,+∞) by

G(ζ, Ψ, η) =
[1

3
(|ζ −Ψ|+ |ψ− η|+ |ζ − η|)

]2
for all ζ, Ψ, η ∈ S

and also the mapping v : S × S × [0, 1]→ S by

v(ζ, Ψ; θ) = θζ + (1− θ)Ψ.
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For each ζ, Ψ, α, β ∈ S , we have

G(ζ, Ψ, v(α, β; θ)) =
1
9
×
(
|ζ −Ψ|+ |ψ− θα− (1− θ)β|+ |ζ − θα− (1− θ)β|

)2

≤1
9
×
[
θ|ζ −Ψ|+ (1− θ)|ζ −Ψ|+ θ|Ψ− α|+ (1− θ)|Ψ− β|+ θ|ζ − α|

+(1− θ)|ζ − β|
]2

=
1
9
×
[
θ(|ζ −Ψ|+ |Ψ− α|+ |ζ − α|) + (1− θ)(|ζ −Ψ|+ |Ψ− β|+ |ζ − β|)

]2

≤1
9
×
[
θ2(|ζ −Ψ|+ |Ψ− α|+ |ζ − α|)2 + (1− θ)2(|ζ −Ψ|+ |Ψ− β|+ |ζ − β|)2

+2θ(1− θ)(|ζ −Ψ|+ |Ψ− α|+ |ζ − α|)2
]

≤1
9
×
[
θ(|ζ −Ψ|+ |Ψ− α|+ |ζ − α|)2 + (1− θ)(|ζ −Ψ|+ |Ψ− β|+ |ζ − β|)2

]
=θG(ζ, Ψ, α) + (1− θ)G(ζ, Ψ, β).

Hence, (G,S , v) is a convex Gb-MS with s = 2.

Remark 3. A convex Gb- MS reduces a convex G-MS for s = 1.

Wardowski [30] presented the idea of F -contractions in 2012, which has a crucial role
in the recent trend of research in the field of fp theory.

Definition 10 ([30]). Consider a mapping F : (0,+∞) → R, which satisfies the subsequent
conditions:

(F1): F is increasing strictly.
(F2): For every sequence {αp}p∈N of positive numbers lim

p→+∞
αp = 0 iff lim

p→+∞
F (αp) = −∞.

(F3): There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Definition 11 ([30]). Consider an MS defined as (S , d). A mapping Q : S → S is said to be an
F -contraction if there exists τ > 0 such that d(Qζ1,Qζ2) > 0 implies

τ +F (d(Qζ1,Qζ2)) ≤ F (d(ζ1, ζ2)) for every ζ1, ζ2 ∈ S .

Popescu and Stan [35] proved fixed-point results by applying weaker symmetrical
conditions on the self-map of a complete metric space, Wadowski’s control function F ,
and the contractions defined by Wardowski. Vujakovic et al. [36] proved Wardowski-type
results within G-MS using only the condition F1. Fabiano et al. [37] presented a beautiful
survey on F mappings and suggested some improvements on the conditions of an F
mapping involved in the contractive condition.
We now state a property [36,37] of the function F , which is the consequence of the condition
F1. This paper is the third chapter of the book (see [38]):

• At each point d ∈ (0, ∞), there exist its left and right limits lim
ζ→d−

F (ζ) = F (d−) and

lim
ζ→d+

F (ζ) = F (d+). Moreover, for the functionF , one of the following two properties

hold: F (0+) = m ∈ R or F (0+) = −∞.

In 2021, Huang et al. [39] presented the concept of a convex F -contraction in b-MS to
obtain fp results in b-MS .

Definition 12 ([39]). Consider a self-mapping Q on S and a complete b-MS defined as (S , d,F ).
We say that Q is a convex F -contraction if there exists a function F : (0,+∞)→ R such that Q
satisfies (F1), (F2), (F3) and also the following:



Axioms 2023, 12, 937 7 of 25

(Fµ
4 ) :There exists τ > 0 and µ ∈ [0, 1) such that

τ +F (dp) ≤ F (µdp + (1− µ)dp−1) for all dp > 0, p ∈ N.

Throughout, the next discussion, the collection of functions that satisfy condition F1
will be denoted by F.

Proposition 4 ([28]). Consider a convex Gb-MS defined as (S ,G, v). Then, the Gb-metric is
G-symmetric if θ ∈ (0, 1), i.e. G(ζ1, ζ1, ζ2) = G(ζ1, ζ2, ζ2).

3. Main Results

Throughout this article, by convex F -contraction, we mean a mapping that satisfies
both Fµ

4 and F1. First, we generalize the results of Ji et al. [28] regarding the F -contraction.

Theorem 1. Let (S ,G, v) be a complete convex Gb- MS with constant s ≥ 1 and Q : S → S be
a convex F -contraction. Furthermore, assume that the sequence {ζp} is generated by the Mann
iterative scheme and s0 ∈ S . If the sequence {θp} ∈ (0, 1) converges to θ, then Q has a unique fp
ζ∗ ∈ S . Moreover, Q is G-continuous at ζ∗.

Proof. For every p ∈ N0, we obtain

G(ζp, ζp, ζp+1) =G(ζp, ζp, v(ζp,Qζp; θp))

≤(1− θp)G(ζp, ζp,Qζp). (3)

From the condition Fµ
4 , we have

F (G(ζp, ζp,Qζp)) ≤τ +F (G(ζp, ζp,Qζp))

≤F
(

µG(ζp, ζp,Qζp) + (1− µ)G(ζp−1, ζp−1,Qζp−1)
)

.

Then, using F1, we have

G(ζp, ζp,Qζp) ≤ µG(ζp, ζp,Qζp) + (1− µ)G(ζp−1, ζp−1,Qζp−1),

then,
0 < G(ζp, ζp,Qζp) < G(ζp−1, ζp−1,Qζp−1) (4)

for each p ∈ N. Next, we show that

τ +F (dp) = τ +F (G(ζp, ζp,Qζp)) ≤ F (G(ζp−1, ζp−1,Qζp−1)) = F (dp−1) for all p ∈ N. (5)

Indeed, if (5) is not true, then

τ +F (G(ζp, ζp,Qζp)) > F (G(ζp−1, ζp−1,Qζp−1)) for all p ∈ N.

Thus, it establishes that

F (G(ζp−1, ζp−1,Qζp−1)) <τ +F (G(ζp, ζp,Qζp)) for all p ∈ N
≤F (µG(ζp, ζp,Qζp) + (1− µ)G(ζp−1, ζp−1,Qζp−1)).

Using condition F1, we obtain

G(ζp−1, ζp−1,Qζp−1) <µG(ζp, ζp,Qζp) + (1− µ)G(ζp−1, ζp−1,Qζp−1);

that is,

G(ζp−1, ζp−1,Qζp−1) <G(ζp, ζp,Qζp), (6)
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dp−1 < dp, which is a contradiction to (4). Hence, (5) holds.

F (dp) < F (dp−1)− τ for all p ∈ N. (7)

Since F is strictly increasing, then dp < dp−1. Thus, we conclude that the sequence {dp}
is strictly decreasing, so there exists lim

p→+∞
dp = d. Suppose that d > 0. Since F is an

increasing mapping, there exists lim
ζ→d+

F (ζ) = F (d+), so taking the limit as p → +∞ in

Inequality (7), we obtain
τ +F (d+) ≤ F (d+),

a contradiction. Therefore, lim
p→+∞

dp = 0,

lim
p→+∞

G(ζp, ζp,Qζp) = 0. (8)

By using Equation (3), we have

G(ζp, ζp, ζp+1) ≤(1− θp)G(ζp, ζp,Qζp) ≤ η G(ζp, ζp,Qζp),

where η < 1. Therefore, lim
p→+∞

G(ζp, ζp, ζp+1) = 0. Thus, for each p, q ∈ N,

G(ζp, ζp, ζp+q) =G(ζp, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + sG(ζp+1, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + s2G(ζp+1, ζp+2, ζp+2) + s2G(ζp+2, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + s2G(ζp+1, ζp+2, ζp+2) + · · ·+ sqG(ζp+q−1, ζp+q, ζp+q)

≤sηG(ζp, ζp,Qζp) + s2ηG(ζp+1, ζp+1,Qζp+1) + · · ·+ sqηG(ζp+q−1, ζp+q−1,Qζp+q−1)

≤(ηs+ ηs2 + ηs3 + · · ·)G(ζp, ζp,Qζp)

≤ηs(1 + s+ s2 + · · ·)G(ζp, ζp,Qζp)

<
s

1− s
G(ζp, ζp,Qζp).

implying that lim
p→+∞

G(ζp, ζp, ζp+q) = 0, which reveals that {ζp} is a cs in S . Since (S ,G, v)

is a complete convex Gb-MS , there exists ζ ′ ∈ S such that

lim
p→+∞

G(ζp, ζp, ζ ′) = 0. (9)

Notice that

G(ζ ′,Qζ ′,Qζ ′) ≤s
(
G(ζ ′, ζp, ζp) + G(ζp,Qζ ′,Qζ ′)

)
≤sG(ζ ′, ζp, ζp) + s2

(
G(ζp,Qζp,Qζp) + G(Qζp,Qζ ′,Qζ ′)

)
≤sG(ζ ′, ζp, ζp) + s2G(ζp,Qζp,Qζp) + s3

(
G(Qζp, ζ ′, ζ ′) + G(ζ ′,Qζ ′,Qζ ′)

)
=⇒ (1− s3)G(ζ ′,Qζ ′,Qζ ′) ≤sG(ζ ′, ζp, ζp) + s2G(ζp,Qζp,Qζp) + s3G(Qζp, ζ ′, ζ ′)

≤sG(ζp, ζp, ζ ′) + s2G(ζp, ζp,Qζp) + s4G(ζp, ζp,Qζp) + s4G(ζp, ζp, ζ ′).
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Letting lim
p→+∞

in the above inequality and by using (8) and (9), we deduce lim
p→+∞

G(ζ′,Qζ′,Qζ′) = 0,

implying that Qζ ′ = ζ ′. Thus, fp of Q is ζ ′.
Assume that ζ ′, η′ ∈ S are two different fps of Q. Then,

0 < G(ζ ′, ζ ′, η′) =G(Qζ ′,Qη′,Qη′)

≤sG(Qζ ′, ζ ′, ζ ′) + sG(ζ ′,Qη′,Qη′)

=sG(ζ ′, ζ ′, η′),

which is impossible. Therefore, G(ζ ′, ζ ′, η′)=0. To observe that Q is G-continuous at an fp

ζ ′, consider a sequence {ηp} such that lim
p→+∞

ηp = ζ ′. Then,

G(ζ ′,Qηp,Qηp) = G(Qζ ′,Qηp,Qηp) ≤ sG(Qζ ′, ζ ′, ζ ′) + sG(ζ ′,Qηp,Qηp).

Taking limit as p→ +∞, we have lim
p→+∞

G(ζ ′,Qηp,Qηp) = 0, which implies that lim
p→+∞

Qηp =

ζ ′ = Qζ ′. By combining this with Proposition 4, it is derived that Q is G-continuous at
ζ ′.

Theorem 2. Let (S ,G, v) be a complete convex Gb-MS with s ≥ 1. LetQ : S → S be a mapping
such that, for each ζ1, ζ2, ζ3 ∈ S and F ∈ F.

τ +F (G(Qζ1,Qζ2,Qζ3)) ≤F
(

µ1
G(ζ1, ζ1, ζ2)G(ζ2, ζ2, ζ1)

M(ζ1, ζ2)
+ µ2

G(ζ1, ζ1,Qζ2)G(ζ2, ζ2,Qζ1)

M(ζ1, ζ2)

+µ3
G(ζ2, ζ2, ζ3)G(ζ3, ζ3, ζ2)

M(ζ2, ζ3)
+ µ4

G(ζ2, ζ2,Qζ3)G(ζ3, ζ3,Qζ2)

M(ζ2, ζ3)

+µ5
G(ζ1, ζ1, ζ3)G(ζ3, ζ3, ζ1)

M(ζ1, ζ3)
+ µ6

G(ζ1, ζ1,Qζ3)G(ζ3, ζ3,Qζ1)

M(ζ1, ζ3)

)
, (10)

where

M(ζ1, ζ2) =max{ζ,G(ζ1, ζ1,Qζ1),G(ζ2, ζ2,Qζ2)},
M(ζ1, ζ3) =max{ζ,G(ζ1, ζ1,Qζ1),G(ζ3, ζ3,Qζ3)},
M(ζ2, ζ3) =max{ζ,G(ζ2, ζ2,Qζ2),G(ζ3, ζ3,Qζ3)}

and µ1 + µ3 + µ5 ≤ 1
5s2 and µ2 + µ4 + µ6 ≤ 1

5s2 . Assume that the sequence {ζp} is generated by
the Mann iteration and s0 ∈ S . If {θp} ∈ [0, 1

2s2 ], then an fp of Q exists, that is F (Q) 6= φ.

Proof. For any p ∈ N0, we have

G(ζp, ζp, ζp+1) =G(ζp, ζp, v(ζp,Qζp; θp)) ≤ (1− θp)G(ζp, ζp,Qζp). (11)

If ζp = ζp+1, then

G(ζp,Qζp,Qζp) =G(ζp+1,Qζp,Qζp) ≤ θpG(ζp,Qζp,Qζp),

which implies that ζp = Qζp and ζp is an fp of Q. Therefore, assume that ζp 6= ζp+1 and
ζp 6= Qζp. In view of Definition 9 and Proposition 4, it follows that

G(ζp, ζp,Qζp) =G(ζp,Qζp,Qζp)

≤s[G(ζp,Qζp−1,Qζp−1) + G(Qζp−1,Qζp,Qζp)]

≤s[θp−1G(ζp−1,Qζp−1,Qζp−1) + G(Qζp−1,Qζp,Qζp)]. (12)

Using symmetry, we have the following six possible cases for {G(Qζp−1,Qζp,Qζp)}:
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• Case 1: For any p ∈ N0, we have

τ +F (G(Qζp−1,Qζp,Qζp))

≤F
(

µ1
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ2

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ3
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ4

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ5
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ6

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

)
=⇒ F (G(Qζp−1,Qζp,Qζp))

≤ F
(

µ1
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ2

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ3
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ4

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ5
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ6

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

)
− τ

≤ F
(

µ1
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ2

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ3
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ4

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+ µ5
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ6

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

)

≤ F
(
(µ1 + µ3)

(1− θp−1)
2G(ζp−1, ζp−1,Qζp−1)

2

M(ζp−1, ζp)

+ (µ2 + µ4)
θp−1G(ζp−1, ζp−1,Qζp)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp)
+ µ6G(ζp, ζp,Qζp)

)
≤ F

(
[(1− θp−1)

2(µ1 + µ3) + θp−1(1− θp−1)s(µ2 + µ4)]G(ζp−1, ζp−1,Qζp−1)

+ [θp−1s(µ2 + µ4) + µ6]G(ζp, ζp,Qζp)
)

.

Using F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ1 + µ3) + θp−1(1− θp−1)s(µ2 + µ4)]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ2 + µ4) + µ6]G(ζp, ζp,Qζp).
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• Case 2: For any p ∈ N0, we have

τ +F (G(Qζp−1,Qζp,Qζp)

=τ +F (G(Qζp,Qζp−1,Qζp))

≤F
(

µ1
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ2

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ3
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ4

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

+µ5
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ6

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

)
=⇒ F (G(Qζp−1,Qζp,Qζp)

≤F
(

µ1
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ2

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ3
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ4

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

+µ5
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ6

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

)
− τ

≤F
(

µ1
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ2

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ3
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ4

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

+µ5
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ6

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

)
≤F

(
(µ1 + µ5)

(1− θp−1)
2G(ζp−1, ζp−1,Qζp−1)

2

M(ζp−1, ζp)

+(µ2 + µ6)
θp−1G(ζp−1, ζp−1,Qζp)G(ζp−1, ζp−1,Qζp−1)

M(ζp, ζp−1)
+ µ4G(ζp, ζp,Qζp)

)

≤F
(
[(1− θp−1)

2(µ1 + µ5) + θp−1(1− θp−1)s(µ2 + µ4)]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ2 + µ6) + µ4]G(ζp, ζp,Qζp)
)

.

Applying F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ1 + µ5) + θp−1(1− θp−1)s(µ2 + µ4)]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ2 + µ6) + µ4]G(ζp, ζp,Qζp).
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• Case 3: For any p ∈ N0, we have

τ +F (G(Qζp−1,Qζp,Qζp))

=τ +F (G(Qζp,Qζp,Qζp−1))

≤F
(

µ1
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ2

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

+µ3
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ4

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp)

+µ5
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ6

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

)
=⇒ F (G(Qζp−1,Qζp,Qζp))

≤F
(

µ1
G(ζp, ζp, ζp)G(ζp, ζp, ζp)

M(ζp, ζp)
+ µ2

G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)

+µ3
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ4

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp)

+µ5
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ6

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

)
− τ

≤F
(
[(1− θp−1)

2(µ3 + µ5) + θp−1(1− θp−1)s(µ4 + µ6)]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6) + µ2]G(ζp, ζp,Qζp)
)

.

Applying F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ3 + µ5) + θp−1(1− θp−1)s(µ4 + µ6)]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6) + µ2]G(ζp, ζp,Qζp).

Since
G(Qζp−1,Qζp,Qζp) = G(Qζp,Qζp−1,Qζp−1),

proceeding in the same way, we obtain the following.

• Case 4: For any p ∈ N0, we have

τ +F (G(Qζp,Qζp−1,Qζp−1))

≤F
(

µ1
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp, ζp−1)
+ µ2

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp, ζp−1)

+µ3
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ4

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ5
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ6

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

)
=⇒ F (G(Qζp,Qζp−1,Qζp−1))

≤F
(

µ1
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp, ζp−1)
+ µ2

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp, ζp−1)

+µ3
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ4

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ5
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ6

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

)
− τ

≤F
(
[(1− θp−1)

2(µ1 + µ3) + θp−1(1− θp−1)s(µ2 + µ4) + µ6]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6)]G(ζp, ζp,Qζp)
)

.
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Using F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ1 + µ3) + θp−1(1− θp−1)s(µ2 + µ4) + µ6]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6)]G(ζp, ζp,Qζp).

• Case 5: For any p ∈ N0, we have

τ +F (G(Qζp−1,Qζp,Qζp−1))

≤F
(

µ1
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ2

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ3
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ4

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

+µ5
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ6

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

)
=⇒ F (G(Qζp−1,Qζp,Qζp−1))

≤F
(

µ1
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ2

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

+µ3
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ4

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

+µ5
G(ζp, ζp, ζp−1)G(ζp−1, ζp−1, ζp)

M(ζp, ζp−1)
+ µ6

G(ζp, ζp,Qζp−1)G(ζp−1, ζp−1,Qζp)

M(ζp, ζp−1)

)
− τ

≤F
(
[(1− θp−1)

2(µ1 + µ5) + θp−1(1− θp−1)s(µ2 + µ6) + µ4]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ2 + µ6)]G(ζp, ζp,Qζp)
)

.

Using F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ1 + µ5) + θp−1(1− θp−1)s(µ2 + µ6) + µ4]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ2 + µ6)]G(ζp, ζp,Qζp).

• Case 6: For any p ∈ N0, we have

τ +F (G(Qζp,Qζp−1,Qζp−1))

≤F
(

µ1
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ2

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

+µ3
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ4

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+µ5
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ6

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

)
=⇒ F (G(Qζp,Qζp−1,Qζp−1))

≤F
(

µ1
G(ζp−1, ζp−1, ζp−1)G(ζp−1, ζp−1, ζp−1)

M(ζp−1, ζp−1)
+ µ2

G(ζp−1, ζp−1,Qζp−1)G(ζp−1, ζp−1,Qζp−1)

M(ζp−1, ζp−1)

+µ3
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ4

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

+µ5
G(ζp−1, ζp−1, ζp)G(ζp, ζp, ζp−1)

M(ζp−1, ζp)
+ µ6

G(ζp−1, ζp−1,Qζp)G(ζp, ζp,Qζp−1)

M(ζp−1, ζp)

)
− τ

≤F
(
[(1− θp−1)

2(µ3 + µ5) + θp−1(1− θp−1)s(µ4 + µ6) + µ2]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6)]G(ζp, ζp,Qζp)
)

.
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Using F1, we obtain

G(Qζp−1,Qζp,Qζp) ≤[(1− θp−1)
2(µ3 + µ5) + θp−1(1− θp−1)s(µ4 + µ6) + µ2]G(ζp−1, ζp−1,Qζp−1)

+[θp−1s(µ4 + µ6)]G(ζp, ζp,Qζp).

Combining all the above cases, we obtain

G(Qζp−1,Qζp,Qζp) ≤
1
6

{
[4(1− θp−1)

2(µ1 + µ3 + µ5) + (4θp−1(1− θp−1)s+ 1)(µ2 + µ4 + µ6)]

×G(ζp−1, ζp−1,Qζp−1) + (4θp−1s+ 1)(µ2 + µ4 + µ6)G(ζp, ζp,Qζp)
}

. (13)

Using (12) and (13), we obtain

G(ζp, ζp,Qζp)

≤s[θp−1G(ζp−1, ζp−1,Qζp−1) +
1
6

{
[4(1− θp−1)

2(µ1 + µ3 + µ5)+

(4θp−1(1− θp−1)s+ 1)(µ2 + µ4 + µ6)]× G(ζp−1, ζp−1,Qζp−1)

+(4θp−1s+ 1)(µ2 + µ4 + µ6)G(ζp, ζp,Qζp)
}

≤s[θp−1 +
4(1− θp−1)

2(µ1 + µ3 + µ5) + (4θp−1(1− θp−1)s+ 1)(µ2 + µ4 + µ6)

6
]

×G(ζp−1, ζp−1,Qζp−1) +
(4θp−1s+ 1)(µ2 + µ4 + µ6)

6
G(ζp, ζp,Qζp)

≤s[ 1
2s2 +

4(1− 1
2s2 )

2( 1
5s2 ) + (4 1

2s2 (1− 1
2s2 )s+ 1)( 1

5s2 )

6
]

×G(ζp−1, ζp−1,Qζp−1) +
(4 1

2s2 s+ 1)( 1
5s2 )

6
G(ζp, ζp,Qζp)

≤1
s
[
1
2
+

4( 1
5 ) + ( 2

s + 1)( 1
5 )

6
]× G(ζp−1, ζp−1,Qζp−1) +

( 2
s + 1)( 1

5 )

6
G(ζp, ζp,Qζp)

=
1
s
(

11
15

)× G(ζp−1, ζp−1,Qζp−1) +
1

10
G(ζp, ζp,Qζp),

implying

(1− 1
10

)G(ζp, ζp,Qζp) ≤
1
s
(

11
15

)× G(ζp−1, ζp−1,Qζp−1)

=⇒ G(ζp, ζp,Qζp) ≤
1
s
(

11× 10
15× 9

)× G(ζp−1, ζp−1,Qζp−1)

=
1
s
(

110
135

)× G(ζp−1, ζp−1,Qζp−1)

Let η = 1
s ×

110
135 . Then, η < 1

s . This implies that

G(ζp, ζp,Qζp) ≤ ηG(ζp−1, ζp−1,Qζp−1). (14)

Moreover, Equation (11) implies

G(ζp, ζp, ζp+1) ≤(1− θp)G(ζp, ζp,Qζp)

≤(1− θp)ηG(ζp−1, ζp−1,Qζp−1)

≤ηG(ζp−1, ζp−1,Qζp−1). (15)
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Therefore, by using (10), (12) and (14), we have

F (G(ζp, ζp,Qζp)) ≤F (ηG(ζp−1, ζp−1,Qζp−1))− τ

≤F (G(ζp−1, ζp−1,Qζp−1))− τ.

F (dp) < F (dp−1)− τ for all p ∈ N. (16)

Since F is strictly increasing, then dp < dp−1. Thus, we conclude that the sequence {dp}
is strictly decreasing, so there exists lim

p→+∞
dp = d. Suppose that d > 0. Since F is an

increasing mapping, there exists lim
ζ→d+

F (ζ) = F (d+), so taking the limit as p → +∞ in

Inequality (16), we obtain
τ +F (d+) ≤ F (d+),

a contradiction. Therefore, lim
p→+∞

dp = 0,

lim
p→+∞

G(ζp, ζp,Qζp) = 0. (17)

Therefore, by using Equations (15) and (17), we deduce

lim
p→+∞

G(ζp, ζp, ζp+1) = 0.

Thus, for each p, q ∈ N,

G(ζp, ζp, ζp+q) =G(ζp, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + sG(ζp+1, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + s2G(ζp+1, ζp+2, ζp+2) + s2G(ζp+2, ζp+q, ζp+q)

≤sG(ζp, ζp+1, ζp+1) + s2G(ζp+1, ζp+2, ζp+2)) + .... + sqG(ζp+q−1, ζp+q, ζp+q)

≤sηpG(ζ0, ζ0,Qζ0) + s2ηp+1G(ζ0, ζ0,Qζ0)

+..... + spηp+q−1G(ζ0, ζ0,Qζ0)

≤ηp(s+ s2η + s3η2 + .......)G(ζ0, ζ0,Qζ0)

≤ 1
1− sη

sηpG(ζ0, ζ0,Qζ0).

Letting p→ +∞, we obtain that

lim
p→+∞

G(ζp, ζp, ζp+q) ≤ lim
p→+∞

1
1− sη

sηpG(ζ0, ζ0,Qζ0),

implying that lim
p→+∞

G(ζp, ζp, ζp+q) = 0, which reveals that {ζp} is a cs in S . Since (S ,G, v)

is a complete convex Gb-MS , there exists ζ ′ ∈ S such that lim
p→+∞

G(ζp, ζp, ζ ′) = 0. No-

tice that
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τ +F (G(Qζ ′, ζ ′, ζ ′)) ≤τ +F
(
s[G(Qζ ′,Qζp,Qζp) + sG(Qζp, ζp, ζp) + sG(ζp, ζ ′, ζ ′)]

)
≤F

(
s[(µ1 + µ5)

G(ζ ′, ζ ′, ζp)G(ζp, ζp, ζ ′)

M(ζ ′, ζp)

+(µ2 + µ6)
G(ζ ′, ζ ′,Qζp)G(ζp, ζp,Qζ ′)

M(ζ ′, ζp)

+µ4
G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)
]

+s2G(Qζp, ζp, ζp) + s2G(ζp, ζ ′, ζ ′)
)

=⇒ F (G(Qζ ′, ζ ′, ζ ′)) ≤F
(
s[(µ1 + µ5)

G(ζ ′, ζ ′, ζp)G(ζp, ζp, ζ ′)

M(ζ ′, ζp)

+(µ2 + µ6)
G(ζ ′, ζ ′,Qζp)G(ζp, ζp,Qζ ′)

M(ζ ′, ζp)

+µ4
G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)
]

+s2G(Qζp, ζp, ζp) + s2G(ζp, ζ ′, ζ ′)
)
− τ

≤F
(
s[(µ1 + µ5)

G(ζ ′, ζ ′, ζp)G(ζp, ζp, ζ ′)

M(ζ ′, ζp)

+(µ2 + µ6)
G(ζ ′, ζ ′,Qζp)G(ζp, ζp,Qζ ′)

M(ζ ′, ζp)

+µ4
G(ζp, ζp,Qζp)G(ζp, ζp,Qζp)

M(ζp, ζp)
]

+s2G(Qζp, ζp, ζp) + s2G(ζp, ζ ′, ζ ′)
)

≤F
(
s[(µ1 + µ5)G(ζ ′, ζ ′, ζp)G(ζp, ζp, ζ ′)

+(µ2 + µ6)ζ[G(ζ ′, ζp, ζp) + G(ζp,Qζp,Qζp)]G(ζp, ζp,Qζ ′)

+µ4G(ζp, ζp,Qζp)] + s2G(Qζp, ζp, ζp) + s2G(ζp, ζ ′, ζ ′)
)

.

Using F1, we can write

G(Qζ ′, ζ ′, ζ ′) ≤s[(µ1 + µ5)G(ζ ′, ζ ′, ζp)G(ζp, ζp, ζ ′)

+(µ2 + µ6)s[G(ζ ′, ζp, ζp) + G(ζp, ζp,Qζp)]G(ζp, ζp,Qζ ′)

+µ4G(ζp, ζp,Qζp)] + s2G(Qζp, ζp, ζp) + s2G(ζp, ζp, ζ ′).

Letting p→ +∞, we obtain that lim
p→+∞

G(ζ ′, ζ ′,Qζ ′) = 0, which implies that ζ ′ = Qζ ′.

Thus, the fp of Q is ζ ′.

Remark 4. The next example shows that Theorem 2 does not ensure the uniqueness of the fp.

Example 3. Assume that S = {1, 2, 3} and G : S × S × S → [0,+∞) is a mapping for each
ζ1, ζ2, ζ3 ∈ S such that G(ζ1, ζ2, ζ3) = G(ζ2, ζ1, ζ3) = G(ζ3, ζ2, ζ1) = .... and G(1, 1, 1) =
G(2, 2, 2) = G(3, 3, 3) = 0, G(1, 1, 2) = G(2, 2, 1) = 3, G(1, 1, 3) = G(3, 3, 1) = 4, G(2, 2, 3) =
G(3, 3, 2) = 5, G(1, 2, 3) = 6. Then, (S ,G) is a complete Gb-MS with s = 1. Define a mapping
Q such that Qζ = ζ for any ζ ∈ S . For any ζ1, ζ2, ζ3 ∈ S , we obtain
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τ +F (G(Qζ1,Qζ2,Qζ3)) ≤F
(

µ1
G(ζ1, ζ1, ζ2)G(ζ2, ζ2, ζ1)

M(ζ1, ζ2)
+ µ2

G(ζ1, ζ1,Qζ2)G(ζ2, ζ2,Qζ1)

M(ζ1, ζ2)

+µ3
G(ζ2, ζ2, ζ3)G(ζ3, ζ3, ζ2)

M(ζ2, ζ3)
+ µ4

G(ζ2, ζ2,Qζ3)G(ζ3, ζ3,Qζ2)

M(ζ2, ζ3)

+µ5
G(ζ1, ζ1, ζ3)G(ζ3, ζ3, ζ1)

M(ζ1, ζ3)
+ µ6

G(ζ1, ζ1,Qζ3)G(ζ3, ζ3,Qζ1)

M(ζ1, ζ3)

)

=⇒ F (G(Qζ1,Qζ2,Qζ3)) ≤F
(

µ1
G(ζ1, ζ1, ζ2)G(ζ2, ζ2, ζ1)

M(ζ1, ζ2)
+ µ2

G(ζ1, ζ1,Qζ2)G(ζ2, ζ2,Qζ1)

M(ζ1, ζ2)

+µ3
G(ζ2, ζ2, ζ3)G(ζ3, ζ3, ζ2)

M(ζ2, ζ3)
+ µ4

G(ζ2, ζ2,Qζ3)G(ζ3, ζ3,Qζ2)

M(ζ2, ζ3)

+µ5
G(ζ1, ζ1, ζ3)G(ζ3, ζ3, ζ1)

M(ζ1, ζ3)
+ µ6

G(ζ1, ζ1,Qζ3)G(ζ3, ζ3,Qζ1)

M(ζ1, ζ3)

)
− τ

≤F
(
(µ1 + µ2)G(ζ1, ζ1, ζ2) + (µ3 + µ4)G(ζ2, ζ2, ζ3)

+(µ5 + µ6)G(ζ1, ζ1, ζ3)
)

.

Using F1, we obtain

G(Qζ1,Qζ2,Qζ3) ≤ (µ1 + µ2)(G(ζ1, ζ1, ζ2))
2 + (µ3 + µ4)(G(ζ2, ζ2, ζ3))

2 + (µ5 + µ6)(G(ζ1, ζ1, ζ3))
2.

Similarly,

G(Qζ3,Qζ1,Qζ2) ≤ (µ3 + µ4)(G(ζ1, ζ1, ζ2))
2 + (µ5 + µ6)(G(ζ2, ζ2, ζ3))

2 + (µ1 + µ2)(G(ζ1, ζ1, ζ3))
2,

G(Qζ2,Qζ3,Qζ1) ≤ (µ5 + µ6)(G(ζ1, ζ1, ζ2))
2 + (µ1 + µ2)(G(ζ2, ζ2, ζ3))

2 + (µ3 + µ4)(G(ζ1, ζ1, ζ3))
2.

Combining the above equations,

3G(Qζ2,Qζ3,Qζ1) ≤
6

∑
i=1

µi(G(ζ1, ζ1, ζ2))
2 +

6

∑
i=1

µi(G(ζ2, ζ2, ζ3))
2 +

6

∑
i=1

µi(G(ζ1, ζ1, ζ3))
2

=⇒ G(Qζ2,Qζ3,Qζ1) ≤
1
3

{ 6

∑
i=1

µi(G(ζ1, ζ1, ζ2))
2 +

6

∑
i=1

µi(G(ζ2, ζ2, ζ3))
2 +

6

∑
i=1

µi(G(ζ1, ζ1, ζ3))
2
}

.

Applying F1, we can write

F (G(Qζ2,Qζ3,Qζ1) ≤ F
(1

3

{ 6

∑
i=1

µi(G(ζ1, ζ1, ζ2))
2 +

6

∑
i=1

µi(G(ζ2, ζ2, ζ3))
2 +

6

∑
i=1

µi(G(ζ1, ζ1, ζ3))
2
})

. (18)

Consider Equation (18):
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• Case 1: If ζ1 = 1, ζ2 = 2 and ζ3 = 3, then

F (G(Q2,Q3,Q1)) ≤F
(1

3

{ 6

∑
i=1

µi(G(1, 1, 2))2 +
6

∑
i=1

µi(G(2, 2, 3))2

+
6

∑
i=1

µi(G(1, 1, 3))2
})

=F
(1

3

6

∑
i=1

µi(9 + 25 + 16)
)

=F (11.1111)

=⇒ F (G(Q2,Q3,Q1)) ≤F (11.1111).

Then,

1
10

+F (6) ≤ F (11.11) =⇒ 1
10

+ ln(6) ≤ ln(11.11) =⇒ 1.8918 ≤ 2.4079.

• Case 2: If ζ1 = ζ2 = 1 and ζ3 = 2, then

F (G(Q1,Q1,Q2)) ≤F
(1

3

{ 6

∑
i=1

µi(G(1, 1, 1))2 +
6

∑
i=1

µi(G(1, 1, 2))2

+
6

∑
i=1

µi(G(1, 1, 2))2
})

=F
( 6

∑
i=1

µi(9 + 9)
)

=F (4)
=⇒ F (G(Q1,Q1,Q2)) ≤F (4).

Then

1
10

+F (G(Q1,Q1,Q2)) ≤ F (4) =⇒ 1
10

+ ln(3) ≤ ln(4) =⇒ 1.1986 ≤ 1.3863.

• Case 3: If ζ1 = ζ2 = 1andζ3 = 2, then

F (G(Q1,Q1,Q3)) ≤F
(1

3

{ 6

∑
i=1

µi(G(1, 1, 1))2 +
6

∑
i=1

µi(G(1, 1, 3))2

+
6

∑
i=1

µi(G(1, 1, 3))2
})

=F
(1

3

6

∑
i=1

µi(16 + 16)
)

=F (64
9
)

=⇒ F (G(Q1,Q1,Q3)) ≤F (7.1111).

Then

1
10

+F (G(Q1,Q1,Q3)) ≤ F (7.1111) =⇒ 1
10

+ ln(4) ≤ ln(7.1111) =⇒ 1.4862 ≤ 1.9617.
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• Case 4: If ζ1 = ζ2 = 2andζ3 = 3, then

F (G(Q2,Q2,Q3)) ≤F
(1

3

{ 6

∑
i=1

µi(G(2, 2, 2))2 +
6

∑
i=1

µi(G(2, 2, 3))2

+
6

∑
i=1

µi(G(2, 2, 3))2
})

=F
( 6

∑
i=1

µi(25 + 25)
)

=F (100
9

)

=⇒ F (G(Q1,Q1,Q3)) ≤F (11.1111).

Then

1
10

+F (G(1, 1, 3)) ≤ F (11.1111) =⇒ 1
10

+ ln(4) ≤ ln(11.1111) =⇒ 1.7094 ≤ 2.4079.

Therefore, the contraction condition is satisfied for every ζ1, ζ2, ζ3 ∈ S . Hence, Theorem 1 is
satisfied and F(Q) = {1, 2, 3}.

Definition 13. Consider a Gb-MS defined as (S ,G) and a self mapping Q : S → S . The FP
problem for Q is called well-posed if:

(1): ζ ′ ∈ S is a unique fp of Q.
(2): For any sequence {ζp} ∈ S , if lim

p→+∞
G(ζp, ζp,Qζp) = 0, then lim

p→+∞
G(ζp, ζp, ζ ′) = 0 or

if lim
p→+∞

G(ζp,Qζp,Qζp) = 0, then lim
p→+∞

G(ζp, ζ ′, ζ ′) = 0.

Theorem 3. Assume that all assumptions of Theorem (2) hold. If

6

∑
i=1

µi ≤ max{µ1 + µ2, µ3 + µ4, µ5 + µ6}, (19)

then Q has a well-posed fp problem.

Proof. By Theorem 2, there exists an fp of Q, say ζ ′ ∈ S . To prove the uniqueness, we
proceed by a contradiction. Assume that Ψ′ is also an fp of Q. By using the hypothesis, let
∑6

i=1 µi ≤ µ1 + µ2, which is possible only if µ3 = µ4 = µ5 = µ6 = 0. Then, by using the
contraction condition

τ +F (G(ζ ′, ζ ′, Ψ′)) ≤F
(

µ1
G(ζ ′, ζ ′, ζ ′)G(ζ ′, ζ ′, ζ ′)

M(ζ ′, ζ ′)
+ µ2

G(ζ ′, ζ ′,Qζ ′)G(ζ ′, ζ ′,Qζ ′)

M(ζ ′, ζ ′)

)
=⇒ F (G(ζ ′, ζ ′, Ψ′)) ≤F

(
µ1
G(ζ ′, ζ ′, ζ ′)G(ζ ′, ζ ′, ζ ′)

M(ζ ′, ζ ′)
+ µ2

G(ζ ′, ζ ′,Qζ ′)G(ζ ′, ζ ′,Qζ ′)

M(ζ ′, ζ ′)

)
− τ

≤F
(

µ1
G(ζ ′, ζ ′, ζ ′)G(ζ ′, ζ ′, ζ ′)

M(ζ ′, ζ ′)
+ µ2

G(ζ ′, ζ ′,Qζ ′)G(ζ ′, ζ ′,Qζ ′)

M(ζ ′, ζ ′)

)
.

Using F1, we have

G(ζ ′, ζ ′, Ψ′) ≤µ1
G(ζ ′, ζ ′, ζ ′)G(ζ ′, ζ ′, ζ ′)

M(ζ ′, ζ ′)
+ µ2

G(ζ ′, ζ ′,Qζ ′)G(ζ ′, ζ ′,Qζ ′)

M(ζ ′, ζ ′)

=µ2
G(ζ ′, ζ ′,Qζ ′)G(ζ ′, ζ ′,Qζ ′)

M(ζ ′, ζ ′)
= 0,

that is G(ζ ′, ζ ′, Ψ′) = 0, which is a contradiction. The remaining cases are very easy to
verify, as they also produce a contradiction. This implies that ζ ′ is a unique fp. Consider
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a sequence {Ψp} ∈ S such that lim
p→+∞

G(Ψp, Ψp,QΨp) = 0. Further, we consider the

subsequent cases:

Case 1 : If ∑6
i=1 µi ≤ µ1 + µ2, then µ3 = µ4 = µ5 = µ6 = 0, then by using (19),

τ +F (G(QΨp, ζ ′, ζ ′)) =τ +F (G(QΨp,QΨp,Qζ ′)

≤F
(

µ1
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ2

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=⇒ F (G(QΨp, ζ ′, ζ ′)) ≤F

(
µ1
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ2

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
− τ

≤F
(

µ1
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ2

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=F

(
µ2
G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
.

Applying F1, we have

G(QΨp, ζ ′, ζ ′) ≤µ2
G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)
.

Letting p→ +∞, we obtain lim
p→+∞

G(QΨp, ζ ′, ζ ′) = 0.

Case 2: If ∑6
i=1 µi ≤ µ3 + µ4, then µ1 = µ2 = µ5 = µ6 = 0,

τ +F (G(QΨp, ζ ′, ζ ′)) =τ +F (G(QΨp,Qζ ′,QΨp))

≤F
(

µ3
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ4

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=⇒ F (G(QΨp, ζ ′, ζ ′)) ≤F

(
µ3
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ4

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
− τ

≤F
(

µ3
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ4

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=F (µ4G(Ψp, Ψp,QΨp)).

Applying F1, we have G(QΨp, ζ ′, ζ ′) ≤ µ4G(Ψp, Ψp,QΨp).
If p→ +∞, we obtain lim

p→+∞
G(QΨp, ζ ′, ζ ′) = 0.

Case 3: If ∑6
i=1 µi ≤ µ5 + µ6, then µ1 = µ2 = µ3 = µ4 = 0,

τ +F (G(QΨp, ζ ′, ζ ′)) =τ +F (G(Qζ ′,QΨp,QΨp))

≤F
(

µ5
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ6

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=⇒ F (G(QΨp, ζ ′, ζ ′)) ≤F

(
µ5
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ6

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
− τ

≤F
(

µ5
G(Ψp, Ψp, Ψp)G(Ψp, Ψp, Ψp)

M(Ψp, Ψp)
+ µ6

G(Ψp, Ψp,QΨp)G(Ψp, Ψp,QΨp)

M(Ψp, Ψp)

)
=F (µ6G(Ψp, Ψp,QΨp)).
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Using F1, we have G(QΨp, ζ ′, ζ ′) ≤ µ6G(Ψp, Ψp,QΨp).
By letting p→ +∞, we obtain lim

p→+∞
G(QΨp, ζ ′, ζ ′) = 0.

Combining all the above cases, we obtain

G(QΨp, ζ ′, ζ ′) ≤ 1
3

(
µ2G(Ψp, Ψp,QΨp) + µ4G(Ψp, Ψp,QΨp) + µ6G(Ψp, Ψp,QΨp)

)
.

Then,

G(Ψp, ζ ′, ζ ′) ≤s(G(Ψp,QΨp,QΨp) + G(QΨp, ζ ′, ζ ′))

≤s
(
G(Ψp,QΨp,QΨp) +

1
3
(µ2G(Ψp, Ψp,QΨp) + µ4G(Ψp, Ψp,QΨp)

+µ6G(Ψp, Ψp,QΨp))
)

≤s(1 + 1
3
(µ2 + µ4 + µ6))G(Ψp,QΨp,QΨp).

Taking the limit as p→ +∞, we obtain that lim
p→+∞

G(Ψp, Ψp, ζ ′) = 0.

According to Jeong and Rhoades [40], a map Q has the P-property if it fulfills

F (Q) = F (Qp) for all p ∈ N0.

It is important to note that if ζ ′ is an fp of Q, then it is an fp of Qp also, but its converse
does not hold. This point is named the periodic point. Rahimi, H. et al. [41] proved some
periodic point theorems for the T-contraction of two maps on cone metric spaces.

Theorem 4. Consider a Gb-MS defined as (S ,G) with coefficient s ≥ 1 and a mapping Q : S →
S with F (Q) 6= 0 satisfying

τ +F (G(Qζ1,Qζ1,Q2ζ1)) ≤ F (ηG(ζ1, ζ1,Qζ1)), (20)

for any ζ1 ∈ S , η ∈ [0, 1). Then, Q has the P property.

Proof. Let p > 1 and ζ3 = Qpζ3 for every p > 1. We have

τ +F (G(ζ3, ζ3,Qζ3)) =F (G(QQp−1ζ3,QQp−1ζ3,Q2Qp−1ζ3))

≤F (ηG(Qp−1ζ3,Qp−1ζ3,QQp−1ζ3))

=⇒ F (G(ζ3, ζ3,Qζ3)) ≤F (ηG(Qp−1ζ3,Qp−1ζ3,QQp−1ζ3))− τ

<F (ηG(Qp−1ζ3,Qp−1ζ3,QQp−1ζ3))

=F (ηG(QQp−2ζ3,QQp−2ζ3,Q2Qp−2ζ3))

≤F (η2(G(Qp−2ζ3,Qp−2ζ3,QQp−2ζ3)))− τ

<F (η2(G(Qp−2ζ3,Qp−2ζ3,QQp−2ζ3)))

.

.

≤F (ηpG(ζ3, ζ3,Qζ3))− τ

<F (ηpG(ζ3, ζ3,Qζ3)).

Using F1, we can write G(ζ3, ζ3,Qζ3) ≤ ηpG(ζ3, ζ3,Qζ3). By taking the limit as p→ +∞,
we obtain lim

p→+∞
G(ζ3, ζ3,Qζ3) = 0, which implies that ζ3 = Qζ3.

Theorem 5. Assume that all assumptions of Theorem 2 are fulfilled, then Q has the p property.
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Proof. For each ζ1 ∈ S , we obtain

τ +F (G(Qζ1,Qζ1,Q2ζ1)) =τ +F (G(Qζ1,Qζ1,QQζ1))

≤F
(

µ1
G(ζ1, ζ1, ζ1)G(ζ1, ζ1, ζ1)

M(ζ1, ζ1)
+ µ2

G(ζ1, ζ1,Qζ1)G(ζ1, ζ1,Qζ1)

M(ζ1, ζ1)

+(µ3 + µ5)
G(ζ1, ζ1,Qζ1)G(Qζ1,Qζ1, ζ1)

M(Qζ1, ζ1)

+(µ4 + µ6)
G(ζ1, ζ1,Q2ζ1)G(Qζ1,Qζ1,Qζ1)

M(Qζ1, ζ1)

)
≤F ((µ2 + µ3 + µ5)G(ζ1, ζ1,Qζ1)).

Note that µ2 + µ3 + µ5 < 1. Let µ2 + µ3 + µ5 = η, then

τ +F (G(Qζ1,Qζ1,Q2ζ1)) ≤F (ηG(ζ1, ζ1,Qζ1)).

This is the same as (20). By Theorem 4, Q has the P property.

Due to the many applications of integral equations in many real-life problems, the solu-
tion of integral equations and their existence have become important topics for researchers.
A huge literature is present on the existence of the solution to such integral equations using
the fixed-point technique. Gnanaprakasam et al. [42] applied their results to prove the
existence of the solution to the integral equation by incorporating the F-Khan contraction.
Similarly, Panda et al. [43] presented fixed-point results and their application to find the so-
lution of the Volterra integral equations to verify their results on the platform of dislocated
extended b-metric spaces. Recently, many works can be seen in the perspective of applying
the fixed-point results to ensure the existence of the solution to certain integral equations.
In 2022, Gupta et al. [44] applied their results to find the solution of the Fredholm integral
equation in the framework of Gb-MS , and in 2023, Joseph et al. [45] observed the solution
of an integral equation using the fixed point technique in the G-metric space.

4. Application

To ensure the existence of a solution to the subsequent integral equation, we apply
Theorem 1.

ζp(u) = f (u) + γ
∫ l2

l1
w(u, Ψ)K1(Ψ, ζp(Ψ))dΨ

∫ l2

l1
w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ for all p ∈ N (21)

for any u ∈ [l1, l2], where f : [l1, l2] → R, w : [l1, l2]× [l1, l2] → R, and K1,K2 : [l1, l2]×
R→ R are continuous functions. Let S = C([l1, l2],R) represent the space of continuous
functions on [l1, l2]. Define

G(ζp, βp, ηp) =
(

sup
u∈[l1,l2]

|ζp(u)− βp(u)|+ sup
u∈[l1,l2]

|βp(u)− ηp(u)|+ sup
u∈[l1,l2]

|ζp(u)− ηp(u)|
)2

, for all p ∈ N

while the function v : S × S × (0, 1) → S is presented as v(ζp, βp; θ) = θζp + (1− θ)βp.
Then, (S ,G, v) represents a complete convex Gb-MS with s = 2. Consider a mapping
Q : S → S by

Qζp(u) = f (u) + γ
∫ l2

l1
w(u, Ψ)K1(Ψ, ζp(Ψ))dΨ

∫ l2

l1
w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ. (22)

It is obvious thatQ is well-defined. To obtain the solution for (21), it is equivalent to finding
an fp of Q. Next, we state the subsequent theorem.

Theorem 6. Suppose that the subsequent conditions are fulfilled:

(1): γ ≤ 1;
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(2):
∫ l2
l1

w(u, Ψ)d(Ψ) ≤ 1;

(3): |Ki(Ψ, ζp(Ψ))− Ki(Ψ, βp(Ψ))| ≤
√

5
5 |Qζp−1(Ψ)−Qβp−1(Ψ)|, i = 1, 2, p ∈ N, and

∫ l2

l1
w(u, Ψ)|K1(Ψ, βp(Ψ)) + K2(Ψ, ζp(Ψ))|dΨ ≤ 1.

Then, the unique solution of Equation (21) exists.

Proof. Clearly , any fp of (22) is a solution of (21). Using Conditions (1)–(3), we have

G(Qζp,Qβp,Qβp)

=
(

2 sup
u∈[l1,l2]

|Qζp(u)−Qβp(u)|
)2

=γ2

(
2 sup
u∈[l1,l2]

∣∣∣∣∣
∫ l2

l1
w(u, Ψ)K1(Ψ, ζp(Ψ))dΨ

∫ l2

l1
w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ

−
∫ l2

l1
w(u, Ψ)K1(Ψ, βp(Ψ))dΨ

∫ l2

l1
w(u, Ψ)K2(Ψ, βp(Ψ))dΨ

∣∣∣∣∣
)2

≤γ2

(
2 sup
u∈[l1,l2]

∣∣∣∣∣
∫ l2

l1

w(u, Ψ)

∣∣∣∣∣K1(Ψ, ζp(Ψ))dΨ− K1(Ψ, βp(Ψ))

∣∣∣∣∣dΨ
∫ l2

l1

w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ

+
∫ l2

l1

w(u, Ψ)K1(Ψ, βp(Ψ))dΨ
∫ l2

l1

w(u, Ψ)

∣∣∣∣∣K2(Ψ, ζp(Ψ))dΨ− K2(Ψ, βp(Ψ))

∣∣∣∣∣dΨ

∣∣∣∣∣
)2

≤4γ2

(
sup

u∈[l1,l2]

sup
Ψ∈[l1,l2]

∣∣∣∣∣K1(Ψ, ζp(Ψ))dΨ− K1(Ψ, βp(Ψ))

∣∣∣∣∣
∣∣∣∣∣ sup
u∈[l1,l2]

∫ l2

l1

w(u, Ψ)dΨ

∫ l2

l1

w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ

∣∣∣∣∣+ sup
u∈[l1,l2]

sup
Ψ∈[l1,l2]

∣∣∣∣∣K2(Ψ, ζp(Ψ))− K2(Ψ, βp(Ψ))

∣∣∣∣∣∣∣∣∣∣
∫ l2

l1

w(u, Ψ)K1(Ψ, βp(Ψ)dΨ
∫ l2

l1

w(u, Ψ)dΨ

∣∣∣∣∣
)2

≤4γ2

(√
5

5
sup

u∈[l1,l2]

|Qζp−1 −Qβp−1| sup
u∈[l1,l2]

∣∣∣∣∣
∫ l2

l1

w(u, Ψ)dΨ
∫ l2

l1

w(u, Ψ)K2(Ψ, ζp(Ψ))dΨ

+
∫ l2

l1

w(u, Ψ)K1(Ψ, βp(Ψ))dΨ
∫ l2

l1

w(u, Ψ)dΨ

∣∣∣∣∣
)2

≤4
5

γ2 sup
u∈[l1,l2]

( ∫ l2

l1

w(u, Ψ)dΨ
)2
(

sup
u∈[l1,l2]

|Qζp−1 −Qβp−1| sup
u∈[l1,l2]

∣∣∣∣∣
∫ l2

l1

w(u, Ψ)

∣∣∣∣∣K2(Ψ, ζp(Ψ))dΨ

+
∫ l2

l1

w(u, Ψ)

∣∣∣∣∣K1(Ψ, ζp(Ψ))dΨ

∣∣∣∣∣
)2

≤4
5

γ2

(
2 sup
u∈[l1,l2]

|Qζp−1 −Qβp−1| sup
u∈[l1,l2]

∣∣∣∣∣
∫ l2

l1

w(u, Ψ)|K1(Ψ, βp(Ψ)) + K2(Ψ, ζp(Ψ))|dΨ

∣∣∣∣∣
)2

≤1
5

(
2 sup
u∈[l1,l2]

|Qζp−1 −Qβp−1|
)2

=
1
5
G(Qζp−1,Qβp−1,Qβp−1).

Hence
τ +F (G(Qζp,Qβp,Qβp)) ≤ F (

1
5
G(Qζp−1,Qβp−1,Qβp−1)),
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where F(t) = ln t and τ ∈ (0, ln
(

1
5
G(Qζp−1,Qβp−1,Qβp−1)

G(Qζp ,Qβp ,Qβp)

)
).

All conditions of Theorem 1 with βp = ζp are satisfied, which enables us to know that
a fixed point for Q exists. Thus, the solution of the integral equation exists. Hence, we
obtain that Equation (21) gives a unique solution, where the sequence satisfies the convex
condition with θp ∈ (0, 1

4 ).

5. Conclusions

In 2023, Ji et al. [28] presented an article on fixed-point results using Mann’s iterative
scheme tailored to Gb-metric spaces. Wardowski introduced the idea of the F -contraction
using an increasing function as a control function. Incorporating both concepts, in this
manuscript, the existence and uniqueness of the fixed points were presented with Mann’s it-
eration scheme in convex Gb-metric spaces using the F -contraction. This task was achieved
by further weakening the conditions of the F mappings presented by Wardowski. An
example was provided to support our results. Eventually, an application was given for the
validity of our results. The obtained results are generalizations of several existing results in
the literature. Furthermore, the results of Ji. et al. are the special case of these theorems.
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