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Abstract: The authors of the present paper previously proved the Ulam stability for the n-th-order
linear differential operator with constant coefficients. They obtained its best Ulam constant for the
case of distinct roots of the characteristic equation. However, a complete answer to the problem
of the best Ulam constant was later obtained only for the second-order linear differential operator.
This paper deals with the Ulam stability of the third-order linear differential operator with constant
coefficients acting in a Banach space. The paper’s main purpose is to obtain the best Ulam constant of
this operator, thus completing the previous research in the field.
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1. Introduction

Let K be the field of real or complex numbers. Throughout this paper, (X, ‖ · ‖)
denotes a Banach space over the field C while Cn(R, X) denotes the linear space of all n
times differentiable functions with continuous n-th derivatives, defined on R with values
in X.

Let A and B be two linear spaces over the field K.

Definition 1. The function ρA : A→ [0, ∞] satisfying the following properties:

(i) ρA(x) = 0 if and only if x = 0;
(ii) ρA(λx) = |λ|ρA(x) for all x ∈ A, λ ∈ K, λ 6= 0,

is called a gauge on A.

For the function f ∈ Cn(R, X), we define

‖ f ‖∞ = sup{‖ f (t)‖ : t ∈ R}. (1)

Then, ‖ f ‖∞ is a gauge on Cn(R, X). We suppose that both linear spaces Cn(R, X) and
C(R, X) are endowed with the same gauge ‖ · ‖∞.

Let ρA, ρB be two gauges on the linear spaces A and B, respectively, and let D : A→ B
be a linear operator.

We denote by ker D = {x ∈ A|Dx = 0} the kernel of D and by R(D) = {Dx|x ∈ A}
the range of the operator D, respectively.

Definition 2. We say that the operator D is Ulam-stable if there exists K ≥ 0 such that, for every
ε > 0 and every x ∈ A with the property that ρB(Dx) ≤ ε, there exists z ∈ ker D such that
ρA(x− z) ≤ Kε.
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The number K in the above definition is called an Ulam constant of the operator D.
Further, we denote by KD the infimum of all Ulam constants of the operator D. In general,
the infimum of all Ulam constants of the operator D is not necessarily an Ulam constant of
D (see [1]). However, for the case where KD is also an Ulam constant of the operator D, we
will call it the best Ulam constant of D.

The stability problem was initially raised by Ulam [2] in the fall of 1940 and partially
answered a year later by Hyers [3], and it has developed ever since, growing as such into
a vast area of research. Nowadays, Ulam stability follows various directions of research,
from the stability of operators to the stability of different types of equations. For a complete
approach to this topic, we refer the reader to [4,5].

For the sake of completeness, we will first present a brief historical background of
the problem of finding the best Ulam constant of differential equations and operators.
Consequently, we will mention here only some results in the field connected with the
stability of operators that also serve the purpose of the present paper. As far as we know,
the first Ulam stability result for differential equations was obtained by M.Obłoza in [6].
Hereafter, the topic was deeply investigated by many mathematicians. We can mention
here T. Miura, S. Miyajima, S.E. Takahasi [7–9], and S. M Jung [10], who obtained stability
results for various differential equations and partial differential equations. Representations
of the best Ulam constants of linear and bounded operators acting on normed spaces were
given in [1,11].

The study of Ulam stability has also been developed for the higher-order differential
operators with constant coefficients. In [12,13], sharp estimates for the Ulam constant of the
first-order and the higher-order linear differential operators were given. Later, the work
was improved, and the best Ulam constant was obtained for the case of the first-order
linear differential operator in [7]. Shortly after, in [14], A.R. Baias and D. Popa extended
the study of Ulam stability to the case of the second-order linear differential operator with
constant coefficients D(y) = y′′ + ay′ + by, y ∈ C2(R, X), a, b ∈ C and obtained its best
Ulam constant as

KD =



1
|p−q|

∫ ∞
0 |e

−pv − e−qv|dv, if Re p > 0, Re q > 0, p 6= q
1
|p−q|

∫ 0
−∞ |e

−pv − e−qv|dv, if Re p < 0, Re q < 0, p 6= q
1
|p−q|

∣∣∣ 1
Re p −

1
Re q

∣∣∣, if Re p · Re q < 0
1

(Re p)2 , if p = q,

where p and q are the characteristic roots of the equation; namely, p = −a+
√

a2−4b
2 and

q = −a−
√

a2−4b
2 . The stability of the second-order linear differential equations with variable

coefficients was treated by M. Onitsuka in [15]. For linear differential equations with
periodic coefficients, we can mention the stability results obtained in [16], while for second-
order linear dynamic equations on time scales, we refer the reader to the paper by D.R.
Anderson and M. Onitsuka [17]. The Ulam stability of some integro-differential equations
was studied in [18,19].

In [8], it was proved that the n-order linear differential operator with constant co-
efficients is Ulam stable if and only if its characteristic equation has no pure imaginary
roots. In this case, the Ulam constant is given by 1

n
∏

k=1
|Re rk |

, where rk denote the roots of

the characteristic equation. Important steps in finding the best Ulam constant of the same
operator were made in [20], where the best Ulam constant was obtained only for the case
of distinct roots in the characteristic equation.

The results in the next section streamline those given by [14] and extend them from the
case of the second-order differential operator to the case of the third-order linear differential
operator. In this paper, we first obtain a stability result for the third-order linear differential
operator acting in a Banach space. However, the main purpose of the present paper is
to give a complete answer to the problem of the best Ulam constant for this operator by
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obtaining an expression of the best Ulam constant in all possible cases. This research was
motivated by the fact that the best Ulam constant of an equation or operator offers the best
measure of the error between the approximate and the exact solution of the corresponding
equation or operator.

2. Main Results

Let a, b, c ∈ C and let D : C3(R, X)→ C(R, X) be defined by

D(y) = y′′′ + ay′′ + by′ + cy, y ∈ C3(R, X). (2)

If p, q, and r are the roots of the characteristic polynomial P(z) = z3 + az2 + bz + c,
then, as is well known, the kernel of D takes one of the below forms, depending on the
order of multiplicity of the roots of the characteristic equation:

ker D = {C1epx + C2eqx + C3erx|C1, C2, C3 ∈ X}, (3)

for the case of distinct roots;

ker D = {(C1 + C2x)epx + C3erx|C1, C2, C3 ∈ X}, (4)

for the case p = q 6= r;

ker D = {(C1 + C2x + C3x2)epx|C1, C2, C3 ∈ X} (5)

for the case p = q = r, respectively.
The operator D is surjective; so, for every f ∈ C(R, X), one can find a particular

solution of the equation D(y) = f , using, for example, the method of variation of constants.
Next, we will determine the form of the particular solutions, taking into account the order
of multiplicity of the roots of the characteristic equation.

For the case of distinct roots in the characteristic equation, the form of a particular
solution to the equation Dy = f is

yp(x) = C1(x)epx + C2(x)eqx + C3(x)erx, x ∈ R,

where C1, C2, and C3 are functions of class C1(R, X) that satisfy epx eqx erx

pepx qeqx rerx

p2epx q2eqx r2erx

C′1(x)
C′2(x)
C′3(x)

 =

 0
0

f (x)

, x ∈ R. (6)

Consequently, we obtain

C′1(x) =
f (x)

(r− p)(q− p)
e−px, C′2(x) =

f (x)
(r− q)(p− q)

e−qx C′3(x) =
f (x)

(r− q)(r− p)
e−rx.

For the sake of simplicity, we denote this by V = (r− p)(r− q)(q− p); hence, a particular
solution of the equation D(y) = f is given by

yp(x) =
1
V

∫ x

0

(
(r− q)ep(x−t) − (r− p)eq(x−t) + (q− p)er(x−t)

)
f (t)dt, x ∈ R. (7)

Analogously, for the case p = q 6= r, a particular solution is given by

yp(x) =
1

(r− p)2

∫ x

0

(
((p− r)(x− t)− 1)ep(x−t) + er(x−t)

)
f (t)dt, x ∈ R, (8)
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while, for the case p = q = r, the form of the particular solution is

yp(x) =
1
2

∫ x

0
(t− x)2 f (t)ep(x−t)dt, x ∈ R. (9)

The main results concerning the Ulam stability of the operator D are given in the
next theorems.

Theorem 1. Suppose that p, q, and r are distinct roots of the characteristic equation with
Re p 6= 0, Re q 6= 0, and Re r 6= 0, and let ε > 0. Thenm for every y ∈ C3(R, X) satisfying

‖D(y)‖∞ ≤ ε (10)

there exists a unique y0 ∈ ker D such that

‖y− y0‖∞ ≤ Kε (11)

where

K =



1
|V|

∫ ∞

0
|(r− q)e−pu + (p− r)e−qu + (q− p)e−ru|du, if Re p > 0, Re q > 0, Re r > 0;

1
|V|

(∫ ∞

0
|(r− q)e−pu + (p− r)e−qu|du +

∫ ∞

0
|(q− p)eru|du

)
, if Re p > 0, Re q > 0, Re r < 0;

1
|V|

(∫ ∞

0
|(r− q)e−pu|du +

∫ ∞

0
|(p− r)equ + (q− p)eru|du

)
, if Re p > 0, Re q < 0, Re r < 0;

1
|V|

∫ ∞

0
|(r− q)epu + (p− r)equ + (q− p)eru|du, if Re p < 0, Re q < 0, Re r < 0,

(12)

Proof. Existence.
Suppose that y ∈ C3(R, X) satisfies Equation (10) and let D(y) = f . Then, ‖ f ‖∞ ≤ ε and

y(x) = C1epx + C2eqx + C3erx + yp(x), x ∈ R,

for some C1, C2 C3 ∈ X, where yp(x) is a particular solution of the equation D(y) = f given
by Equation (7).

(i) Let Re p > 0, Re q > 0, and Re r > 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2eqx + C̃3erx, x ∈ R,

where

C̃1 = C1 +
r− q

V

∫ ∞

0
f (t)e−ptdt;

C̃2 = C2 +
p− r

V

∫ ∞

0
f (t)e−qtdt;

C̃3 = C3 +
q− p

V

∫ ∞

0
f (t)e−rtdt,

The integrals in the definition of the constants C̃k, 1 ≤ k ≤ 3 are convergent since
Re p > 0, Re q > 0, Re r > 0, and ‖ f (t)‖ ≤ ε, ∀t ∈ R. Then,

y(x)− y0(x) =
−1
V

∫ ∞

x
((r− q)ep(x−t) + (p− r)eq(x−t) + (q− p)er(x−t)) f (t)dt.

Now, letting t− x = u in the above integral, we obtain

y(x)− y0(x) =
−1
V

∫ ∞

0
((r− q)e−pu + (p− r)e−qu + (q− p)e−ru) f (x + u)du, x ∈ R.
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Consequently,

‖y(x)− y0(x)‖ ≤ ε

|V|

∫ ∞

0
|(r− q)e−pu + (p− r)e−qu + (q− p)e−ru|du, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

(ii) Let Re p > 0, Re q > 0, and Re r < 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2eqx + C̃3erx, x ∈ R,

where

C̃1 = C1 +
r− q

V

∫ ∞

0
f (t)e−ptdt;

C̃2 = C2 +
p− r

V

∫ ∞

0
f (t)e−qtdt;

C̃3 = C3 −
q− p

V

∫ 0

−∞
f (t)e−rtdt,

Then,

y(x)− y0(x) =
−1
V

∫ ∞

x
((r− q)ep(x−t) + (p− r)eq(x−t)) f (t)dt +

q− p
V

∫ x

−∞
er(x−t) f (t)dt.

Letting t− x = u and, respectively, t− x = −u in the above integrals, it follows that

y(x)− y0(x) =
−1
V

∫ ∞

0
((r− q)e−pu + (p− r)e−qu) f (x + u)du +

q− p
V

∫ ∞

0
eru f (x− u)du, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ ε

|V|

(∫ ∞

0
|(r− q)e−pu + (p− r)e−qu|du + |q− p|

∫ ∞

0
|eru|du

)
, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

(iii) Let Re p > 0, Re q < 0, and Re r < 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2eqx + C̃3erx, x ∈ R,

where

C̃1 = C1 +
r− q

V

∫ ∞

0
f (t)e−ptdt;

C̃2 = C2 −
p− r

V

∫ 0

−∞
f (t)e−qtdt;

C̃3 = C3 −
q− p

V

∫ 0

−∞
f (t)e−rtdt,

Then,

y(x)− y0(x) = − r− q
V

∫ ∞

x
ep(x−t) f (t)dt +

1
V

∫ x

−∞
((p− r)eq(x−t)) + (q− p)er(x−t)) f (t)dt.

Letting t− x = u and, respectively, t− x = −u in the above integrals, it follows that
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y(x)− y0(x) = − r− q
V

∫ ∞

0
e−pu f (x + u)du +

1
V

∫ ∞

0

(
(p− r)e−qu + (q− p)eru) f (x− u)du, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ ε

|V|

(
|r− q|

∫ ∞

0
|e−pu|du +

∫ ∞

0
|(p− r)equ + (q− p)eru|du

)
, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

(iv) Let Re p < 0, and Re q < 0, Re r < 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2eqx + C̃3erx, x ∈ R,

where

C̃1 = C1 −
r− q

V

∫ 0

−∞
f (t)e−ptdt;

C̃2 = C2 −
p− r

V

∫ 0

−∞
f (t)e−qtdt;

C̃3 = C3 −
q− p

V

∫ 0

−∞
f (t)e−rtdt,

Then,

y(x)− y0(x) =
1
V

∫ x

−∞
((r− q)ep(x−t) + (p− r)eq(x−t) + (q− p)er(x−t)) f (t)dt.

Now, letting t− x = −u in the above integral, we obtain

y(x)− y0(x) =
1
V

∫ ∞

0
((r− q)epu + (p− r)equ + (q− p)eru) f (x− u)du, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ ε

|V|

∫ ∞

0
|(r− q)epu + (p− r)equ + (q− p)eru|du, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

Uniqueness. Suppose that, for some y ∈ C3(R, X) satisfying Equation (10), there exist
y1, y2 ∈ ker D such that

‖y− yj‖∞ ≤ Kε, j = 1, 2.

Then,
‖y1 − y2‖∞ ≤ ‖y1 − y‖∞ + ‖y− y2‖∞ ≤ 2Kε.

However, y1 − y2 ∈ ker D; thus, y1 − y2 belongs to the set given by Equation (3). If
(C1, C2, C3) 6= (0, 0, 0), then

‖y1 − y2‖∞ = sup
x∈R
‖y1(x)− y2(x)‖ = +∞,

which contradicts the boundedness of y1 − y2. We conclude that Ck = 0, 1 ≤ k ≤ 3;
therefore, y1 = y2. The theorem is proved.
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Theorem 2. Suppose that p = q 6= r with Re p 6= 0 and Re r 6= 0 and let ε > 0. Then, for every
y ∈ C3(R, X) satisfying

‖D(y)‖∞ ≤ ε (13)

there exists a unique y0 ∈ ker D such that

‖y− y0‖∞ ≤ Kε, (14)

where

K =



1
|r− p|2

∫ ∞

0

(
|((r− p)u− 1)e−pu + e−ru|

)
du, if Re p > 0, Re r > 0;

1
|r− p|2

∫ ∞

0
|((r− p)u− 1)e−pu|+ |eru|du, if Re p > 0, Re r < 0;

1
|r− p|2

∫ ∞

0
|((p− r)u− 1)epu + eru|du, if Re p < 0, Re r < 0.

(15)

Proof. Existence.
Let y ∈ C3(R, X) satisfying Equation (13) and let D(y) = f , with
‖ f ‖∞ ≤ ε. Then,

y(x) = (C1 + C2x)epx + C3erx +
1

(r− p)2

∫ x

0

(
((p− r)(x− t)− 1)ep(x−t) + er(x−t)

)
f (t)dt,

C1, C2, C3 ∈ X.

(i) Let Re p > 0 and Re r > 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2xepx + C̃3erx, x ∈ R,

where

C̃1 = C1 +
1

(r− p)2

∫ ∞

0
((r− p)t− 1) f (t)e−ptdt;

C̃2 = C2 −
1

(r− p)2

∫ ∞

0
(r− p) f (t)e−ptdt;

C̃3 = C3 +
1

(r− p)2

∫ ∞

0
f (t)e−rtdt.

The proof of the convergence of the improper integrals is analogous to that given in
Theorem 1.
Then,

y(x)− y0(x) =
−epx

(r− p)2

∫ ∞

x
((x− t)(p− r)− 1) f (t)e−ptdt +

erx

(r− p)2

∫ ∞

x
f (t)e−rtdt.

Now, letting t− x = u in the above integral, we obtain

y(x)− y0(x) =
−1

(r− p)2

∫ ∞

0

(
((r− p)u− 1)e−pu + e−ru) f (x + u)du, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ 1
|r− p|2

∫ ∞

0

(∣∣((r− p)u− 1) f (x + u)e−pu∣∣+ ∣∣e−ru f (x− u)
∣∣)du

≤ ε

|r− p|2
∫ ∞

0

(
|((r− p)u− 1)e−pu|+ |e−ru|

)
du, x ∈ R;
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therefore,
‖y− y0‖∞ ≤ Kε.

(ii) Let Re p > 0 and Re r < 0. The proof follows analogously, defining y0 by the relation

y0(x) = C̃1epx + C̃2xepx + C̃3erx, x ∈ R,

with

C̃1 = C1 +
1

(r− p)2

∫ ∞

0
((r− p)t− 1) f (t)e−ptdt;

C̃2 = C2 −
1

(r− p)2

∫ ∞

0
(r− p) f (t)e−ptdt;

C̃3 = C3 −
1

(r− p)2

∫ 0

−∞
f (t)e−rtdt.

Then,

y(x)− y0(x) =
−epx

(r− p)2

∫ ∞

x
((x− t)(p− r)− 1) f (t)e−ptdt +

erx

(r− p)2

∫ x

−∞
f (t)e−rtdt.

Letting t− x = u and, respectively, t− x = −u in the above integrals, it follows that

y(x)− y0(x) =
1

(r− p)2

(
−
∫ ∞

0
((r− p)u− 1) f (x + u)e−pudu +

∫ ∞

0
f (x− u)erudu

)
, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ 1
|r− p|2

∫ ∞

0
|((r− p)u− 1) f (x + u)e−pu|du +

∫ ∞

0
| f (x− u)eru|du

≤ ε

|r− p|2
∫ ∞

0

(
|((r− p)u− 1)e−pu|+ |eru|

)
du, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

(iii) Let Re p < 0 and Re r < 0. Then, we define y0 by the relation

y0(x) = C̃1epx + C̃2xepx + C̃3erx, x ∈ R,

with

C̃1 = C1 −
1

(r− p)2

∫ 0

−∞
((r− p)t− 1) f (t)e−ptdt;

C̃2 = C2 +
1

(r− p)2

∫ 0

−∞
(r− p) f (t)e−ptdt;

C̃3 = C3 −
1

(r− p)2

∫ 0

−∞
f (t)e−rtdt.

Therefore,

y(x)− y0(x) =
epx

(r− p)2

∫ x

−∞
((x− t)(p− r)− 1) f (t)e−ptdt +

erx

(r− p)2

∫ x

−∞
f (t)e−rtdt.

Letting x− t = u in the above integrals, it follows that

y(x)− y0(x) =
1

(r− p)2

(∫ ∞

0
((p− r)u− 1) f (x− u)epudu +

∫ ∞

0
f (x− u)erudu

)
, x ∈ R.
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Consequently,

‖y(x)− y0(x)‖ ≤ 1
|r− p|2

∫ ∞

0
|((p− r)u− 1)epu + eru| f (x− u)du

≤ ε

|r− p|2
∫ ∞

0
|((p− r)u− 1)epu + eru|du, x ∈ R;

therefore,
‖y− y0‖∞ ≤ Kε.

Uniqueness. Suppose that, for some y ∈ C3(R, X) satisfying Equation (13), there exist
y1, y2 ∈ ker D such that

‖y− yj‖∞ ≤ Kε, j = 1, 2.

Then,
‖y1 − y2‖∞ ≤ ‖y1 − y‖∞ + ‖y− y2‖∞ ≤ 2Kε.

However, y1 − y2 ∈ ker D; hence, there exist C1, C2, C3 ∈ X, such that

y1(x)− y2(x) = (C1 + C2x)epx + C3erx, x ∈ R. (16)

If (C1, C2, C3) 6= (0, 0, 0), then

‖y1 − y2‖∞ = sup
x∈R
‖y1(x)− y2(x)‖ = +∞,

which contradicts the boundedness of y1 − y2. We conclude that Ck = 0, 1 ≤ k ≤ 3;
therefore, y1 = y2. The theorem is proved.

Theorem 3. Suppose that p = q = r with Re p 6= 0 and let ε > 0. Then, for every y ∈ C3(R, X)
satisfying

‖D(y)‖∞ ≤ ε (17)

there exists a unique y0 ∈ ker D such that

‖y− y0‖∞ ≤
ε

|Re p|3 . (18)

Proof. Existence. Let y ∈ C3(R, X) satisfying Equation (17) and let D(y) = f , with
‖ f ‖∞ ≤ ε. Then,

y(x) = (C1 + xC2 + x2C3)epx + yp(x),

C1, C2, C3 ∈ X, where yp is given by Equation (9).

(i) Let Re p > 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2xepx + C̃3x2epx, x ∈ R,

where

C̃1 = C1 +
1
2

∫ ∞

0
t2 f (t)e−ptdt;

C̃2 = C2 −
∫ ∞

0
t f (t)e−ptdt;

C̃3 = C3 +
1
2

∫ ∞

0
f (t)e−ptdt.

Then,
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y(x)− y0(x) =
−epx

2

∫ ∞

x
(t− x)2 f (t)e−ptdt.

Now, letting t− x = u in the above integral, we obtain

y(x)− y0(x) =
−1
2

∫ ∞

0
u2 f (x + u)e−pudu, x ∈ R. (19)

Consequently,

‖y(x)− y0(x)‖ ≤ ε

2

∫ ∞

0
|u2e−pu|du =

ε

2

∫ ∞

0
u2e−u Re pdu =

ε

|Re p|3 , x ∈ R.

(ii) Let Re p < 0. Define y0 by the relation

y0(x) = C̃1epx + C̃2xepx + C̃3erx, x ∈ R,

where

C̃1 = C1 +
1
2

∫ 0

−∞
t2 f (t)e−ptdt;

C̃2 = C2 −
∫ 0

−∞
t f (t)e−ptdt;

C̃3 = C3 +
1
2

∫ 0

−∞
f (t)e−ptdt.

Then,

y(x)− y0(x) =
epx

2

∫ ∞

x
(t− x)2 f (t)e−ptdt.

Now, letting x− t = u in the above integral, we obtain

y(x)− y0(x) =
1
2

∫ ∞

0
u2 f (x− u)epudu, x ∈ R.

Consequently,

‖y(x)− y0(x)‖ ≤ ε

2

∫ ∞

0
u2|epu|du =

ε

|Re p|3 , x ∈ R.

The existence is proved.
Uniqueness. Suppose that, for some y ∈ C3(R, X) satisfying Equation (17), there exist

y1, y2 ∈ ker D such that
‖y− yj‖∞ ≤ Kε, j = 1, 2.

Then,
‖y1 − y2‖∞ ≤ ‖y1 − y‖∞ + ‖y− y2‖∞ ≤ 2Kε.

However, y1 − y2 ∈ ker D; hence, there exist C1, C2, C3 ∈ X such that

y1(x)− y2(x) = (C1 + C2x + C3x2)epx, x ∈ R. (20)

If (C1, C2, C3) 6= (0, 0, 0), then

‖y1 − y2‖∞ = sup
x∈R
‖y1(x)− y2(x)‖ = +∞,
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which contradicts the boundedness of y1 − y2. We conclude that Ck = 0, 1 ≤ k ≤ 3;
therefore, y1 = y2, and the result holds.

Theorem 4. Suppose that p, q, and r are distinct roots of the characteristic equation with
Re p 6= 0, Re q 6= 0, and Re r 6= 0. Then, the best Ulam constant of D is given by

KD =



1
|V|

∫ ∞

0
|(r− q)e−pu + (p− r)e−qu + (q− p)e−ru|du, if Re p > 0, Re q > 0, Re r > 0,

1
|V|

∫ ∞

0
|(r− q)epu + (p− r)equ + (q− p)eru|du, if Re p < 0, Re q < 0, Re r < 0,

1
|V|

(∫ ∞

0
|(r− q)e−pu + (p− r)e−qu|du +

∫ ∞

0
|(q− p)eru|du

)
, if Re p > 0, Re q > 0, Re r < 0;

1
|V|

(∫ ∞

0
|(r− q)e−pu|du +

∫ ∞

0
|(p− r)equ + (q− p)eru|du

)
, if Re p > 0, Re q < 0, Re r < 0.

(21)

Proof. Suppose that D admits an Ulam constant K < KD.

(i) First, let Re p > 0, Re q > 0, and Re r > 0. Then,

KD =
1
|V|

∫ ∞

0
|(r− q)e−pu + (p− r)e−qu + (q− p)e−ru|du.

Let h(x) = (r− q)e−px + (p− r)e−qx + (q− p)e−rx, x ∈ R. Take s ∈ X, ‖s‖ = 1, and
θ > 0 as arbitrarily chosen and consider f : R→ X defined by

f (x) =
h(x)

|h(x)|+ θe−x s, x ∈ R,

where h(x) denotes the conjugate of h(x). Obviously, the function f is continuous on
R and ‖ f (x)‖ ≤ 1 for all x ∈ R. Let ỹ be the solution to D(y) = f given by

ỹ(x) =
−1
V

∫ ∞

0
((r− q)e−pu + (p− r)e−qu + (q− p)e−ru) f (x + u)du, x ∈ R. (22)

Since f is bounded and Re p > 0, Re q > 0, and Re r > 0, it follows that ỹ(x) is
bounded on R. Furthermore, ‖D(ỹ)‖∞ ≤ 1 and the Ulam stability of D for ε = 1 with
the constant K leads to the existence of y0 ∈ ker D, which is given by Equation (3)
such that

‖ỹ− y0‖∞ ≤ K. (23)

If (C1, C2, C3) 6= (0, 0, 0), we get, in view of the boundedness of ỹ

lim
x→∞
‖ỹ(x)− y0(x)‖ = +∞, (24)

which contradicts relation (23). Therefore, C1 = C2 = C3 = 0, and relation (23) becomes

‖ỹ(x)‖ ≤ K, for all x ∈ R. (25)

Taking x = 0 in Equation (25) we get
‖ỹ(0)‖ ≤ K; i.e.,

1
|V|

∣∣∣∣∫ ∞

0

(
r− q)e−pu + (p− r)e−qu + (q− p)e−ru) f (u)du

∣∣∣∣ ≤ K,

or, equivalently,

1
|V|

∣∣∣∣∫ ∞

0
h(u) f (u)du

∣∣∣∣ = 1
|V|

∫ ∞

0

|h(u)|2
|h(u)|+ θe−u du ≤ K, ∀θ > 0. (26)
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We show next that

lim
θ→0

∫ ∞

0

|h(u)|2
|h(u)|+ θe−u du =

∫ ∞

0
|h(u)|du.

Indeed,∣∣∣∣∫ ∞

0

|h(u)|2
|h(u)|+ θe−u du−

∫ ∞

0
|h(u)|du

∣∣∣∣ ≤ ∫ ∞

0

∣∣∣∣ |h(u)|2
|h(u)|+ θe−u − |h(u)|

∣∣∣∣du

= θ
∫ ∞

0

|h(u)|e−u

|h(u)|+ θe−u du

≤ θ
∫ ∞

0
e−udu = θ, θ > 0,

Consequently, letting θ → 0 in Equation (26), we get KD ≤ K, which contradicts the
supposition K < KD.

(ii) The case where Re p < 0, Re q < 0, and Re r < 0 follows analogously for

f (x) =
h(−x)

|h(−x)|+ θex s,

for s ∈ X, ‖s‖ = 1, x ∈ R, and θ > 0, where h is defined by

h(x) = (r− q)epx + (p− r)eqx + (q− p)erx, x ∈ R.

(iii) Consider Re p > 0, Re q > 0, and Re r < 0. Let

h1(x) = (r− q)e−px + (p− r)e−qx, h2(x) = (q− p)erx, x ∈ R.

Take an arbitrary θ > 0, s ∈ X, ‖s‖ = 1 and define the function f : X → R by

f (x) =


h1(x)

|h1(x)|+θe−x s, if x ∈ [0,+∞)

−h2(−x)
|h2(−x)|+θex s, if x ∈ (−∞, 0)

(27)

It can be seen that f is continuous and ‖ f ‖∞ ≤ 1.
Let ỹ be the solution to D(y) = f given by

ỹ(x) =
−1
V

∫ ∞

0
((r− q)e−pu + (p− r)e−qu) f (x + u)du +

1
V

∫ ∞

0
(q− p)eru f (x− u)du, (28)

Since f is bounded, taking account of the signs of the roots p, q, and r, it follows that
ỹ(x) is bounded.
On the other hand, all the elements of ker D are unbounded, except y = 0. We
conclude that the relation

‖ỹ− y‖∞ ≤ K

takes place only for y = 0; therefore,

‖ỹ(x)‖ ≤ K, ∀x ∈ R.

For x = 0, it follows that ‖ỹ(0)‖ ≤ K, which is equivalent to

1
|V|

∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du ≤ K. (29)

We prove that
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lim
θ→0

∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du =

∫ ∞

0
(|h1(u)|+ |h2(u)|)du.

Indeed,∣∣∣∣∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du−

∫ ∞

0
(|h1(u)|+ |h2(u)|)du

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣ |h1(u)|2
|h1(u)|+ θe−u − |h1(u)|+

|h2(u)|2
|h2(u)|+ θe−u − |h2(u)|

∣∣∣∣du

= θ
∫ ∞

0

(
|h1(u)|

|h1(u)|+ θe−u +
|h2(u)|

|h2(u)|+ θe−u

)
e−udu

≤ 2θ
∫ ∞

0
e−udu = 2θ.

Now, letting θ → 0 in Equation (29), it follows that KD < K, which is a contradiction.
(iv) The case where Re p > 0, Re q < 0, and Re r < 0 follows analogously for

f (x) =


h1(x)

|h1(x)|+θe−x s, if x ∈ [0,+∞)

−h2(−x)
|h2(−x)|+θex s, if x ∈ (−∞, 0)

(30)

for s ∈ X, ‖s‖ = 1, x ∈ R, and θ > 0, where h1 and h2 are defined by

h1(x) = (r− q)e−px, h2(x) = (p− r)equ + (q− p)erx, x ∈ R,

respectively.

Theorem 5. Suppose that p is a double root and r a simple root of the characteristic equation
with Re p 6= 0 and Re r 6= 0. Then, the best Ulam constant of D is given by

KD =



1
|r− p|2

∫ ∞

0

∣∣((r− p)u− 1)e−pu + eru∣∣du, if Re p > 0, Re r > 0;

1
|r− p|2

∫ ∞

0
|((r− p)u− 1)e−pu|+ |eru|du, if Re p > 0, Re r < 0;

1
|r− p|2

∫ ∞

0
|((p− r)u− 1)epu + eru|du, if Re p < 0, Re r < 0.

(31)

Proof. First, let Re p > 0 and Re r < 0.

KD =
1

(r− p)2

∫ ∞

0
|((r− p)u− 1)e−pu|+ |eru|du.

Let θ > 0 and s ∈ X, ‖s‖ = 1. Consider h1(u) = e−pu((r− p)u− 1), h2(u) = eru, and
u ∈ R and define

f (u) =


h1(u)

|h1(u)|+θe−u s, if u ≥ 0
h2(−u)

|h2(−u)|+θeu s, if u < 0.
(32)

The function f is continuous on R and ‖ f (u)‖ ≤ 1 for all u ∈ R. Suppose that D admits an
Ulam constant K < KD. Let ỹ given by

ỹ(x) =
1

(r− p)2

∫ ∞

0

(
((r− p)u− 1) f (x + u)e−pu + f (x− u)eru)du (33)
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be the solution to D(y) = f , where f is given by Equation (32). The relation ‖D(ỹ)‖∞ ≤ 1
leads to the existence of a unique y ∈ ker D such that

‖ỹ− y‖∞ ≤ K, (34)

in view of the Ulam stability of D with the constant K. The function ỹ is bounded since f
is bounded and Re p > 0 and Re q < 0. On the other hand, all the elements of ker D are
unbounded except y = 0. We conclude that Equation (34) applies only for y = 0; therefore,

‖ỹ(x)‖ ≤ K, ∀x ∈ R.

For x = 0, it follows that ‖ỹ(0)‖ ≤ K, which is equivalent to

1
|r− p|2

∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du ≤ K. (35)

We prove that

lim
θ→0

∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du =

∫ ∞

0
(|h1(u)|+ |h2(u)|)du.

Indeed, ∣∣∣∣∫ ∞

0

(
|h1(u)|2

|h1(u)|+ θe−u +
|h2(u)|2

|h2(u)|+ θe−u

)
du−

∫ ∞

0
(|h1(u)|+ |h2(u)|)du

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣ |h1(u)|2
|h1(u)|+ θe−u − |h1(u)|+

|h2(u)|2
|h2(u)|+ θe−u − |h2(u)|

∣∣∣∣du

= θ
∫ ∞

0

(
|h1(u)|

|h1(u)|+ θe−u +
|h2(u)|

|h2(u)|+ θe−u

)
e−udu

≤ 2θ
∫ ∞

0
e−udu = 2θ.

Now, letting θ → 0 in Equation (35), it follows that KD < K, which is a contradiction.
The proof of the other cases is obtained similarly by converting the signs of Re p and

Re r, respectively.

Theorem 6. Suppose that p is a triple root of the characteristic equation with Re p 6= 0. Then,
the best Ulam constant of D is given by

KD =
1

|Re p|3 .

Proof. Consider first the case where Re p > 0. Suppose that D is stable with an Ulam
constant K < KD. Take s ∈ X, ‖s‖ = 1 and let f : R→ X be given by

f (x) = ei=pxs, ∀x ∈ R, (36)

where =p denotes the imaginary part of the root p.
The function of the right-hand side of Equation (19) is a solution to the equation

Dy = f and, in the following, we denote it by ỹ. Consequently,

ỹ(x) = −1
2

∫ ∞

0
u2 f (x + u)e−pudu, x ∈ R. (37)
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Replacing f given by Equation (36) in Equation (37), it follows that

ỹ(x) = −1
2

ei=pxs
∫ ∞

0
u2e−Re pudu, x ∈ R.

The substitution Re pu = v leads to

ỹ(x) = − 1
2(Re p)3 ei=pxs

∫ ∞

0
v2e−vdv = − 1

(Re p)3 ei=pxs, x ∈ R.

Since
‖D(ỹ)‖∞ = ‖ f ‖∞ = 1, (38)

it follows in view of the Ulam stability of D, for ε = 1, that there exists a solution y0 to
D(y) = 0,

y0 = (C1 + C2x + C3x2)epx, x ∈ R

such that
‖ỹ− y0‖∞ ≤ K (39)

If (C1, C2, C3) 6= (0, 0, 0), we have

lim
x→∞
‖ỹ(x)− y0(x)‖ = +∞,

which contradicts Equation (39), since ỹ is bounded. If (C1, C2, C3) = (0, 0, 0), then
Equation (39) becomes

‖ỹ‖∞ ≤ K ⇐⇒ 1
|Re p|3 ≤ K ⇐⇒ K ≤ KD,

which contradicts the supposition K < KD. The case where Re p < 0 follows analogously.
The theorem is proved.

3. Conclusions

In this paper, we obtain a result regarding the Ulam stability for the linear differential
operator of the third order with constant coefficients and we demonstrate its best Ulam
constant. In this way, we give sharper estimates between an approximate solution and an
exact solution of the associated differential equation. These results are connected to the
notion of the perturbation of a continuous dynamical system governed by such differential
equations. The novelty of the paper consists in the fact that we give a complete answer to
the problem of the best Ulam constant for this operator, treating both the cases of simple
and multiple roots.

Various aspects of third-order differential equations have been studied in recent years
due to their applications in physics, engineering, biology, and social sciences. In particular,
oscillation criteria for linear and nonhomogeneous third-order differential equations have
been obtained with respect to oscillations of the corresponding homogeneous equations
(see [21,22]). From this point of view, the problem of Ulam stability for these equations is
important since it establishes a relation between the solutions to the nonhomogeneous and
homogeneous equations.
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