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Abstract: In this paper, by using critical point theory, the existence of infinitely many small solu-
tions for a perturbed partial discrete Dirichlet problems including the mean curvature operator is
investigated. Moreover, the present study first attempts to address discrete Dirichlet problems with
φc-Laplacian operator in relative to some relative existing references. Based on our knowledge, this is
the research of perturbed partial discrete bvp with φc-Laplacian operator for the first time. At last,
two examples are used to examplify the results.
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1. Introduction

We focus on the problem below, namely ( f λ,µ)

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = λ f ((c, d), s(c, d)) + µg((c, d), s(c, d)),
(c, d) ∈ Z(1, x)×Z(1, y),

based on boundary conditions

s(c, 0) = s(c, y + 1) = 0, c ∈ Z(0, x + 1),

s(0, d) = s(x + 1, d) = 0, d ∈ Z(0, y + 1),
(1)

where x and y indicate given positive integers, λ and µ represent positive real parame-
ter, ∆1 and ∆2 denote the forward difference operators set by ∆1s(c, d) = s(c + 1, d) −
s(c, d) and ∆2s(c, d) = s(c, d + 1) − s(c, d), ∆2

1s(c, d) = ∆1(∆1s(c, d)) and ∆2
2s(c, d) =

∆2(∆2s(c, d)), φc refers to a special φ-Laplacian operator [1] defined by φc(s) = s√
1+s2 ,

and f ((c, d), ·), g((c, d), ·) ∈ C(R,R) for each (c, d) ∈ Z(1, x)×Z(1, y).
Difference equations have been extensively used in various field, involving natural

science, as shown in [2–5]. In 2003, Yu and Guo [6] made the first attempt to investigate
a class of second order difference equations. Next, many scholars attempted to inves-
tigate difference equations and made significant achievements, involving the obtained
findings of periodic solutions [6,7], homoclinic solutions [8,9], as well as boundary value
problems [10–18].

In 2016, Bonanno et al. [12] considered the following problem{
∆2s(α− 1) + λ f (α, s(α)) = 0, α ∈ Z(1, M),
s(0) = s(M + 1) = 0,

(2)

and acquired the presence of positive solutions of (2).
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In 2017, Mawhin et al. [13] explored the following problem{
−∆(φp(∆s(α− 1))) + h(α)φp(s(α)) = λ f (α, s(α)), α ∈ Z(1, M),
s(0) = s(M + 1) = 0.

(3)

In 2021, Ling and Zhou [16] investigated the following Robin problem{
−∆(ϕp(∆s(α− 1)) + q(α)ϕp(s(α)) = λ f (α, s(α)), α ∈ Z(1, M),
∆s(0) = s(M + 1) = 0,

(4)

and acquired the presence of positive solutions of (4).
The above difference equations investigated concern merely one variable. Neverthe-

less, the difference equations including two variables are less explored. Known as partial
difference equations, the difference equations are denoted as PDE. PDE have been broadly
applied in numerous domains. Boundary value problems of PDE appear to remain a
difficult problem drawing the attention from many mathematical researchers [19–24], and
other meaningful results [25–27].

In 2015, Heidarkhani and Imbesi [19] considered the problem below

∆2
1s(c− 1, d) + ∆2

2s(c, d− 1) + λ f ((c, d), s(c, d)) = 0, (c, d) ∈ Z(1, x)×Z(1, y), (5)

with (1), and obtained that there are three solutions of (5) at minimum.
In 2021, Du and Zhou [23] studied the problem below

∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1))) + λ f ((c, d), s(c, d)) = 0, (c, d) ∈ Z(1, x)×Z(1, y), (6)

with (1), and acquired the presence of multiple solutions of (6).
In 2023, Xiong [24] studied the following problem, namely (DKP)

−(a + b‖s‖p)(∆1(φp(∆1s(c− 1, d) + ∆2(φp(∆2s(c, d− 1)))) = λ f ((c, d), s(c, d)), (c, d) ∈ Z(1, x)×Z(1, y),

with (1), and acquired the presence of positive solutions of problem (DKP).
In 2023, Xiong studied the presence of infinitely many solutions for the partial dis-

crete Kirchhoff type problems which involves p-Laplacian, and obtained an unbounded
sequence of solutions of problem (DKP). However, in the present work, the presence of
small solutions for a perturbed partial discrete Dirichlet problems including the mean
curvature operator is investigated. Thus, different problems are considered in the above
two papers. Meanwhile, different results are obtained.

When compared to the results of the PDE with p-Laplacian, it was discovered that
the perturbed PDE with φc-Laplacian had seldom been investigated; this can be primarily
due to that dealing with the latter is more difficult, and φc-Laplacian operator has a very
strong practical value [28,29]. Based on our knowledge, we first attempt to handle the
problem ( f λ,µ) in comparison with some relative existing references. Here, the parameter
µ in the problem ( f λ,µ) is extremely small. When the norm ‖s‖ is small, a solution of
the problem ( f λ,µ) is a small solution. According to our knowledge, the current work is
the first attempt to demonstrate the presence of small solutions for a partial difference
equation with φc-Laplacian operator. The contributions and novelty of the present study
are summarized:

(1) This study is the first attempt to demonstrate the presence of infinitely many small
solutions for a PDE with φc-Laplacian operator.

(2) The difficulty to be overcomed in this paper is how to determine r in Theorem 1 .
(3) We demonstrate the presence of infinitely many small solutions for a perturbed

PDE including φc-Laplacian by adopting the critical point theory.
(4) We present two examples to show our conclusion.
The remain of this study is presented as follows. The variational framework in

association with ( f λ,µ) is established, as shown in Section 2. Section 3 gives the main
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results. As shown in Section 4, our major results are explained with two examples. As
shown in Section 5, we give the discussion. Finally, in Section 6, we give the conclusion.

2. Preliminaries

The present section makes the first attempt to build the variational framework con-
nected to ( f λ,µ). In addition, the following xy-dimensional Banach space is considered.

S = {s : Z(0, x + 1)× Z(0, y + 1) → R : s(c, 0) = s(c, y + 1) = 0, c ∈ Z(0, x + 1) and
s(0, d) = s(x + 1, d) = 0, d ∈ Z(0, y + 1)}, which is endowed with the norm:

‖s‖ =
(

y

∑
d=1

x+1

∑
c=1

(∆1s(c− 1, d))2 +
x

∑
c=1

y+1

∑
d=1

(∆2s(c, d− 1))2

) 1
2

, s ∈ S.

Define
Φ(s) =

y
∑

d=1

x+1
∑

c=1
(
√

1 + (∆1s(c− 1, d))2 − 1) +
x
∑

c=1

y+1
∑

d=1
(
√

1 + (∆2s(c, d− 1))2 − 1),

Ψ(s) =
y
∑

d=1

x
∑

c=1

(
F((c, d), s(c, d)) + µ

λ G((c, d), s(c, d))
)
,

(7)

for every s ∈ S, where F((c, d), s) =
∫ s

0 f ((c, d), τ)dτ, G((c, d), s) =
∫ s

0 g((c, d), τ)dτ for
every ((c, d), s) ∈ Z(1, x)×Z(1, y)×R. Let

Iλ(s) = Φ(s)− λΨ(s)

for any s ∈ S. Obviously, Φ, Ψ ∈ C1(S, R).

Φ′(s)(v) = lim
t→0

Φ(s + tv)−Φ(s)
t

=
y

∑
d=1

x+1

∑
c=1

φc(∆1s(c− 1, d))∆1v(c− 1, d) +
x

∑
c=1

y+1

∑
d=1

φc(∆2s(c, d− 1))∆2v(c, d− 1)

= −
y

∑
d=1

x

∑
c=1

∆1φc(∆1s(c− 1, d))v(c, d)−
x

∑
c=1

y

∑
d=1

∆2φc(∆2s(c, d− 1))v(c, d)

and

Ψ′(s)(v) = lim
t→0

Ψ(s + tv)−Ψ(s)
t

=
y

∑
d=1

x

∑
c=1

(
f ((c, d), s(c, d)) +

µ

λ
g((c, d), s(c, d))

)
v(c, d),

for ∀s, v ∈ S. Obviously, for any s, v ∈ S,

(Φ− λΨ)′(s)(v) = −
y

∑
d=1

x

∑
c=1

[∆1φc(∆1s(c− 1, d)) + ∆2φc(∆2s(c, d− 1))

+ λ f ((c, d), s(c, d)) + µg((c, d), s(c, d))]v(c, d).

(8)

Obviously, s represents a critical point of the functional Φ − λΨ in S if and only if it is
demonstrated as a solution of the problem ( f λ,µ). Thus, we reduce the existence of the
solutions of ( f λ,µ) to the existence of the critical points of Φ− λΨ on S.

Lemma 1 (Proposition 1 of [20]). For each s ∈ S, p > 1, the following inequality can be obtained:

max
(c,d)∈Z(1,x)×Z(1,y)

{|s(c, d)|} ≤ (x + y + 2)
p−1

p

4
‖s‖. (9)
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Remark 1. In particular, when p = 2, the following can be obtained:

max
(c,d)∈Z(1,x)×Z(1,y)

{|s(c, d)|} ≤ (x + y + 2)
1
2

4
‖s‖, s ∈ S. (10)

Lemma 2 (Proposition 2.1 of [23]). Assume that there is s: Z(0, x + 1)×Z(0, y + 1)→ R and
thus the following remains true:

s(c, d) > 0 or ∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1))) ≤ 0, (11)

for all (c, d) ∈ Z(1, x)× Z(1, y). Therefore, either s(c, d) > 0 for all (c, d) ∈ Z(1, x)× Z(1, y)
or s ≡ 0.

The following can be obtained from Lemma 2:

Corollary 1. Assume that there is s: Z(0, x + 1)×Z(0, y + 1)→ R such that

s(c, d) < 0 or ∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1))) ≥ 0, (12)

for all (c, d) ∈ Z(1, x)× Z(1, y). Therefore, either s(c, d) < 0 for all (c, d) ∈ Z(1, x)× Z(1, y)
or s ≡ 0.

Truncation techniques are adopted for discussing the presence of constant-sign so-
lutions. We describe the truncations of the functions f ((c, d), t) and g((c, d), t) for each
(c, d) ∈ Z(1, x)×Z(1, y) as described in [22].

3. Main Results

We attempt the application of Theorem 4.3 of [30] into the function I±λ : X → R,

I±λ (s) := Φ(s)− λΨ±(s),

where

Ψ±(s) =
y

∑
d=1

x

∑
c=1

(F±((c, d), s(c, d)) +
µ

λ
G±((c, d), s(c, d))),

F±((c, d), s) :=
∫ s

0
f±((c, d), τ)dτ, G±((c, d), s) :=

∫ s

0
g±((c, d), τ)dτ,

for each (c, d) ∈ Z(1, x)×Z(1, y). Later, we use Lemma 2 or Corollary 1 to acquire our results.
Let

A0± = lim inf
t→0+

y
∑

d=1

x
∑

c=1
max

0≤ξ≤t
F((c, d),±ξ)

t2 , B0± = lim sup
t→0±

y
∑

d=1

x
∑

c=1
F((c, d), t)

t2 .

C0± = lim sup
t→0+

y
∑

d=1

x
∑

c=1
max

0≤ξ≤t
G((c, d),±ξ)

t2 .

µ̄±λ :=
1

C0±

(
8

x + y + 2
− λA0±

)
.

Theorem 1. Define f ((c, d), s) as a continuous function of s, and f ((c, d), 0) ≥ 0, g((c, d), ·) ∈
C(R,R) for every (c, d) ∈ Z(1, x)×Z(1, y). Assume that
(i1) A0+ < 8

(x+y)(x+y+2)B0+ ,

(g1) there is δ > 0 such that at [0, δ], G((c, d), s) ≥ 0 and C0+ < +∞.
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Then, in terms of each λ ∈
(

x+y
B0+ , 8

(x+y+2)A0+

)
and µ ∈ [0, µ̄+

λ ), problem ( f λ,µ) possesses a
sequence of positive solutions converging to zero.

Proof. Clearly, for each (c, d) ∈ Z(1, x)×Z(1, y), g((c, d), 0) ≥ 0.
At present, this study explores the auxiliary problem ( f λ,µ+

).

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = λ f+((c, d), s(c, d)) + µg+((c, d), s(c, d)),
(c, d) ∈ Z(1, x)×Z(1, y),

based on boundary conditions (1). For t > 0, let

r = −1 +

√
1 +

(4t)2

x + y + 2
.

Assume s ∈ S and the below:

Φ(s) =
y

∑
d=1

x+1

∑
c=1

(
√

1 + (∆1s(c− 1, d))2 − 1) +
x

∑
c=1

y+1

∑
d=1

(
√

1 + (∆2s(c, d− 1))2 − 1) ≤ r.

Let v1(c − 1, d) =
√

1 + (∆1s(c− 1, d))2 − 1 ≥ 0, v2(c, d − 1) =
√

1 + (∆2s(c, d− 1))2 −

1 ≥ 0 for (c, d) ∈ Z(0, x)×Z(0, y), then
y
∑

d=1

x+1
∑

c=1
v1(c− 1, d) +

x
∑

c=1

y+1
∑

d=1
v2(c, d− 1) < r and

‖s‖2 =
y

∑
d=1

x+1

∑
c=1

(∆1s(c− 1, d))2 +
x

∑
c=1

y+1

∑
d=1

(∆2s(c, d− 1))2

≤

( y

∑
d=1

x+1

∑
c=1

v1(c, d)

)2

+

(
x

∑
c=1

y+1

∑
d=1

v2(c, d)

)2+ 2

[
y

∑
d=1

x+1

∑
c=1

v1(c, d) +
x

∑
c=1

y+1

∑
d=1

v2(c, d)

]

= (Φ(s))2 + 2Φ(s).

(13)

So
(Φ(s))2 + 2Φ(s) ≤ r2 + 2r.

According to (10), we have

‖s‖∞ ≤
(x + y + 2)

1
2

4

(
y

∑
d=1

x+1

∑
c=1

(∆1s(c− 1, d))2 +
x

∑
c=1

y+1

∑
d=1

(∆2s(c, d− 1))2

) 1
2

≤ t.

Therefore, we have Φ−1[0, r] ⊆ {s ∈ S : ‖s‖∞ ≤ t}.
In line with the definition of ϕ, the following can be obtained.

ϕ(r) =

sup
v∈Φ−1[0,r]

Ψ+(v)

r

≤ t2

r


y
∑

d=0

x
∑

c=0
max

0≤ξ≤t
F((c, d), ξ)

t2 +
µ

λ

y
∑

d=0

x
∑

c=0
max

0≤ξ≤t
G((c, d), ξ)

t2

.

According to condition (i1), (g1), and lim
t→0+

t2

r = lim
t→0+

t2

−1+

√
1+ (4t)2

x+y+2

, we have

ϕ0 ≤
x + y + 2

8
(A0+ +

µ

λ
C0+) < +∞.



Axioms 2023, 12, 909 6 of 11

We assert that if λ ∈
(

x+y
B0+ , 8

(x+y+2)A0+

)
, and µ ∈ [0, µ̄+

λ ), then λ ∈ (0, 1
ϕ0
).

When C0+ = 0, then

ϕ0 ≤
x + y + 2

8
A0+ <

1
λ

,

when C0+ > 0, then

ϕ0 ≤
x + y + 2

8

(
A0+ +

µ̄+
λ

λ
C0+

)

=
x + y + 2

8

(
A0+ +

1
λ

1
C0+

(
8

x + y + 2
− λA0+

)
C0+

)
=

1
λ

.

Obviously, (0, 0, · · · , 0) ∈ S is a global minimum of Φ.
Then, it is necessary to demonstrate that (0, 0, · · · , 0) is not a local minima of I+λ .
When B0+ = +∞, we find {lt} ⊂ (0, δ) such that lim

t→+∞
lt = 0, and

y

∑
d=1

x

∑
c=1

F+((c, d), lt) =
y

∑
d=1

x

∑
c=1

F((c, d), lt) ≥
2(x + y)l2

t
λ

, for t ∈ Z(1).

Define a sequence {ηt} in S with

ηt(c, d) =


lt, (c, d) ∈ Z(1, x)×Z(1, y),
0, c = 0, d ∈ Z(0, y + 1) or c = x + 1, d ∈ Z(0, y + 1),
0, d = 0, c ∈ Z(0, x + 1) or d = y + 1, c ∈ Z(0, x + 1).

Based on G+((c, d), ηt(c, d)) = G((c, d), ηt(c, d)) ≥ 0, ∀(c, d) ∈ Z(1, x) × Z(1, y), we
can acquire:

I+λ (ηt) ≤ 2(x + y)
(√

1 + l2
t − 1

)
− λ

(
y

∑
d=1

x

∑
c=1

F((c, d), lt)

)
≤ −(x + y)l2

t

< 0.

When B0+ < +∞, let λ ∈
(

x+y
B0+ , 8

(x+y+2)A0+

)
, choose ε0 > 0 such that

x + y− λ(B0+ − ε0) < 0.

Next, there exists {lt} ⊂ (0, δ) such that lim
t→+∞

lt = 0 and

(B0+ − ε0)l2
t ≤

y

∑
d=1

x

∑
c=1

F+((c, d), lt) =
y

∑
d=1

x

∑
c=1

F((c, d), lt) ≤ (B0+ + ε0)l2
t .

Based on the definition of the sequence {ηt} in S being the same as the case where B0+ =
+∞, we hold:

I+λ (ηt) ≤ 2(x + y)
(√

1 + l2
t − 1

)
− λ

(
y

∑
d=1

x

∑
c=1

F((c, d), lt)

)
≤ (x + y)l2

t − λ(B0+ − ε0)l2
t

= (x + y− λ(B0+ − ε0))l2
t

< 0.
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According to the above discussion, we have I+λ (ηt) < 0.
According to I+λ (0, 0, · · · , 0) = 0 and lim

t→∞
ηt = (0, 0, · · · , 0), we obtain that (0, 0, · · · , 0)

does not indicate a local minima of I+λ .
So, the entire conditions of Theorem 4.3 of [30] are obtained. According to Theorem

4.3 of [30], ∀(c, d) ∈ Z(1, x)×Z(1, y), problem ( f λ,µ+
) has a non-zero solution s(c, d), and

according to Lemma 2, problem ( f λ,µ) possesses a positive solution s(c, d).

Under the condition that λ = 1, in accordance with Theorem 1, we have

Corollary 2. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) ≥ 0, g((c, d), ·)
is defined like in Theorem 1. Therefore, it can be assumed that
(i2)

(x+y)(x+y+2)
8 A0+ < 1 < B0+ ,

(g1) such as the condition of (g1) in Theorem 1.
Then, in terms of each µ ∈ [0, µ̄+

1 ), the problem below ( f µ)

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = f ((c, d), s(c, d)) + µg((c, d), s(c, d)),
(c, d) ∈ Z(1, x)×Z(1, y),

with (1), obtains the same result as Theorem 1.

Similarly, the following results can be obtained.

Theorem 2. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) ≤ 0, g((c, d), ·)
is defined like in Theorem 1. Assume that
(i3) A0− < 8

(x+y)(x+y+2)B0− ,

(g2) there is δ > 0 such that at [−δ, 0], G((c, d), s) ≥ 0 and C0− < +∞.
Then, in terms of each λ ∈

(
x+y
B0− , 8

(x+y+2)A0−

)
, and µ ∈ [0, µ̄−λ ), problem ( f λ,µ) possesses a

sequence of negative solutions converging to zero.

With λ = 1, in accordance with Theorem 2, we have

Corollary 3. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) ≤ 0, g((c, d), ·)
is defined like in Theorem 1. Assume that
(i4)

(x+y)(x+y+2)
8 A0− < 1 < B0− ,

(g2) such as the condition of (g2) in Theorem 2.
In terms of each µ ∈ [0, µ̄−1 ), the problem considered has the same conclusion as Theorem 2.

By the combination of Theorem 1 with Theorem 2, the following can be obtained:

Theorem 3. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) = 0, g((c, d), ·)
is defined like in Theorem 1. Assume that
(i5) max{A0+ , A0−} < 8

(x+y)(x+y+2) min{B0+ , B0−},
(g3) there is δ > 0 such that at [−δ, δ], G((c, d), s) ≥ 0 and C0± < +∞.

Subsequently, for every λ ∈
(

x+y
min{B0+ ,B0−}

, 8
(x+y+2)max{A0+ ,A0−}

)
, and µ ∈ [0, min{µ̄+

λ , µ̄−λ }),

problem ( f λ,µ) possesses two sequences of constant-sign solutions converging to zero (one positive
and one negative).

Under the condition that λ = 1, in accordance with Theorem 3, we have

Corollary 4. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) = 0, g((c, d), ·)
is defined like in Theorem 1. Assume that
(i6)

(x+y)(x+y+2)
8 A0± < 1 < B0± ,
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(g3) such as the condition of (g3) in Theorem 3.
In terms of each µ ∈ [0, min{µ̄+

1 , µ̄−1 }), the problem considered has the same conclusion as
Theorem 3.

Remark 2. Consider the problem ( f λ)

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = λ f ((c, d), s(c, d)), (c, d) ∈ Z(1, x)×Z(1, y),

with (1).

Theorem 4. Let f ((c, d), s) be the same as defined in Theorem 1, and f ((c, d), 0) ≥ 0 for every
(c, d) ∈ Z(1, x)×Z(1, y). Assume that
(i7) A0+ < 8

(x+y)(x+y+2)B0+ .

Then, for each λ ∈
(

x+y
B0+ , 8

(x+y+2)A0+

)
, the problem considered has the same conclusion as

Theorem 1.

4. Examples

Let us explain Theorem 1 with one example.

Example 1. Suppose x = 2, y = 2, ε = 0.01 and the definitions of functions f and g are given as
shown below.

f ((c, d), t) = f (t) =
{

t(2 + 4ε + 2 cos(ε ln t)− ε sin(ε ln t)), t > 0,
0, t ≤ 0,

(14)

and
g((c, d), t) = g(t) = 10εt. (15)

Then, for each λ1 ∈ (0.495, 16.666) and µ1 ∈ [0, ( 20
3 −

2
5 λ1)), the following problem, namely

( f λ1,µ1)

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = λ1 f ((c, d), s(c, d)) + µ1g((c, d), s(c, d)),
(c, d) ∈ Z(1, 2)×Z(1, 2)

based on boundary conditions

s(c, 0) = s(c, 3) = 0, c ∈ Z(0, 3),

s(0, d) = s(3, d) = 0, d ∈ Z(0, 3),

obtains the same result as Theorem 1.
In fact,

F((c, d), t) =
∫ t

0
f ((c, d), τ)dτ =

{
t2(1 + 2ε + cos(ε ln t)), t > 0,
0, t ≤ 0,

(16)

G((c, d), t) =
∫ t

0
g((c, d), τ)dτ = 5εt2. (17)

Since f ((c, d), t) > 0, g((c, d), t) > 0 for t > 0, it can be known F((c, d), t) and G((c, d), t) are
increasing in t ∈ (0,+∞). Thus, max

0≤ξ≤t
F((c, d),±ξ) = F((c, d), t) and max

0≤ξ≤t
G((c, d),±ξ) =

G((c, d), t), for every t ≥ 0. Obviously,

A0± = lim inf
t→0+

xyF((c, d), t)
t2 = lim inf

t→0+

4t2(1 + 2ε + cos(ε ln t))
t2 = 0.08,
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B0± = lim sup
t→0±

xyF((c, d), t)
t2 = lim sup

t→0±

4t2(1 + 2ε + cos(ε ln t))
t2 = 8.08.

The condition (i1) of Theorem 1 can be confirmed, since

A0+ = 0.08 <
8

(x + y)(x + y + 2)
B0+ ≈ 2.69.

Subsequently, the condition (g1) of Theorem 1 can be further verified, since

C0± = lim sup
t→0+

y
∑

d=1

x
∑

c=1
G((c, d), t)

t2 = lim sup
t→0+

5xyt2ε

t2 = 0.2 < +∞.

To sum up, the entire conditions of Theorem 1 are obtained.
Therefore, for each λ1 ∈ (0.495, 16.666) and µ1 ∈ [0, ( 20

3 −
2
5 λ1)), problem ( f λ1,µ1) has the

same conclusion as Theorem 1.

Let us explain Theorem 3 with another example.

Example 2. Suppose x = 2, y = 2, and the definitions of functions f and g are given as
shown below.

f ((c, d), t) = f (t) =
{ 5

2 t + 2t sin( 1
5 ln t2) + 2

5 t cos( 1
5 ln t2), t > 0,

0, t ≤ 0,
(18)

and
g((c, d), t) = g(t) = 6t. (19)

Then, for each λ2 ∈ ( 4
9 , 4

3 ) and µ2 ∈ [0, ( 1
9 −

1
12 λ2)), the following problem, namely ( f λ2,µ2)

−[∆1(φc(∆1s(c− 1, d))) + ∆2(φc(∆2s(c, d− 1)))] = λ2 f ((c, d), s(c, d)) + µ2g((c, d), s(c, d)),
(c, d) ∈ Z(1, 2)×Z(1, 2)

based on boundary conditions

s(c, 0) = s(c, 3) = 0, c ∈ Z(0, 3),

s(0, d) = s(3, d) = 0, d ∈ Z(0, 3),

obtains the same conclusion as Theorem 3.
Actually,

F((c, d), t) =
∫ t

0
f ((c, d), τ)dτ =

{ 5
4 t2 + t2 sin( 1

5 ln t2), t > 0,
0, t ≤ 0,

(20)

G((c, d), t) =
∫ t

0
g((c, d), τ)dτ = 3t2. (21)

Since f ((c, d), t) > 0, g((c, d), t) > 0 for t > 0, it can be known F((c, d), t) and G((c, d), t) are
increasing in t ∈ (0,+∞). Thus, max

0≤ξ≤t
F((c, d),±ξ) = F((c, d), t) and max

0≤ξ≤t
G((c, d),±ξ) =

G((c, d), t), for every t ≥ 0. Obviously,

A0± = lim inf
t→0+

xyF((c, d), t)
t2 = lim inf

t→0+

4( 5
4 t2 + t2 sin( 1

5 ln t2))

t2 = 1,
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B0± = lim sup
t→0±

xyF((c, d), t)
t2 = lim sup

t→0±

4( 5
4 t2 + t2 sin( 1

5 ln t2))

t2 = 9.

The condition (i5) of Theorem 3 can be verified, since

max{A0+ , A0−} = 1 <
8

(x + y)(x + y + 2)
min{B0+ , B0−} = 3.

Subsequently, the condition (g3) of Theorem 3.3 can be further verified, since

C0± = lim sup
t→0+

y
∑

d=1

x
∑

c=1
G((c, d), t)

t2 = lim sup
t→0+

3xyt2

t2 = 12 < +∞.

To sum up, the entire conditions of Theorem 3 are obtained.
Therefore, for each λ2 ∈ ( 4

9 , 4
3 ) and µ2 ∈ [0, ( 1

9 −
1

12 λ2)), problem ( f λ2,µ2) has the same
conclusion as Theorem 3.

5. Discussion

In [16], the problem considered by the authors contains only one discrete variable.
Unlike [16], the present study considers the partial difference equations with φc-Laplacian
and the equations possess two discrete variables. In [21], the author focused on the three
solutions of the PDE, with the primary tool being to refer to Theorem 2.1 in [31]. As a
result, the method and the findings show difference from those in the previous studies.
This study is the initial attempt to focus on the infinitely many solutions of the partial
difference equations with φc-Laplacian, which is more complex to address. It is known that
the establishment of variational structures is more complicated when considering the PDE
including the mean curvature operator.

6. Conclusions

To conclude, the current work focuses on investigating the presence of small solutions
of the perturbed PDE with φc-Laplacian. Different from the findings presented in [18], the
present study obtains the presence of infinitely many solutions, which can be found in
Theorems 1–3. Based on Theorem 4.3 of [30] and Lemma 2 of the present study, this study
obtains a sequence of positive solutions converging to zero, as presented in Theorem 1.
Moreover, with the application of truncation techniques, this work acquires two sequences
of C-S solutions converging to zero. We find that one is positive while the other is negative.
This work solves the presence of infinitely many small solutions to the boundary value
problem of the PDE, and the presence of large C-S solutions of PDE with φc-Laplacian can
be studied as future research problems.
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