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Abstract: Based on a quantum logistic map and a Caputo-like delta difference operator, a fractional-
order improved quantum logistic map, which has hidden attractors, was constructed. Its dynamical
behaviors are investigated by employing phase portraits, bifurcation diagrams, Lyapunov spectra,
dynamical mapping, and 0-1 testing. It is shown that the proposed fractional-order map is influenced
by both the parameters and the fractional order. Then, the complexity of the map is explored through
spectral entropy and approximate entropy. The results show that the fractional-order improved
quantum logistic map has stronger robustness within chaos and higher complexity, so it is more
suitable for engineering applications. In addition, the fractional-order chaotic map can be controlled
for different periodic orbits by the improved nonlinear mapping on the wavelet function.

Keywords: improved quantum logistic map; discrete fractional calculus; hidden attractor; chaos control
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1. Introduction

Since May presented the logistic map in 1976, and as a well-known chaotic map, the lo-
gistic map and its generalizations have gained more and more attention in academic circles,
especially regarding chaos and fractals [1–3]. A quantum logistic map that is associated
with the logistic map is proposed in [4]. As a three-dimensional map, it was found that the
quantum logistic map owns richer dynamical behaviors, and thus it has greater potential
application in the field of information security. However, when compared to the logistic
map, there has been relatively less research into quantum logistic maps. The generalization
of quantum logistic maps has never been analyzed, so we have investigated it.

In recent years, the theory of the fractional differential equation has become a new
research focus. The author of [5] introduced fractional LTI systems, and [6] investigated
the existence of a mild-solution Hilfer fractional-neutral-integro-differential inclusion with
almost sectorial operators. The authors of [7] studied the existence, uniqueness, Hyer–
Ulam stability, and controllability of a fractional dynamic system using time scales, and [8]
analyzed the existence, uniqueness, and stability of a nonlinear fractional differential
equation with impulsive conditions on time scales. The dynamics of a fractional–order
model with different strains of COVID-19 were explored in [9]. The new field of fractional
differential equations emerged via the discretized definitions of continuous fractional
derivatives and integrals [10–13]. With the rapid development of the fractional difference
equations theory, the definition of fractional-order difference was introduced into discrete
chaotic maps based on the Caputo operator, and the fractional standard map and the
fractional logistic map were proposed [14,15]. Since then, researchers have diverted their
interest to fractional-order chaotic maps. The authors of [16–18] presented fractional-order
logistic maps and fractional-order delayed logistic maps and analyzed their nonlinear
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behaviors by using phase portraits, bifurcation diagrams, and Lyapunov exponents. The
authors of [19] designed an efficient image encryption scheme based on the fractional-
order logistic map, while those of [20] put forward a fractional-order Hénon-Lozi map
and then studied its dynamical properties. A two-dimensional fractional-order map was
designed and applied to image encryption [21]. A fractional-order higher-dimensional
multicavity chaotic map was studied in [22]. Fractional-order chaotic maps are sensitive to
their fractional order apart from their initial values and parameters, thereby having richer
nonlinear behaviors than the integer-order versions. Hence, a generalized quantum logistic
map with fractional order is presented in the paper.

On the other hand, the chaotic system with hidden attractors is a new research hotspot.
Some chaotic systems with hidden attractors were presented in the literature [23–25]. If
a chaotic system possesses no equilibrium or stable equilibrium, i.e., its attraction basin
does not connect with the neighborhood of the equilibrium, the chaotic system is regarded
as a chaotic system with hidden attractors [26,27]. The hidden attractor is considerably
important in science and engineering due to the occurrence of unexpected behaviors. The
term “hidden attractors” originates from the research of continuous chaotic systems [28,29].
When compared with continuous chaotic systems, the investigation of chaotic maps with
hidden attractors has seen a lack of investigation, especially for fractional-order maps with
hidden attractors; they are rarely introduced in the literature. However, the fractional-order
map owns more complex dynamical behaviors than the integer counterpart. In order to
enrich the theory of hidden attractors, we propose a fractional-order improved quantum
logistic map without equilibrium, i.e., a fractional-order map with hidden attractors. For
future applications, its behaviors are explored by nonlinear tools, such as bifurcation
diagrams and Lyapunov exponents. Moreover, the chaos control of this fractional-order
map is also studied.

The remainder of this paper is outlined as follows. Section 2 gives a fractional-order
improved quantum logistic map. Section 3 shows the dynamical analysis of the fractional-
order map by exploiting bifurcation analysis, Lyapunov exponent spectrums, dynamical
maps, and 0-1 tests. Section 4 focuses on the complexity of this map. Section 5 investigates
the chaos control of the system. We draw conclusions in Section 6.

2. A Fractional-Order Improved Quantum Logistic Map

A quantum logistic map is a logistic map with quantum corrections [4]. In order to
investigate the effects of these quantum corrections, researchers set â = 〈â〉+ δâ, where δâ
is a quantum fluctuation about 〈â〉, and 〈â〉 is the mean value of â. The quantum logistic
map is described as

xn = r(xn−1 − |xn−1|2)− ryn−1,
yn = −yn−1e−2β + e−βr[(2− xn−1 − x∗n−1)yn−1 − xn−1z∗n−1 − x∗n−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− x∗n−1)zn−1 − 2xn−1yn−1 − xn−1],

(1)

where x = 〈â〉, y = 〈δâ+δâ〉, z = 〈δâδâ〉, and x*, z* are the complex conjugate of x, z,
respectively. Besides, β and r denote the dissipation and control parameters, respectively.
However, if we let the initial values x0, y0, and z0 be real numbers, the successive values xn,
yn, and zn remain real. Therefore, Equation (1) is expressed as

xn = r(xn−1 − |xn−1|2)− ryn−1,
yn = −yn−1e−2β + e−βr[(2− 2xn−1)yn−1 − 2xn−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− xn−1)zn−1 − 2xn−1yn−1 − xn−1],

(2)
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For the quantum logistic map, the map has one fixed-point: (0, 0, 0). In order to design
a chaotic system with hidden attractors, Equation (2) is rewritten as

xn = f (xn−1)− r1yn−1,
yn = −yn−1e−2β + e−βr[(2− 2xn−1)yn−1 − 2xn−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− xn−1)zn−1 − 2xn−1yn−1 − xn−1],

(3)

where r1 is a parameter, and the function f (xn−1) is defined as

f (xn−1) =


0.8 + rxn−1(0.2− xn−1)

i f 0 < xn−1 < 0.2,
r(xn−1 − 0.8)(1− xn−1)

i f 0.8 < xn−1 < 1.

(4)

For solving the fixed-point of system (3), we have xn = xn−1, yn = yn−1, and zn = zn−1,
that is 

xn = f (xn)− r1yn,
yn = −yne−2β + e−βr[(2− 2xn)yn − 2xnzn],
zn = −zne−2β + e−βr[2(1− xn)zn − 2xnyn − xn],

(5)

where the function f (x) is described as

f (xn) =

{
0.8 + rxn(0.2− xn) i f 0 < xn < 0.2,
r(xn − 0.8)(1− xn) i f 0.8 < xn < 1.

(6)

The solution of Equation (5) has two cases. When 0 < 0.8 + rxn(0.2− xn)− r1yn < 0.2
or 0.8 < r(xn − 0.8)(1− xn)− r1yn < 1, the first equation can be solved, i.e., the fractional-
order map has a fixed-point. If not, there is no solution to the first equation. In other
words, the improved map is a system without equilibrium. The second case will be
considered below.

Regarding the second and third equations as fractional order, we can obtain

xn= f (xn−1)− r1yn−1,
C∆ν

ay(t)= −y(t + ν− 1)e−2β + e−βr[(2− 2x(t + ν− 1))y(t + ν− 1)

−2x(t + ν− 1)z(t + ν− 1)]− y(t + ν− 1),
C∆ν

az(t)= −z(t + ν− 1)e−2β + e−βr[2(1− x(t + ν− 1))z(t + ν− 1)

−2x(t + ν− 1)y(t + ν− 1)− x(t + ν− 1)]− z(t + ν− 1),

(7)

where C∆ν
a is the ν-th Caputo-like delta difference operator, ν is the fractional order, and a

is the starting point. Set Na is the isolated time scale, Na = {a, a + 1, a + 2,...} (a ∈ R fixed).
For ν > 0, ν /∈ N, and u(t) define on Na, the Caputo-like delta difference [30] is defined by

C∆−ν
a u(t) = ∆−(m−ν)

a ∆mu(t), t ∈ Na+m−ν, m = dνe+ 1, (8)

where ν is the difference order and ∆−(m−ν)
a is the fractional sum of m-ν order. Let u: Na →

R and ν > 0, the fractional sum of ν order [10] is defined by

∆−ν
a u(t) =

1
Γ(ν)

t=ν

∑
s=a

(t− σ(s))(ν−1)u(s), t ∈ Na+ν, (9)

where σ(s) = s + 1, Γ(ν) is the Gamma function, and t(ν) is the falling function defined by
the Gamma function as

t(ν) =
Γ(t + 1)

Γ(t + 1− ν)
. (10)
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Therefore, the Caputo-like delta difference can be expressed as

C∆−ν
a u(t) =

1
Γ(m− ν)

t−(m−ν)

∑
s=a

(t− σ(s))(m−ν−1)∆mu(s), t ∈ Na+m−ν, = dνe+ 1. (11)

According to the theorem in [31], for the difference equation:

C∆ν
au(t) = f (t + ν− 1, u(t + ν− 1)),∆ku(a) = uk, m = dνe+ 1, k = 0, . . . , m− 1. (12)

The equivalent discrete integral equation is described as

u(n) = u0(t) +
1

Γ(ν)

t−ν

∑
s=a+m−ν

(t− σ(s))(ν−1) × f (s + ν− 1, u(s + ν− 1)), t ∈ Na+m, (13)

where the initial iteration is

u0(t) =
m−1

∑
k=0

(t− a)(k)

k!
∆ku(a). (14)

By setting m = 1, a = 0, and substituting σ(s) = s + 1 into Equation (13), the following
can be obtained as

u(n) = u0(t) +
1

Γ(ν)

t−ν

∑
s=1−ν

(t− s− 1)(ν−1) × f (s + ν− 1, u(s + ν− 1)) (15)

By using Equation (10), and setting j = s + ν, Equation (15) is rewritten as

u(n) = u0(t) +
1

Γ(ν)

n

∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
× f (j− 1, u(j− 1)) (16)

According to Equation (16), the explicit numerical formula of Equation (7) is ex-
pressed as

xn = f (xn−1)− r1yn−1,

yn = y0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j−ν)
Γ(n−j−1)

{
−yj−1e−2β + e−βr[(2− 2xj−1)yj−1 − 2xj−1zj−1]− yj−1

}
,

zn = z0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j−ν)
Γ(n−j−1)

{
−zj−1e−2β + e−βr[2(1− xj−1)zj−1 − 2xj−1yj−1 − xj−1]− zj−1

}
,

(17)

where the function f (xn−1) is the same as Equation (4).
For System (17), set the parameters as r = 19.8, r1 = 0.05, β = 4.5, and ν = 0.90, and the

initial conditions as (0.05, 0.02, and 0.05); the chaotic attractors are depicted in Figure 1,
which are hidden attractors (see Appendix A for the code of the simulation). In this case,
we obtain the largest Lyapunov exponent LLE = 0.5426 via the wolf algorithm.
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Figure 1. Chaotic attractors of the fractional-order improved quantum logistic map. (a) x-y phase
portrait; (b) y-z phase portrait; (c) z-x phase portrait.

3. Dynamical Analysis
3.1. Bifurcation Analysis, Lyapunov Exponent Spectrum, and Dynamical Map

Chaotic maps have sensitivity to the parameters. In order to investigate the sensitivity
of the parameters, we fixed the initial conditions as (0.05, 0.02, and 0.05). The bifurcation
portrait with respect to the control parameter r and the corresponding largest Lyapunov
spectrum is depicted in Figure 2, where the parameter r is in the interval [16,21], and the
others are r1 = 0.05, β = 4.5, and ν = 0.9. It is clear to see that the bifurcation portrait is
divided into two parts. With an increase in the parameter r, the system goes through
period-2, period-4, a quasi-periodic, and a chaotic state. The system generates periodic
windows of different sizes after the system appears in a chaotic state. In the region of
19.2 ≤ r ≤ 20, the system keeps a chaotic state.
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For the dissipation parameter β, the bifurcation portrait and largest Lyapunov spec-
trum are plotted in Figure 3 with r = 19.8, r1 = 0.05, and ν = 0.9. Although the bifurcation
portrait shows the phenomenon of bifurcation, the map is mainly in chaotic oscillation. Its
chaotic regions are wider than those of the quantum logistic map. When the parameter
β is greater than 3.75, the largest Lyapunov exponent is positive, which illustrates that the
fractional-order map goes into chaos. When β ∈ (3.75, 8.35], the largest Lyapunov roughly
increases with the increasing parameter β. In the range of 8.35 to 15, the largest Lyapunov
varies around 5.5. Some of the largest Lyapunov exponents exceed 6, indicating that the
map has good nonlinearity and is suitable for information encryption.
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Next, we analyze how the fractional order ν influences the map. Figure 4 presents
the bifurcation portrait and Lyapunov spectrum versus ν, where the parameters are set
as r1 = 0.05, β = 4.5, r = 1.98, and 0.326 ≤ ν ≤ 1. As can be seen from Figure 4, the largest
Lyapunov exponent is always greater than zero, which means that the map remains chaotic.
Unlike some other fractional-order chaotic maps [32,33], there are no periodic windows
in the chaotic region. Further, the magnitude of the variable x(n) hardly changes with
the varying of the fractional order ν. This map demonstrates stronger robustness during
chaos than the fractional-order logistic map, the fractional-order Hénon map, and the other
fractional-order chaotic maps in [32,33]. When the fractional order is ν < 0.326, the iteration
value may not be in the domain of definition. If the iterative value is not in the domain
of definition, the iteration will stop. In particular, the phase portrait shows finite points
under the condition of ν = 0.2, as shown in Figure 5a, which implies that the iteration
stops. On the contrary, Figure 5b exhibits the chaotic attractors with ν = 0.5. However,
these chaotic attractors are different from the chaotic attractors shown in Figure 1. The
analysis illustrates that the fractional-order map owns richer dynamical behaviors than the
integer counterpart.

In order to investigate the influence of the parameters and fractional order on the
fractional-order map simultaneously, the dynamical maps are depicted in Figure 6, where
the color represents the value of the largest Lyapunov exponent. Figure 6a illustrates the
impacts of the control parameters and fractional orders when r1 = 0.05, β = 10, and (x0, y0,
z0) = (0.05, 0.02, 0.05). It is clear to see that the fractional-order map undergoes a change
from periodic oscillation to chaos with increasing fractional order. Figure 6b visualizes the
influences of the dissipation parameters and fractional orders, where the parameters are
set as r = 5 and r1 = 0.05, and the initial condition is chosen as (x0, y0, z0) = (0.05, 0.02, 0.05).
The effects of the dissipation parameters and fractional orders are different from those of
the control parameters and fractional orders. The largest Lyapunov exponent in most of
the areas is greater than zero, i.e., the system is mainly in a chaotic state.
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where N is the length of time sequences. In practice, n is chosen as N/10, and the super-
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We get 100 values for Kc and then let K = median (Kc). When the value of K approaches 
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regard to ν and β.

3.2. 0-1 Test

The 0-1 test is another approach to verify the existence of chaos, which can be utilized
directly to a series of data without any phase space reconstruction [34]. Based on the state
{x(j)} of System (17), the translation components pc (n) and qc (n) are defined as

pc(n) =
n

∑
j=1

x(j) cos(jc), qc(n) =
n

∑
j=1

x(j) sin(jc) (18)
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where c is an arbitrary constant in the interval (0, π). By plotting the dynamics of the trans-
lation components pc–qc, it is easy to determine the state of the system. If p–q trajectories
are Brownian-like, the state of the system is chaotic, whereas if the trajectories are bounded,
the state is periodic.

Next, the mean square displacement Mc on pc (n) and qc (n) is defined as

Mc = lim
N→∞

1
N

N

∑
j=1
{[pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2}, n << N, (19)

where N is the length of time sequences. In practice, n is chosen as N/10, and the superscript
of ∑ is N−n.

Finally, the asymptotic growth rate Kc is calculated by

Kc = lim
n→+∞

log Mc

log n
. (20)

We get 100 values for Kc and then let K = median (Kc). When the value of K approaches
0, the system is in a periodic state, and when this value approaches 1, the system is chaotic.

The 0-1 test is performed, and the asymptotic growth rate, K, against r is depicted in
Figure 7 under the conditions of r1 = 0.05, β = 4.5, ν = 0.9, and (x0, y0, z0) = (0.05, 0.02, 0.05).
The asymptotic growth rate K is consistent with the bifurcation portrait and the largest
Lyapunov spectrum shown in Figure 2. In order to further illustrate the nonlinear behaviors,
the p–q trajectories are demonstrated in Figure 8. When r = 17, the bounded trajectory of the
p−q plane is shown in Figure 8a, and the asymptotic growth rate is K = 0.0001, implying
that the system state is periodic. On the contrary, as r = 19.8, the Brownian-like trajectory is
presented in Figure 8b, and the asymptotic growth rate is obtained as K = 0.9958, illustrating
that the state is chaotic. Furthermore, the chaotic sequences of r = 19.8 are divided into two
sequences according to the value of xn. The trajectories of 0 < xn < 0.2 and 0.8 < xn < 1 are
plotted in Figure 8c,d, respectively. The trajectories demonstrate that two sequences keep a
chaotic state, so the map can produce multiple chaotic sequences.
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4. Complexity and Entropy
4.1. Spectral Entropy

Complexity is an index that is used to measure how well a chaotic system generates
random sequences, and larger complexity implies more randomness for the generated
sequences. The complexity of the fractional-order map is evaluated by means of spectral
entropy (SE). The spectral entropy algorithm [35] is defined as follows; consider a set of
time sequences {xn, n = 0, 1, 2, ..., N − 1} with a length of N, and obtain a new discrete
number of length N by subtracting the mean of this dataset, which is expressed as

xn = xn −

N−1
∑

n=0
xn

N
, (21)

The Fourier transformation is calculated by

Xk =
N−1

∑
n=0

xne−j2nπk/N , (22)

where k = 0, 1, 2, ..., N − 1 and j is the unit imaginary. The probability of the power spectrum
is given as

Pk =
|Xk|2

N/2−1
∑

k=0
|Xk|2

, (23)
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Then, the normalization spectral entropy is defined as

SE =

N/2−1
∑

k=0
|Pk ln(Pk)|

ln(N/2)
(24)

We utilize spectral entropy to measure the complexity of the fractional-order map, and
the result of SE complexity is presented in Figure 9. The SE complexity surpasses 0.85 in
the highest range, so this fractional-order map can generate better random sequences.

Axioms 2023, 12, x FOR PEER REVIEW 10 of 14 
 

,
1

0

/2


−

=

−
=

N

n

Nknj
nk exX 

 
(22) 

where k = 0, 1, 2,..., N − 1 and j is the unit imaginary. The probability of the power spectrum 

is given as 

,
12/

0

2

2


−

=

=
N

k
k

k
k

X

X
P

 
(23) 

Then, the normalization spectral entropy is defined as 

)2/ln(

)ln(
12/

0

N

PP

SE

N

k
kk

−

==

 

(24) 

We utilize spectral entropy to measure the complexity of the fractional-order map, 

and the result of SE complexity is presented in Figure 9. The SE complexity surpasses 0.85 

in the highest range, so this fractional-order map can generate better random sequences.

 

Figure 9. SE of the fractional-order map with regard to ν and β. 

4.2. Approximate Entropy 

The approximate entropy (ApEn) [36] is the other means to measure the complexity 

of the fractional-order map, which is described as follows. Consider a set of time se-

quences x1, x2,..., xn obtained from System (17) and determine n − m +1 vectors as follows: 

 ., 11 −++= miiii xxxX   (25) 

These vectors denote m consecutive x values, which start from the ith data. Giving 

tolerance, r, and for each ]1,1[ +− mni , we define the following equation: 

,
1

)(
+−

=
mn

K
rCm

i
 

(26) 

in which K is the number of Xi with rXXd ji ),( . In this case, d(Xi, Xj) represents the 

largest absolute difference between Xi, and Xj. We calculate the approximate entropy by 

),()( 1 rrAPEn mm +−= 

 
(27) 

where )(rm is described as 

,)(log
1

1
)(

1

1


+−

=−−
=

mn

i

m
i

m rC
mn

r

 
(28) 

Figure 9. SE of the fractional-order map with regard to ν and β.

4.2. Approximate Entropy

The approximate entropy (ApEn) [36] is the other means to measure the complexity of
the fractional-order map, which is described as follows. Consider a set of time sequences
x1, x2,..., xn obtained from System (17) and determine n − m +1 vectors as follows:

Xi = [xi, xi+1 · · · · · · xi+m−1]. (25)

These vectors denote m consecutive x values, which start from the ith data. Giving
tolerance, r, and for each i ∈ [1, n−m + 1], we define the following equation:

Cm
i (r) =

K
n−m + 1

, (26)

in which K is the number of Xi with d(Xi, Xj) ≤ r. In this case, d(Xi, Xj) represents the
largest absolute difference between Xi, and Xj. We calculate the approximate entropy by

APEn = φm(r)− φm+1(r), (27)

where φm(r) is described as

φm(r) =
1

n−m− 1

n−m+1

∑
i=1

log Cm
i (r), (28)

The result of ApEn complexity is shown in Figure 10, which agrees well with SE
complexity. Therefore, this fractional-order map has a more complex structure. It has higher
complexity than the fractional-order logistic map and the fractional-order Hénon map.
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5. Chaos Control

As the fractional-order chaotic map is raised, the chaos control for the fractional-order
map becomes a new topic. The occurrence of chaotic behaviors may cause instability in
engineering applications, so chaos control has been widely studied. However, researchers
have paid little attention to the topic of controlling fractional-order chaotic maps. In the
section, the scheme of chaos control is proposed, which is based on improved nonlinear
mapping on wavelet functions [37]. System (17) is controlled by it. This control method
of fractional-order systems is of importance not only for control theory, but also for the
application of fractional-order chaotic maps. A Marr wavelet function is employed to
construct the improved nonlinear mapping. This chaos control algorithm is described as

xn= ke−
x2

n−1
2 (1− x2

n−1)[ f (xn−1)− r1yn−1],
C∆ν

ay(t)= −y(t + ν− 1)e−2β + e−βr[(2− 2x(t + ν− 1))y(t + ν− 1)

−2x(t + ν− 1)z(t + ν− 1)]− y(t + ν− 1),
C∆ν

az(t)= −z(t + ν− 1)e−2β + e−βr[2(1− x(t + ν− 1))z(t + ν− 1)

−2x(t + ν− 1)y(t + ν− 1)− x(t + ν− 1)]− z(t + ν− 1),

(29)

where k is a control parameter.
If System (17) is controlled when n = 1000, then the control results are presented in

Figure 11. The fractional-order chaotic map is controlled to a period-1 orbit with k = 0.2; it is
controlled to a period-2 orbit with k = 0.5, and it is controlled to period-4 orbit with k = 0.65,
while it is controlled to quasiperiodic orbit with k = 0.7. As can be seen, the fractional-order
chaotic map endures period-1, period-2, period-4, and quasiperiodic states with an increase
in the control parameter k.
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6. Conclusions

We build an improved quantum logistic map without equilibrium by reforming the
classic quantum logistic map. The improved quantum logistic map with hidden attractors
is generalized to the fractional case by introducing the Caputo-like delta difference operator.
Through a phase portrait, the largest Lyapunov exponent, dynamical mapping, and 0-1
testing, the dynamical characteristics were studied. Both the parameters and fractional
orders impact the system. With varying control parameters, the system shows periodic
windows. However, for the dissipation parameter and the fractional order, there are no
periodic windows in the chaotic region. This means that this chaotic map possesses stronger
robustness in chaos, so the system could be applied to generate stable chaotic sequences
for secure communication. The 0-1 test shows that this fractional-order map can generate
several chaotic sequences. Then, the complexity of the fractional-order map was described
by spectral entropy and approximate entropy, which shows that this fractional-order map
can generate better random sequences. In addition, improved nonlinear mapping on a
wavelet function for the fractional-order map was proposed. This map is controlled to
different periodic orbits under different control parameters. The fractional-order map gains
more degrees of freedom compared to the integer counterpart, so the fractional-order map
has greater potential applications in the engineering field. Due to its higher complexity
and stronger robustness in chaos, this fractional-order chaotic map can be employed in
information encryptions, such as secret communications and image encryptions. In order
to apply the fractional-order improved quantum logistic map, we will focus on designing
the image encryption scheme based on this map in the future.
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Appendix A

The code generating chaotic attractors in MATLAB:

ν=0.9;β=4.5;r=19.8;r1=0.05;
x(1)=0.05;y(1)=0.02;z(1)=0.05;
for i=2:1:3000
temp4=0;temp7=0;
for j=2:1:i temp5=temp4+exp(gammaln(i−j+ν)−gammaln(i−j+1))*((−y(j−1)*exp(−2*β))+
exp(−β)*r*((2−2*x(j−1))*y(j−1)−2*x(j−1)*z(j−1))−y(j−1)); temp8=temp7+exp(gammaln
(i−j+ν)−gammaln(i−j+1))*((−z(j−1)*exp(−2*β))+exp(−β)*r*(2*(1−x(j−1))*z(j−1)−
(2*x(j−1)*y(j−1))−x(j−1))−z(j−1));
temp4=temp5;temp7=temp8;
temp6=(1/gamma(ν))*temp5; temp9=(1/gamma(ν))*temp8;
end
if (0<x(i−1))&&(x(i−1)<0.2)
x(i)=0.8+r*(x(i−1)−0)*(0.2−x(i−1))−r1*y(i−1);
elseif (0.8<x(i−1))&&(x(i−1)<1)
x(i)=0+r*(x(i−1)−0.8)*(1−x(i−1))−r1*y(i−1);
end
y(i)=y(1)+temp6; z(i)=z(1)+temp9;
end
figure;
plot(x(100:3000),y(100:3000),’b.’,’markersize’,2);
xlabel(‘x’);ylabel(‘y’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
figure;
plot(y(100:3000),z(100:3000),’b.’,’markersize’,2);
xlabel(‘y’);ylabel(‘z’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
figure;
plot(z(100:3000),x(100:3000),’b.’,’markersize’,2);
xlabel(‘z’);ylabel(‘x’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
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