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Abstract: Many papers concern both the starlikeness and the convexity of Bernardi integral operator.
Using the Nunokawa’s Lemma, we want to determine conditions for the strong starlikeness of the

Bernardi transform of normalized analytic functions g, such that | arg{g′(z)}| < απ

2
in the open unit

disk ∆ where 0 < α < 2. Our results include the results of Mocanu, Nunokawa and others on the
Libera transform.
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1. Introduction

The class of all analytic functions in the open unit disk ∆ is shown byH, and the class
of functions h ∈ H which is in the form

h(z) = z + an+1zn+1 + an+2zn+2 + · · · (z ∈ ∆),

is denoted by An with A1 = A.
Furthermore, the class of strongly starlike functions of order β (0 < β ≤ 1) is denoted

by SS∗(β), where

SS∗(β) =

{
h ∈ A :

∣∣∣∣arg
{

zh′(z)
h(z)

}∣∣∣∣ < βπ

2
, z ∈ ∆

}
as was introduced in [1,2]. We know that SS∗(1) ≡ S∗ is the class of starlike functions in ∆.
Refer to [3–5] for various sufficient conditions for this subject. Let

R =
{

h ∈ A : Re{h′(z)} > 0, z ∈ ∆
}

,

which is the class of functions with bounded turning. For ξ ≥ 1, we denote using Lξ ; the
Bernardi transform is defined as Lξ : A → A, where

Lξ [h](z) =
1 + ξ

zξ

∫ z

0
h(t)tξ−1dt, (1)

is the Bernardi integral operator. Several authors have studied this (for example, see [6,7]).
The study presented in [8] concerns aspects regarding both the starlikeness and the con-
vexity of Bernardi integral operator. Investigations on the Bernardi integral operator have
continued in recent years. Applications introducing new classes of analytic functions can
be seen in [9,10]. Several majorization results for the class of normalized starlike functions
are obtained using the Bernardi integral operator in [11], and studies regarding coefficient
estimates have been performed for a new class of starlike functions associated with sine
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functions, using the Bernardi integral operator in [12]. Integral transforms have an im-
portant role in geometric function theory. The reader can find interesting results in, for
instance [13,14]. A thorough review on the importance of integral operators can be seen
in [15].

If ξ = 1, we have L1[h] = L[h] where

L[h](z) =
2
z

∫ z

0
h(t)dt, (2)

is the well-known Libera integral operator.
The problem of the starlikeness of L[h] was considered by Mocanu [16], and the

following result was proved.

Theorem 1 (see [16]). If h is analytic and Re{h′(z)} > 0 in ∆, then L[h] ∈ S∗.

Or briefly

L[R] ⊂ S∗ = SS∗(1), (3)

where L[R] = {L[h] : h ∈ R}. Relation (3) was improved by Mocanu [17] as follows:

L[R] ⊂ SS∗(8/9). (4)

Recently, the problem of the strong starlikeness of L[h] for h ∈ R was considered also
in [18]. Nunokawa et al. in [18] proved the following result, which is an improvement on
Mocanu’s result (4).

Theorem 2 (see [18]). If h ∈ A and Re{h′(z)} > 0 in ∆, then the function (2) satisfies∣∣∣∣arg
{

zL′[h](z)
L[h](z)

}∣∣∣∣ < ξπ

2
= 1.368 · · · (z ∈ ∆)

where

ξ =
2
π

(π

2
− log 2

)(
1 +

π

2
− log 2

)
= 0.870907 · · · . (5)

This result may be written as

L[R] ⊂ SS∗(ξ), (6)

where ξ is given by (5).
In this paper, motivated by the works mentioned above, we studied the problem of

the strong starlikeness of the Bernardi transform, and obtained an improvement on the
results of Mocanu and Nunokawa et al. One can continue this work by using other integral
operators, for example, the Libera–Pascu operator on alpha-close-to-convex functions
(for more details see [19]). Furthermore, these conclusions can be extended by applying
q-calculus and constructing positive operators in the future. There are many papers on
q-calculus, but one of the more recent papers is [20].

2. Main Results

We need the following Lemmas to prove the main theorem.

Lemma 1 (see [21]). Suppose that

h(z) = 1 +
∞

∑
n=m≥1

anzn (am 6= 0; z ∈ ∆) (7)
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with h(z) 6= 0 in ∆. If there exists a point z0 (z ∈ ∆) such that

| arg{h(z)}| < βπ

2
for |z| < |z0|

and

| arg{h(z0)}| =
βπ

2

for some β > 0, then

z0h′(z0)

h(z0)
= ikβ,

where

k ≥ m(a2 + 1)
2a

≥ 1, when arg{h(z0)} =
βπ

2

and

k ≤ −m(a2 + 1)
2a

≤ −1, when arg{h(z0)} = −
βπ

2
,

where

{h(z0)}
1
β = ±ia (a > 0).

Theorem 3 (see [18]). Let h be analytic in ∆ with h(0) = 1 and

h(z) + ξzh′(z) ≺
(

1 + z
1− z

)α

(z ∈ ∆),

where 0 < α < 2 and ξ ≤ 1. Then

h(z) ≺
(

1 + z
1− z

)β

(z ∈ ∆),

where

β = α

(
1− 2

π
log 2

)
. (8)

Lemma 2. If g ∈ A and | arg{g′(z)}| < απ

2
in ∆, then the function (1) satisfies

∣∣∣∣arg
{

Lξ [g](z)
z

}∣∣∣∣ < απ

2

(
1− 2

π
log 2

)2
(z ∈ ∆),

where 0 < α < 2 and ξ ≥ 1.

Proof. Let g ∈ A and | arg{g′(z)}| < απ

2
where z ∈ ∆ and 0 < α < 2. From (1) we have

zL′′ξ [g](z) + (1 + ξ)L′ξ [g](z) = (1 + ξ)g′(z) (z ∈ ∆),

and so ∣∣∣∣arg
(

L′ξ [g](z) +
1

1 + ξ
zL′′ξ [g](z)

)∣∣∣∣ < απ

2
.
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Therefore

L′ξ [g](z) +
1

1 + ξ
zL′′ξ [g](z) ≺

(
1 + z
1− z

)α

and by Theorem 3,

L′ξ [g](z) ≺
(

1 + z
1− z

)β

,

where β is given by (8). Similar to the proof of Lemma 2.3 in [18], let h(z) = Lξ [g](z)/z
(z ∈ ∆). Then h(z) + zh′(z) = L′ξ [g](z) and by (9) we have

∣∣arg
{

h(z) + zh′(z)
}∣∣ < βπ

2
.

Again, using Theorem 3,

h(z) ≺
(

1 + z
1− z

)δ

(z ∈ ∆),

where

δ = β

(
1− 2

π
log 2

)
= α

(
1− 2

π
log 2

)2

and so ∣∣∣∣arg
(

Lξ [g](z)
z

)∣∣∣∣ < απ

2

(
1− 2

π
log 2

)2
(z ∈ ∆).

Theorem 4. Let g ∈ A and ξ ≥ 1. Furthermore, suppose that for 0 < α < 2,

| arg{g′(z)})| < απ

2
(z ∈ ∆). (9)

If Equation (with respect to x)

x +
2
π

tan−1 x
ξ
= α

(
1 +

(
1− 2

π
log 2

)2
)

(10)

has a solution β ∈ (0, 1], then ∣∣∣∣∣arg

{
zL′ξ [g](z)

Lξ [g](z)

}∣∣∣∣∣ < βπ

2
, (11)

and Lξ [g] is the strongly starlike of order β.

Proof. Let

h(z) =
zL′ξ [g](z)

Lξ [g](z)
(z ∈ ∆).

If there exists a point z0 ∈ ∆, for which

| arg{h(z)}| < βπ

2
(|z| < |z0|)
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and

| arg{h(z0)}| =
βπ

2
,

then from Nunokawa’s Lemma 1, we have

z0h′(z0)

h(z0)
= ikβ,

where

k ≥ a2 + 1
2a

≥ 1, when arg{h(z0)} =
βπ

2

and

k ≤ − a2 + 1
2a

≤ −1, when arg{h(z0)} = −
βπ

2
,

with h(z0) = (±ia)β (a > 0).

If arg{h(z0)} =
βπ

2
, we have

∣∣∣arg
{

z0h′(z0) + h(z0)
2 + ξh(z0)

}∣∣∣ = ∣∣∣∣arg
{

h(z0)

[
ξ + h(z0) +

z0h′(z0)

h(z0)

]}∣∣∣∣
=

∣∣∣∣arg{h(z0)}+ arg
{

ξ + h(z0) +
z0h′(z0)

h(z0)

}∣∣∣∣
=

∣∣∣∣ βπ

2
+ tan−1

{
βk + aβ sin(βπ/2)
ξ + aβ cos(βπ/2)

}∣∣∣∣, (12)

where h(z0) = (ia)β (a > 0) and

k ≥ a2 + 1
2a

≥ 1.

Let us put

u(a) =
βk + aβ sin(βπ/2)
ξ + aβ cos(βπ/2)

(a > 0).

Then

u(a) ≥ β + aβ sin(βπ/2)
ξ + aβ cos(βπ/2)

(a > 0). (13)

Putting

f (x) =
β + x sin(βπ/2)
ξ + x cos(βπ/2)

(x ≥ 0),

we have

f ′(x) =
ξ sin(βπ/2)− β cos(βπ/2)

(ξ + x cos(βπ/2))2 > 0 (x ≥ 0),

because tan(βπ/2) > β and ξ ≥ 1. Therefore, for x > 0 we obtain f (x) > f (0) = β/ξ, so
from (13) we get
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u(a) >
β

ξ
,

which implies that

tan−1
{

βk + aβ sin(βπ/2)
ξ + aβ cos(βπ/2)

}
> tan−1 β

ξ
(a > 0).

Therefore, from (12), we have the following inequality∣∣∣arg
{

z0h′(z0) + h(z0)
2 + ξh(z0)

}∣∣∣ = βπ

2
+ tan−1

{
βk + aβ sin(βπ/2)
ξ + aβ cos(βπ/2)

}
>

βπ

2
+ tan−1 β

ξ
. (14)

Moreover, from Lemma 2, we have

|arg{H(z0)}| =
∣∣∣∣arg

{
Lξ [g](z0)

z0

}∣∣∣∣ < απ

2

(
1− 2

π
log 2

)2
, (15)

where

H(z) =
Lξ [g](z)

z
(z ∈ ∆).

By (14) and (15), we can obtain∣∣arg
{
(1 + ξ)g′(z0)

}∣∣ = ∣∣∣arg
{
(1 + ξ)L′ξ [g](z0) + z0L′′ξ [g](z0)

}∣∣∣
=
∣∣∣arg

{
H(z0)

(
z0h′(z0) + h(z0)

2 + ξh(z0)
)}∣∣∣

=
∣∣∣arg{H(z0)}+ arg

{
z0h′(z0) + h(z0)

2 + ξh(z0)
}∣∣∣

>
βπ

2
+ tan−1 β

ξ
− απ

2

(
1− 2

π
log 2

)2
=

απ

2
,

because β is the solution of (10). Therefore, we have∣∣arg
{

g′(z0)
}∣∣ = ∣∣arg

{
(1 + ξ)g′(z0)

}∣∣ > απ

2
. (16)

This contradicts the hypothesis. If arg{h(z0)} = −
βπ

2
, we have similar calculations,

and the proof is completed.

By putting ξ = α = 1 in Theorem 4, we have:

Corollary 1. If g ∈ A and Re{g′(z)} > 0 in ∆, then∣∣∣∣arg
zL′[g](z)
L[g](z)

∣∣∣∣ < βπ

2
(z ∈ ∆),

where β = 0.860004 · · · .

Or briefly

L[R] ⊂ SS∗(β), (17)

where β = 0.860004 · · · , which shows that the result (17) improves the result (6) in
Theorem 2 obtained by Nunokawa et al. on the Libera integral operator.

Furthermore, with suitable choices of α and β in Theorem 4, we obtain:
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Corollary 2. (i) If g ∈ A and

| arg{g′(z)}| < απ

2
,

with α ≈ 0.6059, then L[g] ∈ SS∗(1/2).
(ii) If g ∈ A and

| arg{g′(z)}| < απ

2
,

with α ≈ 0.7933, then L[g] ∈ SS∗(2/3).
(iii) If g ∈ A and

| arg{g′(z)}| < απ

2
,

with α ≈ 1.1432, then L[g] ∈ SS∗(1) = S∗.

3. Conclusions

In the present investigation, we have found suitable conditions for the Bernardi
transform of a special class of analytic functions to be in the class of strongly starlike
functions. One can obtain the conditions for other integral transforms to have geometric
properties, such as starlikeness, convexity, q- starlikeness and alpha-close-to-convexity.
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