
Citation: Pech-Rodríguez, W.J.;

Suarez-Velázquez, G.G.;

Armendáriz-Mireles, E.N.;

Calles-Arriaga, C.A.; Rocha-Rangel,

E. Performance Assessment of

Heuristic Genetic Algorithm (HGA)

for Electrochemical Impedance

Spectroscopy Parameter Estimation.

Axioms 2023, 12, 84. https://

doi.org/10.3390/axioms12010084

Academic Editors: Luis

Carlos Méndez-González and Luis

Alberto Rodríguez-Picón

Received: 17 November 2022

Revised: 29 December 2022

Accepted: 5 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Performance Assessment of Heuristic Genetic Algorithm (HGA)
for Electrochemical Impedance Spectroscopy
Parameter Estimation
Wilian J. Pech-Rodríguez , Gladis G. Suarez-Velázquez , Eddie N. Armendáriz-Mireles ,
Carlos A. Calles-Arriaga and E. Rocha-Rangel *

Research and Postgraduate Department, Universidad Politécnica de Victoria, Ciudad Victoria 87138, Mexico
* Correspondence: erochar@upv.edu.mx; Tel.: +52-8-3410-0171-1100

Abstract: Due to the importance of cutting-edge nanomaterials applications in energy generation and
storage devices, electrochemical impedance spectroscopy (EIS) has been adopted to fully understand
the electronic and chemical reactions occurring inside these emerging technologies. Electronic
behavior can be correlated with electrochemical properties such as electron transfer resistance, rate
of mass diffusion, and the number of electrons in the electrochemical reaction. Although there is
a lot of information about the electronic diagrams and methods for parameter estimation, some
readers have difficulty analyzing and interpreting EIS curves. Thus, this work proposed using a
heuristic approach and genetic algorithms to successfully estimate the resistance and capacitance
value of a previously defined circuit model. To assess the potential of the genetic algorithm in
electrochemical parameters estimation, we carried out practical measurements with known elements,
and then the experimental and theoretical values were compared. Furthermore, the versatility and
effectiveness of the algorithm were validated by determining the parameters in an Li-ion battery. The
results revealed that the heuristic genetic algorithm (HGA) is a powerful tool for EIS parameters
estimation because it can handle large below and upper limits with more pragmatic results in a shorter
computational time.

Keywords: heuristic genetic algorithm; electrochemical impedance spectroscopy; electrochemical properties

1. Introduction

Nowadays, nanomaterials are crucial in developing sustainable technologies, such as
batteries, fuel cells, supercapacitors, electrolyzes, and solar cells [1–6]. Modeling and simu-
lation are commonly adopted tools that scientific communities use to understand and avoid
accelerated degradation, undesired electrochemical reaction, and safety management in
recent electronic and electrochemical devices [7,8]. Obviously, improving the technologies
mentioned above is mandatory to face the challenge of energy generation, and a parameter
estimation is a promising approach to fully understanding the internal electrochemical pro-
cess. Additionally, EIS can be used to determine the lifetime, diagnose the device’s health,
and predict its dynamic behavior over a large period of time [9–11]. As is well known,
the electrochemical processes in nanomaterials can be studied by considering the charge
transfer resistance and diffusion mass control of species, in other words, by modelling the
system by interconnected resistors, capacitors, and inductors [12,13]. EIS is a powerful tool
to assess the physical characteristic of nanomaterials under practical operational condi-
tions of the cited technologies [14–16]. This non-destructive method is based on frequency
modulation of the sine voltage input signal while measuring the generated flowing current
through the system. From a mathematical point of view, impedance is the ratio between
the voltage and current, and this is also referred to as the transfer function of one electrical
system. Under the control argot, impedance is studied by constructing the Nyquist diagram
consisting of a complex plane where real impedance and imaginary impedance are plotted
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under a given set of frequencies [17]. Thus, the modeling equation is usually written in
complex form by making some mathematical arrangements. The final function depends on
the perturbation frequency and the value of the interconnected electrical devices. The most
important part of EIS characterization is the parameter estimation of the unknown variables.
Although there are many methods to model it, accuracy and reliability can be difficult
because multiple values can fit the experimental measurements well. In addition, due to the
fact that EIS is a multivariable system, the dynamics are truly complex to solve. There are
many mathematical procedures to solve the transfer function of the electrical diagram and
estimate the value of each element, and non-linear regression analysis is usually selected.
Levenberg–Marquardt is another numerical optimization algorithm that has been used to
solve non-linear equations but still suffers from numerous local minima [18,19]. As the
system becomes complex, the algorithms mentioned above are computationally expensive
and inaccurate, even with few elements or variables. One of the most used numerical
methods to solve multivariable models is the Newton–Raphson method [20]. This method
has the ability to handle non-linear systems, and guess values are only required to start
the iterations. The main drawback of Newton–Raphson is that it is highly mathematical,
and the convergence times truly depend on the initial guess values. Another challenge
of Newton–Raphson is the existence of inflection points where slope change is observed,
which has the problem of multiple local minima.

Ruan et al. proposed an EIS based on the multi-time-scale-fractional-order model
to simulate the internal dynamic of lithium-ion batteries in both short and long-time
intervals [21]. Even though this group modeled the EIS with high accuracy and adaptability,
the mathematical expression and the resolution method were not friendly to handle, and
errors due to the linear model assumption and time-consuming parameter identification
were the main challenges. Fractional-order EIS was also implemented by Caponetto et al. to
study the electrochemical process in a fuel cell [10]. They used mathematical interpolation
laws to identify three parameters while fixing the other two parameters.

The internal impedance of batteries has been a topic of interest because it can obtain
this device’s state of health and function [9]. Significant work was done by the research
group of Middlemiss [22]) where EIS measurements were conducted in order to elucidate
information on battery degradation. This group highlighted the primary processes for
metal-ion battery degradation: loss of active metal, loss of cathode, and deterioration of
ionic transport. They recognized that although EIS is easy to use, the issue resides in the
data interpretation.

The Randles circuit is one of the most useful models to simulate physical and chemical
processes in energy devices such as batteries [23]. For instance, Rong et al., studied a hole-
conductor-free TiO2/CH3NH3PbI3 heterojunction solar cell by EIS to further understand
the charge-transport process in the perovskite device [24]. They used two Randles circuits,
conformed by resistance and capacitance in parallel. At high frequency, a semicircle was
observed, attributed to the perovskite-counter electrode interaction. At the same time,
the second Randles model represents the charge transfer resistance and recombination at
TiO2/perovskite interface occurring at low frequency. The EIS measurements were consis-
tent with the previously recorded J–V curve and the differences in open-circuit potential.
Another application of the Randles circuit can be found in the area of corrosion [25,26].
A nanocompound of ZnO–Cr2O3/epoxy was studied as a protective layer for mild steel
in a 3.5% NaCl solution [27]. The EIS technique was used to elucidate the anti-corrosion
mechanism of the nano compound. The author observed a single depressed semicircle
with the center under the real axis from the Nyquist plot. The fitness of the spectra was
achieved by using a Randles circuit consisting of a resistance and capacitance representing
the charge transfer resistance and the double-layer capacitance. Also, series resistance was
considered to model the solution resistance.

Due to the aforementioned limitations of traditional mathematics for parameter esti-
mation on multiple equations, the scientific community has been adopting the population-
based approach to solve a multi-objective optimization problem [19]. Zhu and coworkers
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developed interesting work. They used a support vector machine (SVM) learning algorithm
to obtain the values for electrical components in an equivalent circuit model [28]. They
stated that SVM efficiently figures out the equivalent circuit model of the studied EIS
spectrum. The SVM code was written in Python and Scikit-learn package. The basis of this
method consists of finding the minimum value of a geometrical interval (distance between
the support vector and the hyperplane). The proposed algorithm was tested by fitting EIS
extracted from the literature and discretized in data points. Compared with the decision
tree and random forest algorithm SVM presents the highest reliability, and the error was
mainly attributed to the small amount of the collected raw data.

Genetic algorithms (GA) are a versatile learning tool based on the biological evolution
algorithm. GA have been used to solve engineering models such as solar cells, robots,
and fuel cells [29–31]. This method is based on the optimization of genes that satisfy the
equation under some limits and constraints for precise parameter estimation. It is capable
of handling the global optima in less computing time [32]. One attempt to use evolutionary
algorithms was conducted by Haeverbeke et al., where this group used gene expression
programming to achieve circuit model identification and then remove the components
that do not contribute significantly [33]. Nonetheless, the objective function was solved by
the Nelder–Mead simplex numerical algorithm. The method mentioned above is a non-
constraint direct search method based on constructing N + 1 vertices that will be replaced
by new optimal ones [34]. The main drawback of this algorithm is the time computing and
that, at near local minima, the algorithm could not converge in a single value [35]. The
challenge of GA is the creation of the initial population and the crossover and mutation of
the individual, resulting in the rejection of a considerable number of genes [36]. It should
be mentioned that meta-heuristic methods can optimize the problem even when the initial
guesses are very distant from the actual values and the probability of the global optima is
higher [20]. A recently published work showed the potential of the adoption of GA to solve
practical engineering problems [37]. Wang et al., developed a deep comparison of several
machine-learning algorithms to minimize the nitrogen crossover in polymer electrolyte
fuel cells [38]. Reactant crossover is critical because it can provoke low performance and
irreversible component damage. This group used a surrogate machine learning model
to successfully reduce the nitrogen crossover by 49.5%. On the other hand, Luo et al.,
critically reviewed machine learning as a strategy to predict the state of health and charge
of lithium-ion batteries [39]. The authors concluded that battery prognosis is critical in
determining the second-lifetime application or recycling route. The non-linear model can
be predicted using machine learning algorithms. Meanwhile, Yang and coworkers used five
machine-learning algorithms to unravel the complex relationship of organic molecules in
solar cell performance [40]. To this end, they used the open circuit voltage loss and dielectric
constant as molecular descriptors. The results demonstrated that machine learning could
help scientists develop novel and efficient organic photovoltaic materials.

This study considered a Randles circuit to determine the EIS and estimate the optimal
parameters. Specifically, the objective functions were determined using the transfer function
concept, and this mathematical equation was rearranged to separate the real and imaginary
parts. Then, the equations were solved by using GA under heuristic considerations. A real-
Randles circuit was constructed with a Rs, Rp and Cp. EIS measurements were conducted
in a GillAC potentiostat–Galvanostat with a two-electrode cell configuration. The obtained
measured impedance data were used as inputs for the multi-objective function. In order
to solve the heuristic algorithms of the non-linear multi-objective optimization problem,
the Matlab optimization toolbox was used. The adopted HGA approach exhibited good
accuracy and convergence in a short time, indicating that it is a promising candidate for the
simulation of complex circuits in the area of nanomaterials. Furthermore, the proposed GA
was used to identify the parameters in an Li-ion battery, and the results were compared
with the pattern search algorithm.

Last but not least, HGA is an excellent tool for solving complex mathematical models.
This could help face the main drawbacks of engineering by conducting high-fidelity model



Axioms 2023, 12, 84 4 of 14

simulations. The contribution of this research work is the proposal of a straightforward
methodology where the practitioner can use the Matlab optimization toolbox to determine
or extract physical parameters through GA. The latter is relevant because the use of GA
has been achieved only by experienced and trained researchers. Therefore, the scientific
community can adopt the proposed pathway to solve engineering problems and focus on
analyzing and interpreting the information obtained from the genetic algorithm.

2. Materials and Methods
2.1. Mathematical Model

Due to its simplicity and deployment, Randles equivalent circuit was considered
to assess the power of heuristic HGA for EIS model estimation. Figure 1 displays the
interconnection of resistances and capacitance in the Randles configuration. An alternating
voltage source is considered as the input signal for the electrical circuit.
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Figure 1. Representation of the Randles equivalent circuit.

From the above-mentioned literature, the series resistance (Rs) usually represents the
internal resistance or electrolyte resistance of the electrochemical process, while the parallel
topology of Rp and Cp describes the charge transfer resistance and the electrical double layer,
respectively. In order to corroborate the versatility of HGA in the EIS parameter estimation,
we conducted experimental measurements in a GillAC potentiostat–Galvanostat with a
two-electrode cell configuration. Commercially available resistors and capacitors were
interconnected in the Randles configuration. The EIS spectra were measured with a 10 mV
of sine wave signal over the range of 80,000 Hz to 1 Hz. Three circuit models labeled
circuits A, B and C were constructed and measured under the EIS configuration setup. The
obtained data were used to construct a Nyquist plot.

We first obtained the mathematical equations for the proposed circuit to identify model
parameters. First, the equivalent impedance was obtained in the frequency domain by the
following equation:

Zeq = Rs +
Rp×ZCp
Rp+ZCp

= Rs +
Rp× 1

Cps

Rp+
1

Cps
= Rs +

Rp
Cps

(CpsRp+1)
Cps

= Rs +
Rp

(CpsRp+1)

(1)

where s is the complex plane in the frequency domain. The latter equation can be expressed
in terms of angular frequency by changing s = jw; the equation can be written as:

Zeq = Rs +
Rp

(jwCpRp + 1)
= Rs +

Rp

(jwCpRp + 1)
×

(−jwCpRp + 1)
(−jwCpRp + 1)

(2)

The EIS real dynamic of the equivalent circuit is described by:

Zeq = Rs +
Rp

1 + w2R2
pC2

P
− j

wR2
pCp

1 + w2R2
pC2

P
(3)
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where w is the angular frequency and Rs, Rp and Cp are the three parameters that need to
be obtained by the proposed heuristic GA. It can be observed that the Zeq is composed of a
real and imaginary part, and this can be useful because by each value of w we can have
two different equations to solve.

2.2. Parameter Estimation Using HGA

The genetic algorithm is based on evolution theory and was formulated by John
Holland in 1975 [41]. This method has been widely used in various engineering fields to
solve complex mathematical equations. The first step of GA is the creation of a random
population composed of individuals that form the first generation. Then, these individuals
can mate at the next level, and the selection process is achieved to have a new, improved
generation. Generally, the number of members is adopted as an estimate of the minimizer.
In our case, we used a minimization process to obtain the local minima and, in this way,
calculate the three parameters or variables.

To this end, the non-linear system equation for the Randles circuit was converted to a
multi-objective optimization model as follows:

f1
(

Rs, RP, Cp
)
= 0

f2
(

Rs, RP, Cp
)
= 0

.
fN
(

Rs, RP, Cp
)
= 0

→


F1 = min

(
abs
(

f1
(

Rs, RP, Cp
)
= 0

))
F2 = min

(
abs
(

f1
(

Rs, RP, Cp
)
= 0

))
.

FN = min
(
abs
(

fN
(

Rs, RP, Cp
)
= 0

)) (4)

In this way, Equation (3) was re-written as a multi-objective function where two
equations were obtained for each w value, the Zreal and Zim. For example, considering the
experimental results at the w = 1000, the multi-objective function is as follows:

F1 = min(abs(Rs +
Rp

1+w2R2
pC2

P
− 5.999× 102 = 0))

F2 = min(abs(
wR2

pCp

1+w2R2
pC2

P
+ 7.4983 = 0))

(5)

where 5.999 × 102 and 7.4983 are the measured Zreal and Zim values, respectively.
The latter function helps to obtain the global optima, and constraints were not neces-

sary to consider. Lower and upper bound were defined in order to estimate the optimal
values for Rs, Rp, and Cp. The GA is based on selecting the next generations that fit the
3-variables multi-objective function.

The heuristic crossover was implemented to combine chromosomes or parents to
produce a new offspring at a small distance from the parent with the best fitness value.
Equation (6) was used to compute the heuristic crossover [42,43]

βs
i = α(β

f 1
i − β

f 2
i ) + β

f 1
i (6)

where βi
f1 is the best parent and βi

f2 is the worst parent. It is worth mentioning that the
crossover operator plays a critical role because if the crossover process is inadequate, all
the reproduced generation is disrupted.

After the crossover application, a mutation operator was applied to guarantee ade-
quate diversity in the generation and avoid convergence at the local minimum [44]. Figure 2
displays the adopted HGA procedure to obtain the numerical values of Rs, Rp, and Cp.
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2.3. Matlab Optimization Toolbox

It is a package designed to optimize solution problems using methods such as pattern
search, surrogate optimization, particle swarm optimization, genetic algorithm, etc. Users
can access this toolbox by selecting the app menu and opening the optimization windows.
The first step in the optimization setup is defining the problem type. In our case, we used
the constrained non-linear configuration with lower and upper bounds. The second step
is declaring the objective function (as shown in Equation (5)). It is recommended to write
the code in a new script. The next stage is the selection of the population, algorithm, and
tolerance settings.

3. Results
Attainment of EIS Characteristics Using Heuristic Genetic Algorithms

Three different case studies were considered in order to assess the versatility of the
proposed heuristic GA in the parameter estimation of a three-variables multi-objective
function. In the first case, we constructed a Randles circuit by interconnecting the Rs, Rp,
and Cp with commercial values of 2 × 220 Ω, 1 kΩ and 10 nF, respectively. Table 1 lists the
case studies and the commercial values for the resistance and capacitance.

The EIS measurement for each case model was conducted under the same dataset,
such as the sinewave amplitude and frequency range. The obtained raw data were used to
construct the Nyquist plot, and the magnitude of the Zreal and Zim at different frequencies
were used to optimize the EIS parameters. In order to study the versatility of the heuristic
GA, a wide range of lower bound and upper limits was used. It is worth mentioning
that the upper and lower bound range may significantly affect the iteration time and the
calculated error. In our case, the large upper bound does not significantly impact the
computer solution because the ideal capacitor model is used. However, when the constant
phase element and Warburg element are implemented, the upper limit plays a crucial
role in computer time. So, practitioners need to know the physical characteristics of the
system under study to close the upper and lower limit range. By applying the process
described in Figure 2, and after performing enough iterations, we obtained the sets of
optimized parameters shown in Table 1. In all cases, the simulated curve matched the
experimental values well. It is worth mentioning that crossover type has a great effect
on the final optimized values; at the beginning of the simulation, we used one-point and
two-point crossover, but the results were not optimal. Nevertheless, the heuristic crossover
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shows a uniform distribution. Note that the slight discrepancies between the experimental
curve and the simulated one could be due to the tolerance of the commercial electrical
elements and the equipment’s accuracy.

Table 1. Summary of circuit model characteristics and parameter estimation by HGA.

Model
Commercial

Values
(+/−5%)

Considerations for the HGA
Estimated

Parameters
by HGA

Error (%)

Lower bound Upper bound

Circuit A

Rs (Ω) 2 × 220 1 2500 436.130 0.89%

Rp (Ω) 1000 1 2500 1005.400 0.54%

Cp (F) 100 × 10−9 1 × 10−9 400 × 10−9 98.97 × 10−9 1.03%

Circuit B

Rs (Ω) 2 × 220 1 2500 438.254 0.39%

Rp (Ω) 220 1 2500 212.38 3.46%

Cp (F) 1 × 10−6 0.6 × 10−6 400 × 10−6 1.021 × 10−6 2.1%

Circuit C

Rs (Ω) 1000 1 2500 1000.460 0.046%

Rp (Ω) 1000 1 2500 972.325 2.77%

Cp (F) 10 × 10−6 0.6 × 10−6 400 × 10−6 10.28 × 10−6 2.8%

Figure 3 shows the target and the obtained simulated Nyquist plot using the heuristic
GA to solve the optimization problem. It can be seen that the simulated curve has a
reasonably good fit at frequencies more than 18 kHz. The slightly lower performance at high
frequencies could be due to the equipment’s precision under the operational conditions and
small capacitance. According to the data provided by Li and coworkers, some electronic
devices present high-frequency noise [45] that can influence the measurement. They
incorporated a Butterworth low-pass filter in the AD9834DDS digital-analog converter to
improve EIS resolution. The estimated parameters at low frequency, on the other hand, not
only showed a good fit, but the calculated values were changing with a regular pattern.
From Equation (3) it can be deduced that the curve will intersect the real axis in Rs + Rp
value at a lower frequency. A relevant point is the extended lower and upper limits that
the HGA can handle without affecting parameter estimation accuracy.
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The second case study was a circuit with a commercial value of Rs, Rp, and Cp of
2 × 220 Ω, 200 Ω, and 1 µF, respectively. Figure 4 displays the EIS curve for circuit B. This
model also shows an erratic fluctuation at high frequencies. It can be observed that the
Nyquist plot enables the parameterization of R, C values [46]. For example, the semicircle
begins close to the Rs value, 441 Ω, and from the Nyquist diagram, it can be inferred that its
diameter is equal to Rp, close to 208 Ω. Meanwhile, the capacitive value can be estimated
by the following equation [47]:

XC =
1

2pi f C
; C =

1
2pi f Zim

=
1

2× pi× 7× 103 ≈ 1.08× 10−6 F (7)
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These values correlate well with the optimized values obtained by the heuristic GA
procedure. The former reveals the usefulness and power of evolutionary algorithms in the
analysis and parameter estimation of EIS measurements.

The last case study is presented in Figure 5. The high-frequency region of the semicircle
deviates from the reported shape of the Randles circuit. As mentioned before, this could be
due to high-frequency noise, but this does not affect the general behavior of the circuit. Due
to the high capacitance, the semicircle starts at the intersection of the real axis at a lower
frequency, c.a. 500 Hz. From Table 1, it can be seen that the estimated parameters are very
close to the used electrical elements. Thus, the simulated curve fits the target data very
well. HGA has an advantage over analytical methods and deterministic techniques such
as the Lambert W-function because it can handle wrong guesses or limits and avoid local
optimum [30,48]. From Figure 5, it is clearly observed that the capacitor has no contribution
at high and low frequencies, and only Rs and Rp represent an impedance to the system.
From an electrochemical point of view, we can say that the internal or electrolyte resistance,
Rs, is high with a value c.a of 1000 Ω. Compared with Circuit B, the wide semicircle
indicates the high resistance the material offers to the current flow.
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From Table 1 it can be observed that all the case studies have an error below 3.5%. This
is a relevant result because other algorithms implemented for EIS parameter estimation,
such as artificial neuronal networks, have an average error close to 6.2% [49]. Actually,
from the literature, it can be seen that other evolutionary algorithms were compared with a
ZsimpWin package, and they showed an extensive range of errors [50]. Thus, the already
implemented HGA has an advantage over the abovementioned algorithms.

It should be mentioned that in multi-objective problems, a single objective is optimized
simultaneously, and the optimization process is a set of more than one best individual that
is represented as the Pareto optimal solution [51,52]. Figure 6 shows the Pareto front for
the best individual obtained by the heuristic GA. The red spheres form a three-dimensional
curve surface. It can be seen that the multi-objective approach for EIS parameter opti-
mization presents good results because the individuals are concentrated in one region that
follows a consistent trajectory. From the curve surface, a direct relationship between the
estimated parameters can be seen. For example, an increase in capacitance also increases
the value of Rs and Rp. Therefore, this helps to make all parameters optimal at the same
time. Thus, it demonstrates that heuristic crossover enhances optimization by producing
the best individual fitness for the multi-objective problem.
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The validity and accuracy of the proposed HGA procedure are demonstrated by
analyzing the experimental EIS data of Li-ion battery recorded at 35 ◦C, obtained from
Zhang et al. [53]. The data were used to construct the Nyquist plot and then analyzed to
determine the best equivalent circuit model. The already explained HGA procedure was
adopted to estimate the value of each variable (see Figure 2). To this end, the experimental
data were fitted with the equivalent circuit proposed in the literature [54,55]. Figure 7
displays the elements of this model that simulate the electrochemical process in batteries. As
can be seen, this equivalent electric circuit contemplates a series of electric resistance at high
frequencies. Two Randles circuits with a constant phase element (ZCPE = Q−1(jw)−α) that
simulate the behavior of non-ideal capacitors were proposed at intermediate frequencies to
simulate electrolyte and charge transfer processes. Meanwhile, a constant phase element
was implemented at low frequencies to simulate the diffusion mechanism.
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Figure 7. Adopted equivalent electric circuit for parameter estimation in the Li-ion battery.

The impedance of the model was determined by following the same analytical pro-
cedure previously explained, but in this case, a constant phase element was considered.
The obtained equation was written in its complex form and then was used to find the nine
unknown variables, see Equations (8) and (9).

Zreal = Rs +
RP1(Q1(w)α1 RP1×cos(
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(9)

The equations mentioned above were expressed as a multi-objective problem and were
solved by using the HGA. This way, each unknown variable’s values were obtained with
reasonable accuracy. After computing and data analysis, it was concluded that the value
for the best individuals that satisfy the proposed model were 0.3219, 0.2454 and 0.4063 Ω
for Rs, RP1 and RP2, respectively. Meanwhile, the values for QP1, QP2 and QP3 were 0.0175,
0.0651, 6.8987 with α1 = 0.65, α2 = 0.85, and α3 = 0.82, respectively.

Figure 8 presents the experimental Nyquist plot and the simulated curve computed
using the parameters obtained from the HGA. It is evident that the estimated parameters
fit well with the experimental curve, indicating that the implemented HGA procedure is
versatile and can estimate parameters with appropriate accuracy. The effectiveness of the
proposed HGA in estimating the parameters of Li-ion battery is demonstrated by comparing
this algorithm with the patterns search (PS) algorithm available in the Matlab optimization
toolbox. The former algorithm is based on iteratively searching space computing for a set
of points close to the Pareto front without any analytical information about the function
under study and converging to the optimal global solution without needing any derivative
calculations [56]. The estimated error (Root Mean Square, RMS) for the HGA was 0.0116,
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while the PS algorithms presented an RMS error of 0.021. It should be mentioned that
those values are close to those reported in the literature. For example, Li et al., obtained
an RMS error of 0.0145 using an improved particle swarm optimization algorithm to
determine Li-ion battery parameters [57]. Thus, this confirmed the effectiveness of HGA
in estimating the Li-ion battery parameters. It should be mentioned that practitioners
require knowledge about the electrochemical process under study to correctly propose
the equivalent model elements, especially when a constant phase element and Warburg
diffusion elements are required.
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4. Conclusions

In this work, the successful application of genetic algorithms was achieved to solve
the multi-objective model, providing a more accurate fitness function for the EIS curve. In
contrast with other studies, a heuristic crossover operator was implemented to solve the
optimization problem. The latter enhances the accuracy of estimated parameters with less
computing time. The optimization process involves the resolution of the EIS equation using
GA to obtain the best value for each variable iteratively. The methodology presented in this
work was validated for three different circuit models, and further studies were conducted
by estimating the electrical parameters in batteries. One main advantage of the procedure
is that all the simulations were achieved in the Matlab Toolbox, which is a relevant point
because scientists do not need great expertise as programmers in evolutionary algorithms.

5. Future Work

In future work, we will consider extending the proposed methodology to estimate
electrochemical parameters in systems that consider non-ideal capacitor behavior and
inductive elements. Thus, circuit models that contemplate the use of constant phase
elements and the Warburg impedance, to model the diffusion-controlled process, will be
implemented. Furthermore, we plan to explore the potential of genetic algorithms to solve
electrochemical equations such as the Butler–Volmer equation.
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