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Abstract: In the predator–prey system, predators can affect the prey population by direct killing
and predation fear. In the present study, we consider a delayed predator–prey model with fear and
Beddington–DeAngelis functional response. The model incorporates not only the fear of predator on
prey with an intraspecific competition relationship, but also fear delay and pregnancy delay. Apart
from the local stability analysis of the equilibrium points of the model, we find that time delay can
change the stability of the system and cause Hopf bifurcation. Taking time delay as the bifurcation
parameter, the critical values of delays in several cases are derived. In addition, we extend it to the
random environment and study the stochastic ultimate boundedness of the stochastic process. Finally,
our theoretical results are validated by numerical simulation.
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1. Introduction

Predator–prey interaction is an important relationship in population dynamics, which
is a hot research topic in ecology and biomathematics. The study of predator–prey models
can help us prevent and control large-scale species changes, protect species diversity, and
optimize ecosystems.

An important component of the predator–prey relationship is the functional response
of the predator. The functional response refers to the effect of the amount of preda-
tion by a predator in a certain period of time on the change of prey density. Numer-
ous experiments [1,2] have shown that the functional response depends not only on the
density of prey but also on the density of predators. Pal et al. [3] studied the predator–
prey model using the Beddington–DeAngelis functional response, and they proved the
asymptotic dynamic properties and explored the influence of fear on the stability of the
system. Huang et al. [4] considered a delayed virus dynamics model with the Beddington–
DeAngelis functional response and studied its stability analysis.

For a long time, predator–prey systems were studied only in terms of the effect of direct
killing by predators [5,6]. However, experiments with song sparrows [7] and elk popula-
tions [8–11] have shown that fear of predators also affects prey populations, and sometimes
the influence was even more serious than direct predation [12,13]. In addition, most stud-
ies have considered that fear reduces the reproductive rate of prey, whereas intraspecies
competition is not affected [14–16]. In real life, fear may also have an effect on intraspe-
cific competition for prey. Therefore, it is natural to include the fear of predator in our
research model.

In fact, there exists time delay [17] in all kinds of biological processes, such as digestion
of food, conversion of energy, gestation, maturation, inducible defense of prey groups,
and so on. When prey senses a chemical signal or a sound signal, they need a certain
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amount of time to react, known as the fear delay. There is also a time lag between eating
the prey and producing offspring, known as delayed gestation. However, few studies
have investigated both fear delay and pregnancy delay [15,18–20]. Moreover, time delay
has an important effect on the stability of the system [21–23]. Panday et al. [24] mainly
studied the local stability of the system and the direction and stability of Hopf bifurcation.
Furthermore, they found that when the time delay exceeded the critical value, the system
developed Hopf bifurcation and became unstable. Kumar and Dubey [25] investigated a
prey–predator system with prey refuge and gestation delay, and they proved the global
asymptotic stability of the model and investigated the Hopf bifurcation behavior induced
by the fear effect of prey.

Based on the above analysis, we propose a predator–prey model with double delays
with fear and Beddington–DeAngelis functional response:{ dx

dt = kx
1+ f y(t−τ1)

− αx2 − pxy
ax+by+c ,

dy
dt = µpx(t−τ2)y(t−τ2)

ax(t−τ2)+by(t−τ2)+c − dy− hy2,
(1)

with the initial conditions

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), ϕ(θ) = (ϕ1(θ), ϕ2(θ)) ∈ C([−τ, 0], R2
+), (2)

where τ1 is the fear delay and τ2 is the gestation delay, τ = max{τ1, τ2}, R2
+ = {(x, y) :

x > 0, y > 0}, k denotes the intrinsic growth rate of prey species, f is the level of fear caused
by predators, we denotes p by the per capita predator consumption rate, α is the decay rate
of prey due to intraspecies competition, a is the time of the predator for each prey that is
consumed, b measures the mutual interference between predators, c is the half-saturation
constant of the predator population, µ is the conversion rate of prey biomass to predator,
d is the natural mortality rate of predators, and h represented the death rate of predators
from intraspecific competition. We define that ||ϕ|| = max{|ϕ(θ)| : θ ∈ [−τ, 0]}.

Because the parameters of model (1) are fixed and the influence of environmental noise
is not considered, we incorporated random perturbation in the model (1) to investigate
the impact of white noise on population dynamics. We establish the stochastic differential
equation by perturbing the birth rate of prey population and natural death rate of predator
population [26]. Then, we acquire the following stochastic model: dx =

(
kx

1+ f y(t−τ1)
− αx2 − pxy

ax+by+c

)
dt + σ1x

1+ f y(t−τ1)
dB1(t),

dy =
(

µpx(t−τ2)y(t−τ2)
ax(t−τ2)+by(t−τ2)+c − dy− hy2

)
dt + σ2ydB2(t),

(3)

where B1(t) and B2(t) are standard and mutually independent Brownian motions defined
on a complete probability space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual
conditions and σ2

i (i = 1, 2) represents the intensity of the white noise.
The rest of this paper is organized as follows. In Section 2, we establish the positivity

and boundedness of the solution of the delay model (1). In Section 3, we discuss the
existence of equilibrium points, study the local stability of each equilibrium point and the
Hopf bifurcation with different time delays. We consider the stochastic delay model (3)
and prove the globally unique existence and stochastic ultimate boundedness of positive
solutions in Section 4. We will perform some numerical simulations in Section 5 to verify
our theoretical results. Finally, we draw conclusions based on our research findings and
put forward some suggestions for future work in Section 6.

2. Positivity and Boundedness

To ensure that the model has a biological background, we study the positivity and
boundedness of the delay Equation (1), that is, the solution is positive and invariant in the
first quadrant and does not go beyond the given interval.
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2.1. Positivity

Theorem 1. Let (x(t), y(t)) be the solution of system (1) with the initial conditions (2). Then,
(x(t), y(t)) remains positive for any time t ≥ 0.

Proof. System (1) is rewritten as a matrix

Ḣ = G(H), (4)

where H =

[
x
y

]
, G(H) =

[
G1(H)
G2(H)

]
=

[ kx
1+ f y(t−τ1)

− αx2 − pxy
ax+by+c

µpx(t−τ2)y(t−τ2)
ax(t−τ2)+by(t−τ2)+c − dy− hy2

]
with initial condition

H(θ) = (ϕ1(θ), ϕ2(θ)) ∈ C([−τ, 0], R2
+), ϕi(0) > 0, i = 1, 2. (5)

We can easily check the system (4) whenever taking H(θ) ∈ R2
+ such that x = y = 0.

Then, we obtain
Gi(H)|hi=0,H∈R2

+
≥ 0

with h1(t) = x(t), h2(t) = y(t). According to Lemma 4 in [27], we derive that every solution
of (4) with the initial condition (5) is positive, that is to say, any solution of the system (1)
belongs to the region R2

+ and remains positive for any t ≥ 0.

2.2. Boundedness

Theorem 2. All solutions of system (1) that start in R2
+ are bounded.

Proof. Let W(t) = x(t) + y(t+τ2)
µ . The time derivative of W(t) along the solution of (1) is

dW(t)
dt

=
dx(t)

dt
+

1
µ

dy(t + τ2)

dt

=
kx

1 + f y(t− τ1)
− αx2 − d

µ
y(t + τ2)−

h
µ
(y(t + τ2))

2

≤ kx− αx2 − d
µ

y(t + τ2).

Choose a constant σ such that σ < d. Then,

dW(t)
dt

+ σW(t) ≤ x(k + σ− αx)− d− σ

µ
y(t + τ2)

≤ (k + σ)2

4α
:= M.

Applying differential inequality theory results, we obtain

0 ≤W(t) ≤ M
σ
(1− exp(−σt)) + W(x(0), y(0)) exp(−σt).

As t → ∞, we have 0 < W(t) ≤ M
σ . Therefore, all the solutions of system (1) are

confined in the region

Z = {(x, y) ∈ R2
+ : 0 ≤W(t) ≤ M

σ
}.
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3. Stability Analysis

In this section, we mainly study the stability of equilibrium points and Hopf bifurcation
around E∗(x∗, y∗) of (1).

3.1. Equilibrium Points and Existence Criterion

The model (1) has three positive equilibrium points:

(1) the trivial equilibrium point E0(0, 0);
(2) the free equilibrium point E1(

k
α , 0);

(3) the coexistence equilibrium point E∗(x∗, y∗) satisfying the following equation:

{
k

1+ f y − αx− py
ax+by+c = 0,

µpx
ax+by+c − d− hy = 0,

(6)

By solving the above equation, we obtain x∗ = (by∗+c)(d+hy∗)
µp−a(d+hy∗) . The interior equilibrium point

exists only if µp− a(d + hy∗) > 0 and y∗ is the equation Ay4 + By3 + Cy2 + Dy + E = 0,
where

A = a2h2 f p + b2α f hµp,

B = µpbα(2c f h + bd f + bh) + a2h2 p + 2ah f p(ad− µp),

C = µpbα(bd + 2cd f + 2ch) + hµp(abk + c2α f ) + f p(ad− µp)2 + 2ahp(ad− µp),

D = cµp(2bdα + ahk + cαh + cdα f ) + µpbk(ad− µp) + p(ad− µp)2,

E = µpc2dα + µpck(ad− µp).

By the Descartes rule of sign and A > 0, we find that the existence of at least one
positive root when E < 0 is guaranteed, that is, k(ad− µp) + cdα < 0. For more details, we
refer the reader to [26].

3.2. Local Stability Analysis and Hopf Bifurcation of Equilibria

In this section, we perform the local stability on the dynamics of the model system (1)
around the prescribed equilibrium points.

Using the transformations X = x− x∗, Y = y− y∗, the linearized form of system (1) is

dX(t)
dt

= J0X(t) + J1X(t− τ1) + J2X(t− τ2), (7)

where X(t) = [x(t), y(t)]T ,

J0 =

[
k

1+ f y∗ − 2αx∗ − py∗(by∗+c)
(ax∗+by∗+c)2

−px∗(ax∗+c)
(ax∗+by∗+c)2

0 −(d + 2hy∗)

]
, J1 =

[
0 −k f x∗

(1+ f y∗)2

0 0

]
, J2 =

[
0 0

µpy∗(by∗+c)
(ax∗+by∗+c)2

µpx∗(ax∗+c)
(ax∗+by∗+c)2

]
.

(1) At E0:

JE0 =

[
k 0
0 −d

]
.

The Jacobian matrix has the eigenvalues k and−d, which shows that E0 is always unstable.
Therefore, we draw the following conclusion:

Theorem 3. The trivial equilibrium point E0 is always unstable.

(2) At E1:

JE1 =

[
−k − pk

ak+cα −
f k2

α e−λτ1

0 −d + µpk
ak+cα e−λτ2

]
,
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and the characteristic equation is

(−k− λ)(−d +
µpk

ak + cα
e−λτ2 − λ) = 0.

Hence, we can derive λ1 = −k, λ2 = −d + µpk
ak+cα e−λτ2 .

Case I: τ2=0, λ2 = −d + µpk
ak+cα , E1 is locally asymptotically stable if d > µpk

ak+cα .
Case II: τ2 > 0,

−d +
µpk

ak + cα
e−λτ2 − λ = 0. (8)

Assume that λ = iξ(ξ > 0) is a root of (8). Then, we have

−d(ak + cα) + µpk(cosξτ2 − isinξτ2)− iξ(ak + cα) = 0.

Then, we separate the real and imaginary parts as follows:

−d(ak + cα) + µpkcosξτ2 = 0, (9)

µpksinξτ2 + ξ(ak + cα) = 0. (10)

By squaring and adding (9) and (10), we have

(ak + cα)2(d2 + ξ2) = (µpk)2.

Therefore, we obtain

ξ2 = (
µpk

ak + cα
)2 − d2.

If µpk
ak+cα − d > 0, the above Equation (8) has a positive root, which implies that E1

is unstable;
If µpk

ak+cα − d < 0, Equation (8) contains one negative real root and imaginary roots with
negative real parts, so E1 is locally asymptotically stable for any τ2 > 0.

Therefore, we have the following conclusion:

Theorem 4. The free equilibrium point E1 of the system (1) is locally asymptotically stable for any
τ2 ≥ 0 if µpk

ak+cα − d < 0.

Remark 1. E1 is locally asymptotically stable if ad + cd− µp > 0, which contradicts the existence
of E∗. In other words, the instability of E1 guarantees the existence of E∗.

(3) At E∗:

JE∗ =

[
a11 b12e−λτ1 + a12

c21e−λτ2 a22 + c22e−λτ2

]
,

where a11 = k
1+ f y∗ − 2αx∗ − py∗(by∗+c)

(ax∗+by∗+c)2 = −αx∗ + apx∗y∗

(ax∗+by∗+c)2 , b12 = − f kx∗

(1+ f y∗)2 ,

a12 = − px∗(ax∗+c)
(ax∗+by∗+c)2 , c21 = µpy∗(by∗+c)

(ax∗+by∗+c)2 , a22 = −(d + 2hy∗), c22 = µpx∗(ax∗+c)
(ax∗+by∗+c)2 .

Characteristic equation at E∗ is given by

λ2 + A1λ + A2λe−λτ2 + A3e−λτ2 + A4 + A5e−λ(τ1+τ2) = 0, (11)

where A1 = −(a11 + a22), A2 = −c22, A3 = a11c22 − a12c21, A4 = a11a22, A5 = −b12c21.
Case I: τ1 = 0, τ2 = 0.
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The characteristic Equation (11) becomes

λ2 + (A1 + A2)λ + A3 + A4 + A5 = 0.

According to the Routh–Hurwitz criteria, we can infer the JE∗ has a negative real part
if A1 + A2 > 0, A3 + A4 + A5 > 0, which implies apy∗

α(ax∗+by∗+c)2 < 1. Hence, E∗ is locally

asymptotically stable if apy∗

α(ax∗+by∗+c)2 < 1.
Thus, we have the following theorem:

Theorem 5. In the absence of both τ1 and τ2, the coexistence equilibrium point E∗ of the system (1)
is locally asymptotically stable if apy∗

α(ax∗+by∗+c)2 < 1.

Case II: τ1 > 0, τ2 = 0. The characteristic Equation (11) becomes

λ2 + (A1 + A2)λ + A3 + A4 + A5e−λτ1 = 0. (12)

Taking λ = iξ∗. Then, we obtain the real and imaginary parts, respectively, as follows:

−(ξ∗)2 + A3 + A4 + A5cosξ∗τ1 = 0, (13)

(A1 + A2)ξ
∗ − A5sinξ∗τ1 = 0. (14)

Squaring (13) and (14) and adding, we obtain

(ξ∗)4 + R1(ξ
∗)2 + R2 = 0, (15)

where R1 = (A1 + A2)
2 − 2(A3 + A4), R2 = (A3 + A4)

2 − A2
5. By calculating, we have

(ξ∗)2 =
−R1 ±

√
R2

1 − 4R2

2
. (16)

Let Z(ξ∗) = (ξ∗)4 + R1(ξ
∗)2 + R2, then Z(0) = R2 < 0, that is, (A3 + A4)

2 < A2
5.

Equation (16) has at least positive root (ξ∗0)
2. So, Equation (12) has a pair of imaginary roots

±iξ∗0 . Substituting (ξ∗0)
2 in (13) and (14), we obtain

τ1k =
1
ξ∗0

arctan
{

(A1 + A2)ξ
∗
0

−(ξ∗0)2 + A3 + A4

}
+

2kπ

ξ∗0
, k = 0, 1, 2, · · · (17)

According to Butler’s lemma [28], E∗ remains locally asymptotically stable for
0 < τ1 < τ∗1 (= min

k≥0
τ1k ) and unstable if τ1 > τ∗1 .

Now, we take the derivative of Equation (12) with respect to τ1 as(
dλ

dτ1

)−1
=

2λ + A1 + A2 − τ1 A5e−λτ1

λA5e−λτ1

=
2λ + A1 + A2

λA5e−λτ1
− τ1

λ
.

Furthermore, because e−λτ1 = − λ2+(A1+A2)λ+A3+A4
A5

, we can derive

(
dλ

dτ1

)−1
= − 2λ + A1 + A2

λ(λ2 + (A1 + A2)λ + A3 + A4)
− τ1

λ
.
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At τ1 = τ∗1 , ξ∗ = ξ∗0 ,(
d

dτ1
Reλ(τ1)

)−1
=

((A1 + A2)
2 − 2(A3 + A4))ξ

∗
0 + 2(ξ∗0)

4

(A1 + A2)2(ξ∗0)
4 +

(
(ξ∗0)

2 − (A3 + A4)
)2
(ξ∗0)

2

=
A2

5 − (A3 + A4)
2 + (ξ∗0)

4

(A1 + A2)2(ξ∗0)
4 + ((ξ∗0)

2 − (A3 + A4))2(ξ∗0)
2

> 0.

Hence, the system (1) has Hopf bifurcation at τ1 = τ∗1 .
Based on the above analysis, we have the following conclusion:

Theorem 6. In the absence of τ2 and (A3 + A4)
2 < A2

5, the coexistence equilibrium point E∗ is
locally asymptotically stable for 0 < τ1 < τ∗1 and unstable for τ1 > τ∗1 . In addition, the system (1)
will undergo a Hopf bifurcation at τ1 = τ∗1 .

Case III: τ1 = 0, τ2 > 0. The characteristic Equation (11) becomes

λ2 + A1λ + (A2λ + A3 + A5)e−λτ2 + A4 = 0. (18)

Taking λ = iξ̄∗. Then, we obtain the real and imaginary parts, respectively, as follows:

−(ξ̄∗)2 + (A3 + A5)cosξ̄∗τ2 + A2ξ̄∗sinξ̄∗τ2 + A4 = 0, (19)

A1ξ̄∗ + A2ξ̄∗cosξ̄∗τ2 − (A3 + A5)sinξ̄∗τ2 = 0. (20)

Squaring (19) and (20) and adding, we obtain

(ξ̄∗)4 + R3(ξ̄
∗)2 + R4 = 0. (21)

Define R3 = −2A4 + A2
1 − A2

2, R4 = −(A3 + A5)
2 + A2

4. By calculating, we have

(ξ̄∗)2 =
−R3 ±

√
R2

3 − 4R4

2
. (22)

Furthermore, because

R3 =

(
−αx∗ +

apx∗y∗

(ax∗ + by∗ + c)2

)2
+ (hy∗)2 + 2(d + hy∗)hy∗ +

(µpx∗)2(2(ax∗ + c)by∗ + (by∗)2)
(ax∗ + by∗ + c)4 > 0.

When R4 > 0, Equation (21) has no positive roots and no real ξ̄∗ exists. So, E∗ is locally
asymptotically stable for any τ2 > 0;

When R4 < 0, Equation (22) has unique positive root (ξ̄∗0)
2. So, Equation (18) exists a

pair of imaginary roots ±iξ̄∗0 . Putting (ξ̄∗0)
2 in (19) and (20), we obtain

τ2k =
1
ξ̄∗0

cos−1
{
((ξ̄∗0)

2 − A4)A2ξ̄∗0 + A1ξ̄∗0(A3 + A5)

A2(ξ̄∗0)
2 + (A3 + A5)2

}
+

2kπ

ξ̄∗0
, k = 0, 1, 2, · · · (23)

According to Butler’s lemma, E∗ is locally asymptotically stable for 0 < τ2 < τ∗2
(=min

k≥0
τ2k ) and unstable if τ2 > τ∗2 .

Now, take the derivative of Equation (18) with respect to τ2(
dλ

dτ2

)−1
=

2λ + A1

λ(A2λ + A3 + A5)e−λτ2
+

A2

λ(A2λ + A3 + A5)
− τ2

λ
.
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Furthermore, because e−λτ2 = − λ2+A1λ+A4
A2λ+A3+A5

, we can derive

(
dλ

dτ2

)−1
= − 2λ + A1

λ(λ2 + A1λ + A4)
+

A2

λ(A2λ + A3 + A5)
− τ2

λ
.

At τ2 = τ∗2 , ξ̄∗ = ξ̄∗0 ,(
d

dτ2
Reλ(τ2)

)−1
=

A2
1 + 2((ξ̄∗0)

2 − A4)

(A1ξ̄∗0)
2 + ((ξ̄∗0)

2 − A4)2 −
A2

2
(A2ξ̄∗0)

2 + (A3 + A5)2

=
A2

1 − A2
2 − 2A4 + 2(ξ̄∗0)

2

(A2ξ̄∗0)
2 + (A3 + A5)2

=
R3 + 2(ξ̄∗0)

2

A2
2(ξ̄
∗
0)

2 + (A3 + A5)2

> 0.

Hence, the system (1) undergoes Hopf bifurcation at τ2 = τ∗2 .
According to the above analysis, we have the following theorem:

Theorem 7. In the absence of τ1, for system (1),
(1) If R4 > 0, the coexistence equilibrium point E∗ is locally asymptotically stable for any

τ2 > 0;
(2) If R4 < 0, the coexistence equilibrium point E∗ is locally asymptotically stable for

0 < τ2 < τ∗2 and unstable if τ2 > τ∗2 . In addition, the system (1) will undergo a Hopf bifurcation
at τ2 = τ∗2 .

Case IV: τ1 is fixed in (0, τ∗1 ), τ2 > 0. Assume λ = iξ̃, which is put in (11) and separate
the real and imaginary parts as follows:

−ξ̃2 + A2ξ̃sinξ̃τ2 + A3cosξ̃τ2 + A4 + A5(cosξ̃τ1cosξ̃τ2 − sinξ̃τ1sinξ̃τ2) = 0,

A1ξ̃ + A2ξ̃cosξ̃τ2 − A3sinξ̃τ2 − A5(sinξ̃τ1cosξ̃τ2 + sinξ̃τ2cosξ̃τ1) = 0.

The above formulas can be arranged as:

(A2ξ̃ − A5sinξ̃τ1)sinξ̃τ2 + (A3 + A5cosξ̃τ1)cosξ̃τ2 = ξ̃2 − A4, (24)

−(A3 + A5cosξ̃τ1)sinξ̃τ2 + (A2ξ̃ − A5sinξ̃τ1)cosξ̃τ2 = −A1ξ̃. (25)

Squaring (24) and (25) and adding to eliminate τ2, we have

ξ̃4 + R3ξ̃2 + R5ξ̃ + R6 = 0, (26)

where R5 = 2A2 A5sinξ̃τ1, R6 = −A2
5 − A2

3 + A2
4 − 2A3 A5cosξ̃τ1 = 0.

Define Z(ξ̃) = ξ̃4 + R3ξ̃2 + R5ξ̃ + R6 = 0. Then, Z(0) = −A2
5 − A2

3 + A2
4 − 2A3 A5 =

−(A3 + A5)
2 + A2

4, and Z(∞) = ∞. Suppose Z(0) < 0, that is to say, A2
4 < (A3 + A5)

2.
Then, Equation (26) has only one positive root. Hence, there exist the roots ±iξ̃∗ in the
characteristic Equation (11). From (24) and (25), we obtain

τ̃2k =
1
ξ̃∗

arcsin
F1F3 + F2F4

F2
1 + F2

2
+

2kπ

ξ̃∗
, k = 0, 1, 2, · · · (27)

where F1 = A2ξ̃ − A5sinξ̃τ1, F2 = A3 + A5cosξ̃τ1, F3 = ξ̃2 − A4, F4 = −A1ξ̃.
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According to Butler’s lemma, E∗ is locally asymptotically stable for 0 < τ2 < τ̃∗2
(= min

k≥0
τ̃2k ) and unstable if τ̃∗2 .

Now, take the derivative of Equation (11) with respect to τ2(
dλ

dτ2

)−1
=

2λ + A1 + A2e−λτ2 − A5τ1e−λ(τ1+τ2)

λ(A2λ + A3 + A5e−λτ1)e−λτ2
− τ2

λ
.

Furthermore, because e−λτ2 = − λ2+A1λ+A4
A2λ+A3+A5e−λτ2

, we can derive

(
dλ

dτ2

)−1
= − 2λ + A1

λ(λ2 + A1λ + A4)
+

A2 − A5τ1e−λτ1

λ(A2λ + A3 + A5e−λτ1)
− τ2

λ
.

At τ2 = τ̃∗2 , ξ̃ = ξ̃∗,(
d

dτ2
Reλ(τ2)

)−1
=

A2
1 + 2F3

F2
4 + F2

3
+
−F1F5 + F6F2

ξ̃∗(F2
1 + F2

2 )
2

,

where F5 = A2 − A5τ1cosξ̃∗τ1, F6 = A5τ1sinξ̃∗τ1.

So,
(

d
dτ2

Reλ(τ2)
)−1

> 0 leads to F6F2 − F1F5 > 0. Hence, there exists Hopf bifurcation at
τ2 = τ̃∗2 in the system (1).

Based on the above analysis, we have the following theorem:

Theorem 8. Assume that τ1 is fixed in (0, τ∗1 ) and A2
4 < (A3 + A5)

2. Then, the coexistence
equilibrium point E∗ is locally asymptotically stable for 0 < τ2 < τ̃∗2 and unstable for τ2 > τ̃∗2 .
In addition, the system (1) will undergo a Hopf bifurcation at τ2 = τ̃∗2 provided F6F2 − F1F5 > 0,
where Fi are all defined in the proof.

4. Stochastic Delay Model Analysis
4.1. Existence and Uniqueness of Positive Solution

In this subsection, we prove the unique existence of a global positive solution by
means of a random comparison theorem.

Theorem 9. For any given initial value (x(0), y(0)) ∈ R2
+, there is a unique solution (x(t), y(t))

to system (3) on t ≥ 0. Furthermore, the solution will remain in R2
+ with probability 1, that is to

say, (x(t), y(t)) ∈ R2
+ almost surely.

Proof. Taking m = ln x, n = ln y, applying Itô’s formula we have

dm =

(
k

1 + f en(t−τ1)
− αem − pen

aem + ben + c
−

σ2
1

2(1 + f en(t−τ1))2

)
dt +

σ1

1 + f en(t−τ1)
dB1(t),

dn =

(
µpem(t−τ2)en(t−τ2)

en(aem(t−τ2) + ben(t−τ2) + c)
− d− hen −

σ2
2

2

)
+ σ2dB2(t),

where m(0) = ln x(0) and n(0) = ln y(0). We notice that the coefficients of the above equa-
tion satisfy the local Lipschitz condition, so it possesses a unique local solution (m(t), n(t))
on t ∈ [0, τe), where τe is the explosion time. Hence, x = em(t), y = en(t) is the unique
positive local solution to (3) with initial value x0 > 0, y0 > 0. To show that the solution is
global, we only need to prove τe = ∞.

According to the first equation of (3), we have

dx ≤ x(t)(k− αx(t))dt + σ1x(t)dB1(t).
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Let Υ(t) be the unique solution of the equation{
dΥ(t) = Υ(t)(k− αΥ(t))dt + σ1Υ(t)dB1(t),
Υ(0) = x(0),

then,

Υ(t) =
e(k−

σ2
1
2 )t+σ1B1(t)

1
x(0) + α

∫ t
0 e(k−

σ2
1
2 )s+σ1B1(s)ds

.

Hence, by the comparison theorem [29] for stochastic equations, we obtain

x(t) ≤ Υ(t). (28)

According to the second equation of (3), we have

dy(t) ≥ y(t)(−d− hy(t))dt + σ2y(t)dB2(t).

Let Ψ(t) is the unique solution of the equation{
dΨ(t) = Ψ(t)(−d− hΨ(t))dt + σ2Ψ(t)dB2(t),
Ψ(0) = y(0),

then,

Ψ(t) =
e(−d− σ2

2
2 )t+σ2B2(t)

1
y(0) + h

∫ t
0 e(−d− σ2

2
2 )s+σ2B2(s)ds

.

Therefore,

y(t) ≥ Ψ(t). (29)

On the other hand,

dy(t) ≤
(

µpΥ(t− τ2)

b
− dy(t)

)
dt + σ2y(t)dB2(t).

Let Φ(t) be the unique solution of the equation{
dΦ(t) =

(
µpΦ(t−τ2)

b − dy(t)
)

dt + σ2y(t)dB2(t),
Φ(0) = y(0).

Let N(t) = 1
Φ(t) with N(0) = 1

Φ(0) , by Itô’s formula

dN(t) =
(
−µpΥ(t− τ2)

b
N2(t) + dN(t) + σ2

2 N(t)
)

dt− σ2N(t)dB2(t)

=

(
d + σ2

2 −
µpΥ(t− τ2)

b
N(t)

)
N(t)dt− σ2N(t)dB2(t),

then,

N(t) =
e(d+

σ2
2
2 )t−σ2B2(t)

Φ(0) + µp
b

∫ t
0 Υ(s− τ2)e(d+

σ2
2
2 )s−σ2B2(s)ds

.
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Hence, Φ(t) = 1
N(t) = Φ(0)e−(d+

σ2
2
2 )t+σ2B2(t) + µp

b e−(d+
σ2

2
2 )t+σ2B2(t)

∫ t
0 Υ(s − τ2)

e(d+
σ2

2
2 )s−σ2B2(s)ds.
Similarly, we can derive

y(t) ≤ Φ(t). (30)

Again, from the first equation of (3), we have

dx(t) ≥ x(t)
(

k
1 + f Φ(t− τ1)

− αx− p
b

)
dt +

σ1x(t)
1 + f Φ(t− τ1)

dB1(t).

We can safely infer

x(t) ≥ e
− p

b t+
∫ t

0

(
k

1+ f Φ(s−τ1)
− σ2

1
2(1+ f Φ(s−τ1))

2

)
ds+

∫ t
0

σ1
1+ f Φ(s−τ1)

dB1(s)

1
x(0) + α

∫ t
0 e
− p

b s+
∫ s

0

(
k

1+ f Φ(ρ−τ1)
−

σ2
1

2(1+ f Φ(ρ−τ1))
2

)
dρ+

∫ s
0

σ1
1+ f Φ(ρ−τ1)

dB1(ρ)
ds

:= Θ(t),

then, we have
x(t) ≥ Θ(t). (31)

Therefore, we have
Θ(t) ≤ x(t) ≤ Υ(t), Ψ(t) ≤ y(t) ≤ Φ(t).

Hence, τe = ∞, that is to say, the solution of (3) is global. This completes the proof.

4.2. Stochastic Ultimate Boundedness

Definition 1. Consider a stochastic differential equation dX(t) = F(X(t))dt + S(X(t))dB(t).
Its solution is said to be stochastic ultimate bounded if for any ε ∈ (0, 1), there exists a positive
Q = Q(ε) such that for any initial value (x(0), y(0)) ∈ R2

+, the solution satisfies

lim sup
t→∞

P{|(x(t), y(t))| > Q} < ε.

Theorem 10. For any r ∈ (0, 1) there exists a positive Q = Q(r) such that the solution
(x(t), y(t)) of the model (3) satisfies

lim sup
t→∞

E|(x(t), y(t))|r ≤ Q,

then we can derive the solution of the model (3) is stochastic and ultimately bounded.

Proof. Let V1(x, y) = xr + yr, from Itô’s formula we have

dV1(x, y) = LV1(x, y)dt + rxr σ1

1 + f y(t− τ1)
dB1(t) + rσ2yrdB2(t),

where
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LV1(x, y) = rxr
(

k
1 + f y(t− τ1)

− αx− py
ax + by + c

)
+

1
2

r(r− 1)xr σ2
1

(1 + f y(t− τ1))2

+ ryr−1
(

µpx(t− τ2)y(t− τ2)

ax(t− τ2) + by(t− τ2) + c
− dy− hy2

)
+

1
2

r(r− 1)σ2
2 yr

≤ krxr

1 + f y(t− τ1)
− αrxr+1 − 1

2
r(1− r)xr σ2

1
(1 + f y(t− τ1))2 + xr

+
rµpx(t− τ2)y(t− τ2)

ax(t− τ2) + by(t− τ2) + c
yr−1 − hryr+1 − dryr − 1

2
r(1− r)σ2

2 yr + yr −V1(x, y)

≤ H1 −V1(x, y),

where H1 is a positive constant. Hence, we can obtain

dV1(x, y) ≤ (H1 −V1(x, y))dt + rxr σ1

1 + f y(t− τ1)
dB1(t) + rσ2yrdB2(t).

Define V2(x, y) = etV1(x, y), using Itô’s formula, we obtain

dV2(x, y) ≤ et H1dt + rxr σ1

1 + f y(t− τ1)
dB1(t) + rσ2yrdB2(t).

Integrating both sides of the above inequality and taking the expectation, then

etEV1(x, y) ≤ (et − 1)H1 + V1(x(0), y(0)).

So,

EV1(x, y) ≤ (1− e−t)H1 + e−tV1(x(0), y(0)).

Hence, we can obtain

lim sup
t→∞

EV1(x, y) ≤ H1.

Because

|(x(t), y(t))|r = (x2(t) + y2(t))
r
2 ≤ 2

r
2 max{xr, yr} ≤ 2

r
2 V1(x, y),

we can derive

lim sup
t→∞

E|(x(t), y(t))|r ≤ 2
r
2 lim sup

t→∞
EV1(x, y) ≤ 2

r
2 H1 := Q.

For any ε > 0, let H1 = (H
ε )

1
r . According to the Markov inequality, we have

P{|(x(t), y(t))| > H1} <
E|(x(t), y(t))|r

Hr
1

< ε.

The proof is complete.

5. Numerical Simulations

In this section, as a general method in stochastic differential equations, we validate our
mathematical findings by performing numerical simulations using Milstein’s high-order
method [30] and MATLAB 2019a, that is, as proven in the previous sections. We select the
following parameters:

f = 1.5, p = 4, a = 4.8, b = 5, c = 2.1, µ = 1.2, d = 0.1, h = 0.01, k = 0.9, α = 0.6, (32)
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and take the initial data x(0) = 0.5, y(0) = 0.5. For the parameters (32), the system (1) has
three equilibrium points, which are the trivial equilibrium point E0(0, 0), the free equilib-
rium point E1(1.5, 0), and the coexistence equilibrium point E∗(x∗, y∗) = (0.1219, 0.5702).
By Theorem (3), E0 is always unstable. Furthermore, the existence of E∗ confirms that E2 is
unstable for any τ1 ≥ 0 and τ2 ≥ 0.

Case I: Assume τ1 = 0 and τ2 = 0 and keep other parameters the same as (32). By
simple calculation, apy∗

α(ax∗+by∗+c)2 − 1 = −0.4047 < 0. Then, the condition of Theorem 5 is
satisfied, which implies that E∗ is locally asymptotically stable, as shown in Figure 1.
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Figure 1. (a) Time series and (b) phase portrait of E∗ for system (1) when τ1 = 0 and τ2 = 0. Other
parameters are the same as in (32).

Case II: Assume τ2 = 0 and slowly increase the value of τ1. Leave the other param-
eters remain (32) unchanged. By virtue of Theorem 6, we can obtain the critical value of
τ1 = τ∗1 = 4.5923. When τ1 = 3.5 < τ∗1 , the system (1) is locally asymptotically stable (as
shown in Figure 2) and unstable for τ1 = 5 > τ∗1 . Furthermore, the occurrence of oscillation
behavior and limit cycle is illustrated by Figure 3. Furthermore, the system (1) undergoes a
Hopf bifurcation at τ1 = τ∗1 as shown in Figure 4.
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Figure 2. (a) Time series and (b) phase portrait of E∗ for system (1) when τ1 = 3.5 and τ2 = 0. Other
parameters are the same as in (32).
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Figure 3. (a) Time series and (b) phase portrait of E∗ for system (1) when τ1 = 5 and τ2 = 0. Other
parameters are same as in (32).

Figure 4. The Hopf bifurcation diagram of (1) for τ1 and τ2 = 0.

Case III: Assume τ1 = 0 and gradually increase the value of τ2, keeping other pa-
rameters remaining in (32) unchanged. After numerical calculation R4 = −0.0015 < 0,
according to Theorem 7, we can obtain the critical value of τ2 = τ∗2 = 2.3941. When
τ2 = 1.5 < τ∗2 , the system (1) is locally asymptotically stable as shown in Figure 5 and
unstable for τ2 = 2.5 > τ∗2 , which is illustrated by Figure 6. Furthermore, the system (1)
experiences a Hopf bifurcation at τ2 = τ∗2 (as shown in Figure 7).

Case IV: We take a fixed τ1 = 3.5 ∈ (0, τ∗1 ) = (0, 4.5923) and vary the parameter τ2
while keeping other parameters the same as in (32). From Theorem 8, we can see that
the critical value of τ2 = τ̃∗2 = 0.4830. When τ2 = 0.2 < τ̃∗2 , the system (1) is locally
asymptotically stable as shown in Figure 8 and unstable for τ2 = 0.5 > τ̃∗2 , which is
illustrated by Figure 9. Figure 10 reveals that a Hopf bifurcation occurs at τ2 = τ̃∗2 .
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Figure 5. (a) Time series and (b) phase portrait of E∗ for system (1) when τ2 = 1.5 and τ1 = 0. Other
parameters are the same as in (32).
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Figure 6. (a) Time series and (b) phase portrait of E∗ for system (1) when τ2 = 2.5 and τ1 = 0. Other
parameters are the same as in (32).

Figure 7. The Hopf bifurcation diagram of (1) for τ2 and τ1 = 0.
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Figure 8. (a) Time series and (b) phase portrait of E∗ for system (1) when τ1 = 3.5 and τ2 = 0.2. Other
parameters are the same as in (32).
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Figure 9. (a) Time series and (b) phase portrait of E∗ for system (1) when τ1 = 3.5 and τ2 = 0.5. Other
parameters are the same as in (32).

Figure 10. The Hopf bifurcation diagram of (1) for τ2 and τ1 = 3.5.
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For stochastic delay systems (3), according to Theorem 10, it is random and ultimately
bounded. Figure 11 confirms our results.
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Figure 11. Dynamical behaviors of (3). The parameters are taken as (32) and σ1 = 0.03, σ2 = 0.03.

6. Conclusions

In this paper, we mainly investigate a predator–prey model with Beddington–DeAngelis
functional response and fear by predator. At the same time, because predator–prey interac-
tions do not occur immediately, we introduced the fear delay and the pregnancy delay to
make the model more natural.

First, we prove the positivity and boundedness of system (1). Then, we discuss the
existence criterion and local stability of equilibrium point, and find that the existence of E∗

ensures that E1 is unstable. Finally, the existence of a Hopf bifurcation with the fear delay τ1
and the pregnancy delay τ2 as the bifurcation parameter is studied, and the critical values
of the bifurcation parameters are derived in several possible cases. We find the relationship
between local stability and critical bifurcation value of the system (1). When the delay is less
than the critical bifurcation value, both prey and predator oscillate periodically for a finite
time and then reach equilibrium. When the delay exceeds the critical bifurcation value,
Hopf bifurcation occurs in system (1), and periodic oscillation and limit cycle are generated.
At this point, the system (1) switches from a stable state to an unstable state. Numerical
simulations confirm our theoretical findings. Furthermore, for stochastic delay system (3),
we study the unique existence of the global positive solution and explore the stochastic
ultimate boundedness.

In future studies, we can generalize the model (1) to a multi-population model and
introduce prey refuge to investigate its impact on the stability and persistence of population
dynamics. In the meantime, it may be possible to study prey refuge as a Hopf bifurcation
parameter. We leave these interesting questions for further study.
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