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Abstract: Based upon a new general vector-valued vector product, generalized complex numbers with
respect to certain positively homogeneous functionals including norms and antinorms are introduced
and a vector-valued Euler type formula for them is derived using a vector valued exponential
function. Furthermore, generalized Cauchy–Riemann differential equations for generalized complex
differentiable functions are derived. For random versions of the considered new type of generalized
complex numbers, moments are introduced and uniform distributions on discs with respect to
functionals of the considered type are analyzed. Moreover, generalized uniform distributions on
corresponding circles are studied and a connection with generalized circle numbers, which are natural
relatives of π, is established. Finally, random generalized complex numbers are considered which are
star-shaped distributed.

Keywords: positively homogeneous functional; star body; vector-valued vector product; generalized
complex multiplication; generalized complex division; vector-valued exponential function; Euler-type
formula; complex algebraic structure; generalized complex plane; generalized complex differenti-
ation; generalized Cauchy–Riemann differential equations; random generalized complex number;
moments; uniform probability distribution; generalized uniform distribution on a generalized circle;
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1. Introduction

Well-known generalizations of complex numbers include quaternions [1,2], octo-
nions [3,4], bicomplex and multicomplex numbers [5,6] and Clifford algebras [7,8], among
others. All of these works have a methodological common ground, which differs sig-
nificantly from that used in the present work. Namely, products of elements of such
structure are explained by the fact that certain expressions in brackets are formally treated
as when multiplying expressions in brackets of real numbers, with additional assumptions
being made for the multiplication of so-called basic elements. In contrast to this, suitable
vector-valued vector products are introduced and used in the present work, which are
geometrically well motivated as rotations and stretches.

Another essential difference between the present work and the group of works men-
tioned above is that the latter usually do not provide any information about which con-
crete mathematical objects fulfill the formulated wishes with regard to multiplication and
whether the fulfillment of these wishes is unequivocal or ambiguous, while in concrete
objects they are always specified in the present work.

To be more concrete: the present work generalizes [9] in that it considers generalized
complex numbers with respect to certain general positively homogeneous functionals
which contain the lp-functionals considered in [9] as just a particular case. In particular,
this new general approach allows the consideration of complex algebraic structures with
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respect to any norm or antinorm and at the same time leads to the simplification of proofs.
Furthermore, we open a new research area with the definition of the generalized complex
differentiability of functions and the derivation of a first result for this.

Complex random variables are natural generalizations of ordinary, i.e., real random
variables and are studied in an extensive literature such as, for example, in [10–13]. The
close connection between analytical and geometric aspects when considering complex num-
bers is expressed in [14–17] among others, and was further developed in [9,18]. Probability
densities for complex random variables are considered in [19], for the particular Gaussian
case, see [20]. In [21,22] circularity is emphasized, while [23,24] consider complex ellipti-
cal distributions. The authors of [25–27] study statistical questions for complex random
variables and [28] is devoted to statistics in the closely related field of shape analysis.

In [29], the authors refer to [30], where C.F. Gauss described the status of formation
of complex numbers in the following words: “It could be said in all this that so long as
imaginary quantities were still based on a fiction, they were not, so to say, fully accepted
in mathematics but were regarded rather as something to be tolerated; they remained far
from being given the same status as real quantities. There is no longer any justification
for such discrimination now that the metaphysics of imaginary numbers has been put
in a true light and that it has been shown that they have just as good a real objective
meaning as the negative numbers”. The authors of [29] continue with the words: “It was
the authority of Gauss that first removed from complex numbers all aura of mysticism:
his simple interpretation of complex numbers as points in the plane freed these fictive
magnitudes from all mysterious and speculative associations and gave them full citizenship
rights in mathematics as those enjoyed by the real numbers”.

With respect to later developments, the same authors refer to the following: “In his
habilitation presentation at Göttingen at which C.F. Gauss was present ..., R. Dedekind
said ... ‘Until now we have had available no theory of complex numbers entirely free from
reproach...or at least none has so far been published [31]’ ”.

In [32], M. J. Crowe writes that C.F. Gauss published in 1831 “the geometrical justification
of complex numbers, which he had worked out in 1799. Whereas ... “other”... authors on this
subject attracted almost no attention, the prestige and proven track record of Gauss ensures
the widespread acceptance of this representation followed upon his publication. Ironically,
Gauss himself did not accept the geometrical justification of imaginaries as fully satisfactory”.

Regardless of the last two statements, today’s readers of a text on complex numbers
do not bother too much with the question of whether i =

√
−1 has a meaning or what it

consists of. However, they should do so for understanding how to close the historical gap
in mathematical rigor which nevertheless still exists in the extensive literature including
the internet. Many readers will accept the juxtaposed equations (x, y)2 = (x2 − y2, 2xy),
i = (0, 1) and i2 = −1 when done in a text about complex numbers, but would surely not
accept it when done in any other type of text because of an apparent conflict.

The authors of [29] also point out that A.L. Cauchy said in [33], “We call an imaginary
expression, any symbolic expression of the form

a + b
√
−1 where a, b denote two real quantities. . . (1)

Every imaginary equation is only just the symbolic representation of two equations
between real quantities.” A.L. Cauchy also undertakes to explain what a formal expression
of the form (1) is. H. Hankel called Cauchy’s explanation in this regard a conjuring trick,
see [34]. The reader is encouraged to reconsider also Cauchy’s other mentioned point of
view, which is rarely if ever encountered these days.

Let C = (R2,⊕,~, e, i) where
(

x1
y1

)
⊕
(

x2
y2

)
=

(
x1 + x2
y1 + y2

)
denotes usual vector

addition, e =
(

1
0

)
, i =

(
0
1

)
are particular (ordered pairs of reals or) vectors, a vector-

valued vector multiplication is defined by



Axioms 2023, 12, 60 3 of 16

z1 ~ z2 =

(
x1x2 − y1y2
x1y2 + x2y1

)
for all z1 =

(
x1
y1

)
, z2 =

(
x2
y2

)
from R2, (2)

and + and · denote addition and multiplication of real numbers. Then, in C, the laws of
commutativity, associativity and distributivity apply, so that C is a field that is usually
called the complex plane.

In the literature, a preliminary step on a possible way to introduce the product (2)

arises if one assumes that for operating with two numbers z1 =

(
x1
y1

)
= x1e + y1i and

z2 =

(
x2
y2

)
= x2e + y2i the usual bracket rules apply. Then, as W.R. Hamilton derived

in [35], (
x1
y1

)(
x2
y2

)
= x1x2e + (x1y2 + x2y1)i + y1y2i2. (3)

For making this definition complete, he assumes that the product rule is satisfied, stating
that the length of the product z of z1 and z2 is equal to the product of the lengths of z1 and z2
where the length of a complex number z = xe + yi is defined as |z| =

√
x2 + y2. Then,

i2 = −e, (4)

Equation (3) necessarily becomes (2), and the distributivity rule turns out to be a conse-
quence of the other assumptions.

It is well known that C is a field extension of (R,+, ·) and as such is uniquely de-
termined up to isomorphism. One may ask whether or not this uniqueness statement is
preserved if one somehow weakens the assumed field properties. Since, as W.R. Hamilton
showed, distributivity can follow from other properties, one could consider not requiring it
from the start.

In [36], B. Riemann points out another aspect of introducing complex numbers, as
stated in [29]: “In his 1851 Göttingen inaugural dissertation ...‘The original purpose and
immediate objective in introducing complex numbers into mathematics is to express laws
of dependence between variables by simpler operations on the quantities involved..., ’ ”.

The special case of introducing complex numbers contained in [9] for the case p = 2
ensures compliance with the mathematical rigor reminded of above. The gap in math-
ematical precision described has thus been closed. In the case of arbitrary real p > 0,
this work dispenses with distributivity of the number system under consideration and
demonstrates the newly emerging possibility of constructing complex algebraic structures
of great diversity.

How to go from a quadratic equation that cannot be solved for real numbers to a
system of two equations that can be solved for complex numbers is shown in [18]. It is also
demonstrated there that the variety of possible number systems can be further increased,
and how. All of these number systems are suitable for expressing different dependencies
between two variables, such as electric current and voltage, to name just one particularly
striking representative.

The well known formula which deals with complex numbers in the Euclidean unit
circle and is named after L.Euler [37] establishes a connection between this circle and the
imaginary unit. This formula has been modified in [9,18] for several number systems,
revealing different properties of the imaginary unit as an element of different spaces.

The paper is further organized as follows. A complex algebraic structure which is related
to the positively homogeneous Minkowski functional ||.|| of a bounded star body is intro-
duced in Section 2 and a corresponding Euler type formula is derived in Section 3. The notion
of generalized complex differentiability and correspondingly generalized Cauchy–Riemann
differential equations are presented in Section 4. Section 5 deals with random generalized
complex numbers and their basic properties, such as moments, uniform probability distribu-
tions on discs with respect to the functional ||.|| and the circles that bound them. In addition,
a connection to the equation
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{eipx, x ∈ [0, 2π)} = {
(

x
y

)
∈ R2 : |x|p + |y|p = 1} = Sp, ip ∈ Cp, p > 0 (5)

following from [9] is established using generalized circle numbers from [38], and star-
shaped distributed generalized complex numbers are introduced. The paper is finished
by a discussion in Section 5 and Appendix A demonstrating existence and variety of
generalized complex numbers.

Why do we continue to speak of random complex numbers instead of complex random
numbers? We do this because the introduction of complex algebraic structures in what
follows must be given much greater weight than the subsequent formal simple step of
introducing randomness.

2. The Complex Algebraic Structure

In this section and in the Appendix A we discuss the existence and variety of complex
numbers and their generalizations. Let V be a two-dimensional real vector space with vector
addition⊕ and scalar multiplication · and denote by 0 the additive neutral element. Suppose
further that ||.|| : V → R+ is a positively homogeneous and bounded functional such that
the set B = {x ∈ V : ||x|| ≤ 1} is star-shaped with respect to the inner point 0. For the sake of
brevity we call such functional phbs-functional, B the unit disc with respect to the functional
||.|| and the boundary S = ∂B = {x ∈ V : ||x|| = 1} the corresponding unit circle.

Definition 1. A commutative function � : V ×V → V is called a vector-valued vector product
with respect to a phbs-functional ||.||, or a phbs-generated vector product, if for all x and y from V
and positive reals λ and µ

x� y = 0 if and only if x = 0 or y = 0, (6)

x

||x|| �
y

||y|| ∈ S if x 6= 0 and y 6= 0 (7)

and
(λx)� (µy) = (λµ)x� y. (8)

Definition 2. If there exist linearly independent elements e and i from V such that

e� x = x for all x ∈ V (9)

and
i� i = −e (10)

then V = (V,⊕,�, ·, 0, e, i) is called a two-dimensional (phbs-functional related) complex algebraic
structure and the elements of V are called (phbs-functional related) generalized complex numbers.

If (V,�) = (R2,�p) according to [9] then we write V = Cp and if (V,�) = (R2,�||.||)
according to [18] then we write V = C||.||.

Note that (7) entails that

||x� y|| = ||x||·||y||. (11)

The sets

B$ = $B = {$x : x ∈ B} and S$ = $S

being generated by the phbs-functional ||.|| are correspondingly called disc and circle
having phbs-radius $ > 0 and center o. By

z1 � z2 = ||z1||||z2||
z1 ~ z2

||z1 ~ z2||
(12)

we are always given a vector-valued vector product with respect to a phbs-functional ||.||.
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Definition 3. The operation z1 � z2 : V × V → V defined by (12) will be called generalized
complex multiplication (with respect to the phbs-functional ||.|| : V → R+).

To finish this section, we recall that if V = R2 and � = ~ then V is usually called the
complex plane. For other choices of V, V is called the V-realization of the complex plane.

3. Euler-Type Trigonometric Representation of Generalized Complex Numbers

From now on, for the sake of simplicity, let V = R2 and assume that a vector-valued
vector product with respect to a phbs-functional is given according to Definition 1.

Definition 4. With z0 = e
||e|| , z1 = z, the n-th vector-valued power of z ∈ V is defined as

zn = zn−1 � z, n = 2, 3, . . .

Definition 5. The vector-valued exponential function with respect to the phbs-funtional ||.||,
exp||.||(.) : V → V, is defined as

exp||.||(z) =
∞

∑
k=0

zk

k!
.

Definition 6. Let the central projection of vector z ∈ V onto the unit circle S be denoted cprS(z).
The exponential-projection function with respect to the phbs-functional ||.||, e||.|| : V → S, is
defined then by

ez
||.|| = cprS(exp||.||(z)).

Definition 7. The generalizations of the usual cosine and sine functions with respect to the phbs-
funtional ||.|| are defined to be

cosS x =
cos x
N(x)

and sinS x =
sin x
N(x)

where
N(x) = || cos x

e
||e|| + sin x

i
||i|| ||.

Note that
∂B = {(cosS ϕ)e + (sinS ϕ)i, 0 ≤ ϕ < 2π}.

In the following theorem, it is assumed that there is exactly one fixed imaginary unit
for all phbs-functionals. However, the right-hand side of the Euler-type formula explicitly
depends on the specific choice of the phbs-functional in two ways, namely explicitly by
||e|| and ||i|| and implicitly through S in the definition of the generalized sine and cosine
functions. In the subsequent Corollary it is conversely assumed that the imaginary unit
is chosen in dependence of the phbs-functional. At first glance, the right-hand side of the
Euler-type formula then seems to depend only implicitly through S from the choice of the
phbs-functional because the dependence of the imaginary unit on the phbs-functional is
not visible there.

Theorem 1. If

e =
(

1
0

)
and i =

(
0
1

)
(13)

then the following Euler-type formula holds true

e
x i
||i||
||.|| = cosS x

e
||e|| + sinS x

i
||i|| , x ∈ R. (14)
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Proof. It follows from

i2k = (−1)k||i||2k e
||e|| and i2k+1 = (−1)k||i||2ki

that

e
x i
||i||
||.|| = cprS(exp||.||(x

i
||i|| )) =

cos x e
||e|| + sin x i

||i||
N(x)

.

Remark 1. We emphasize that (14) is a vector equation. While one-dimensional considerations
in the literatur have so far not led to a fully satisfactory explanation for the imaginary unit, the
two-dimensional consideration carried out here allows different interpretations in a well-structured
way, as will be shown below.

With e and i as in this theorem, for any phbs-functional ||.||, the following vector
equation holds,

e
π i
||i||
||.|| +

e
||e|| = 0. (15)

Corollary 1. If

e =

(
1
0

)
||
(

1
0

)
||

and i =

(
0
1

)
||
(

0
1

)
||

(16)

then we have the following Euler-type formula

exi
||.|| = (cosS x)e + (sinS x)i. (17)

Proof. Obviously,

||e|| = ||i|| = 1 and N(x) = ||(cos x)e + (sin x)i||.

Thus,

i2k = (−1)ke and i2k+1 = (−1)ki

and
exi
||.|| = cprS(exp||.||(xi)) =

cos xe + sin xi
N(x)

.

With e and i as in this corollary, the following vector equation is true for any phbs-
functional ||.||,

eiπ
||.|| + e = 0. (18)

This equation clarifies and generalizes the well known formula

eiπ + 1 = 0. (19)

Remark 2. If ||.|| = ||.||p where ||z||p = (|x|p + |y|p)1/p then in Corollary 1 there holds

i =
(

0
1

)
, ∀p > 0, but exi

||.||p nevertheless depends on p.
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Corollary 2. Let z =

(
x
y

)
from V and assumtion (16) be fulfilled. Then z allows the generalized

polar representation
z = reiϕ

||.|| (20)

with

r = ||
(

x
y

)
|| and arctan | y

x
| =


ϕ if z ∈ Q1
π − ϕ if z ∈ Q2
ϕ− π if z ∈ Q3
2π − ϕ if z ∈ Q4

(21)

where Q1−Q4 stand for the anticlockwise enumerated quadrants of R2.

Proof. The generalized polar coordinate transformation w.r.t the phbs-functional ||.||,
PolS : [0, 2π) × [0, ∞) → R2, is defined in [38] by x = r cosS ϕ, y = r sinS ϕ that is
z = r((cosS ϕ)e + (sinS ϕ)i). The inverse of PolS is given by (20), (21). Finally, (17) ap-
plies to prove (20).

For i satisfying (16), let us write i = i||.||. We close this section with the following
generalization of Equation (5):

{ei||.||x
||.|| , x ∈ [0, 2π)} = {

(
x
y

)
∈ R2 : ||

(
x
y

)
|| = 1} = S||.||, i||.|| ∈ C||.||. (22)

4. Generalized Complex Differentiability

We note that both the usual complex multiplication

z1 ~ z2 =

(
x2 −y2
y2 x2

)(
x1
y1

)
and the generalized complex multiplication (12) represent torsional stretches and that(

x −y
y x

)(
x y
−y x

)
= ||z||2

(
1 0
0 1

)
, z =

(
x
y

)
,

which motivates the following definition.

Definition 8. With

z1 � z2 =

(
x2 y2
−y2 x2

)(
x1
y1

)
=

(
x1x2 + y1y2
y1x2 − x1y2

)
,

the generalized complex division (with respect to the phbs-functional ||.||) is defined as

z1 �||.|| z2 =
||z1||
||z2||

z1 � z2

||z1 � z2||
.

It can be easily checked that

(z1 �||.|| z2)� z2 = z1

and, for ε ∈ R,

(εz)�||.||
(

ε
0

)
=

z
||e||

as well as

(εz)�||.||
(

0
ε

)
=

||z||
||i|| · ||Az||Az where A =

(
0 1
−1 0

)
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describes a 90◦ counterclockwise rotation.

Definition 9. Let U be an open subset of the complex plane C. A function f =

(
u
v

)
: U → C

is called differentiable at z0 ∈ C if the limit

lim
z→zo

( f (z)− f (zo))�||.|| (z− zo)

exists. Moreover, f is called a holomorphic function if it is generalized complex differentiable in U.

Theorem 2. If f =

(
u
v

)
is differentiable in U ⊂ C then the partial derivatives of u and v

satisfy the equations

ux(x, y) = Q(x, y)vy(x, y), vx(x, y) = −Q(x, y)uy(x, y) (23)

where Q(x, y) =
||e||·||

(
uy
vy

)
||

||i||·||
(

vy
−uy

)
||

.

Proof. Recognize that, with some δ ∈ (0, 1),

( f (z + εe)− f (z))�||.|| (εe)

=((

(
u(x + ε, y)
v(x + ε, y)

)
)− (

(
u(x, y)
v(x, y)

)
))�||.||

(
ε
0

)
=

(
εux(x + δε, y)
εvx(x + δε, y)

)
�||.||

(
ε
0

)
=

1
||e||

(
ux(x + δε, y)
vx(x + δε, y)

)
(24)

and

( f (z + εi)− f (z))�||.|| (εi) =
||
(

uy(x, y + δε)
vy(x, y + δε)

)
||

||i|| · ||A
(

uy(x, y + δε)
vy(x, y + δε)

)
||

A
(

uy(x, y + δε)
vy(x, y + δε)

)
.

Thus, for ε→ 0,

( f (z + εe)− f (z))�||.|| (εe)→ 1
||e||

(
ux(x, y)
vx(x, y)

)
and

( f (z + εi)− f (z))�||.|| (εi)→
||
(

uy(x, y)
vy(x, y)

)
||

||i|| · ||
(

vy(x, y)
−uy(x, y)

)
||

(
vy(x, y)
−uy(x, y)

)

from where (23) immediately follows.

Definition 10. We call the equations in Theorem 2 the generalized Cauchy–Riemann differential
equations (with respect to the phbs-funtional ||.||).
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5. Random Numbers
5.1. Moments

Let [Ω,A, P] denote any probability space and S the Borel σ-algebra of subsets of

V. Any (A,S)-measurable mapping Z =

(
X
Y

)
: Ω → V will be called a random

generalized complex number. If we assume that the square z2 = z� z of a complex number
z is particularly defined as z2 = z ~ z, Z possesses second order moments and E means
mathematical expectation then the vector-valued second order central moment of Z is

E(Z−EZ)2 =

(
σ2

X − σ2
Y

2σX,Y

)
,

where σ2
X and σ2

Y stand accordingly for the variances of X and Y and σX,Y for the covariance
between X and Y. If ||.|| = ||.||2 denotes the Euclidean norm then τ = ||E(Z − EZ)2||22
takes the form

τ = (σ2
X − σ2

Y)
2 + 4σ2

X,Y.

Note that τ = 0 means homoscedasticity and uncorrelatedness of X and Y, and
non-zero τ means either heteroscedasticity or correlatedness, or both.

Similarly, the vector-valued third and fourth order central moments of Z are, under
suitable conditions,

E(Z−EZ)3 =

(
E(X− µX)

3 − 3E(X− µX)(Y− µY)
2

3E(X− µX)
2(Y− µY)−E(Y− µy)3

)
and

E(Z−EZ)4 =

(
E(X− µX)

4 − 6E(X− µX)
2(Y− µY)

2 +E(Y− µY)
4

4E(X− µX)
3(Y− µY)− 4E(X− µX)(Y− µY)

3

)
,

respectively.

5.2. Uniform Probability Distribution

A closer description of a random variable is given by its distribution law. We start
with one of the most elementary distributions which one can assign a random vector in V.
If µ(A) denotes the area content or Lebesgue measure of A, µ(A) =

∫
A

d(x, y), where A is a

Borel subset of V, then the uniform probability distribution on B ∈ S is defined by

U(A) =
µ(A)

µ(B)
, A ∈ S∩ B.

Let us assume that Z follows this distribution, Z d∼ U. The probability density of the
random vector Z is then

fZ(x, y) =
1

µ(B)
, (x, y)T ∈ B.

We now exploit the fact that Z in the sense of Corollary 2 allows the generalized
polar representation

Z = PolS(R, Φ) = R
(

cosS Φ
sinS Φ

)
= ReiΦ

||.||. (25)
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The Jacobian of the transformation PolS is D(x,y)
D(r,ϕ) = r

N2(ϕ)
, the area content of B$

satisfies the equation

µ(B$) = µ(B)$2 where µ(B) =
1
2

2π∫
0

dϕ

N2(ϕ)
, (26)

and the joint distribution function of R and Φ is given by

P(R < $, Φ < ψ) =

$∫
0

ψ∫
0

1
µ(B)

r
N2(ϕ)

dϕdr, $ > 0, ψ ∈ (0, 2π).

Thus, R and Φ are stochastically independent and follow the densities

fR(r) = 2r, 0 < r < 1 (27)

and
fΦ(ϕ) =

1
2µ(B)N2(ϕ)

, ϕ ∈ (0, 2π), (28)

respectively. This allows to simulate R, Φ and Z.

5.3. Generalized Circle Numbers

In this section, we discuss a geometric aspect of the normalizing constant µ(B) from (28).
The phbs-functional ||.|| can be viewed as the Minkowski functional of the star body B, that
is ||z|| = hB(z) = inf{λ > 0 : z ∈ λB}, z ∈ V.

Let T be a star disc in R2 which is generated by the positive homogeneous Minkowski
functional hT and Zn : z0, z1, ..., zn = z0 a successive and positive (anticlockwise) oriented
partition of S$. The positive directed T-arc-length of S$ is defined as

ALS$ ,T = lim
n→∞

∞

∑
j=1

hT(zj − zj−1), (29)

if the limit exists for and is independent of all described partitions of S$ satisfying the
assumption max1≤j≤n hT(zj − zj−1)→ 0 as n→ ∞.

If the gradient ∇hB is defined almost everywhere and a star body S∗ satisfies the
rotated gradient condition

h( 0 1
−1 0

)
S∗
(∇hB(x, y)|(x,y)=Pols(r,ϕ)) = 1, a.e. (30)

Then, according to [38], ALS$ ,S∗ allows the representation,

ALS$ ,S∗ = 2µ(B)$. (31)

It follows from (26) and (31) that

µ(B$)

$2 = µ(B) =
ALS$ ,S∗

2$
,

which was the motivation in [38] to call

πS := µ(B) (32)

the S-generalized circle number of the star body B. With regard to the specific definition of
S∗, we refer to [38,39] for the general case.
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We note that, if specifically V = R2 and ||
(

x
y

)
, || =

√
x2 + y2 denotes the Euclidean

norm then the quantity πS = π is well known to represent the area content of the unit disc,
and S = S∗, µ(B) = π.

If, however, ||
(

x
y

)
|| =

√
( x

a )
2 + ( y

b )
2 then B = {

(
x
y

)
: x2

a2 + y2

b2 ≤ 1} has area

content µ(B) = abπ, πS = abπ, and S∗ = {
(

x
y

)
: b2x2 + a2y2 = 1} satisfies (30).

5.4. The Distribution of eiΦ||.||
Let Φ still denote the random angle from the stochastic representation (25) and assume

for the sake of simplicity from now on that assumption (16) is satisfied. The random gener-
alized complex number eiΦ||.|| takes values in S, eiΦ||.|| : Ω → S, and is (A,B(S))-measurable
where B(S) denotes the Borel σ-algebra over S. The following sections of S,

S(ϕ1, ϕ2) = {
(

cosS ϕ
sinS ϕ

)
: ϕ1 ≤ ϕ ≤ ϕ2}, 0 ≤ ϕ1 < ϕ2 < 2π,

are elements from B(S) and serve for defining the following sectors of B:

sector(ϕ1, ϕ2) = {r · S(ϕ1, ϕ2), 0 ≤ r < 1}, 0 ≤ ϕ1 < ϕ2 < 2π.

In analogy to formulae (2.35) and (2.36) in [38], we have

AL$·S(ϕ1,ϕ2),S∗ = $

ϕ2∫
ϕ1

dϕ

N2(ϕ)
(33)

and

µ($ · sector(ϕ1, ϕ2)) =
$2

2

ϕ2∫
ϕ1

dϕ

N2(ϕ)
. (34)

Notice that (33) and (34) together broadly generalize the defining equations of πS and
are an integral part of the intellectual background of the generalized Cavalieri integration
mentioned in [40]. Moreover,

P(eiΦ
||.|| ∈ S(ϕ1, ϕ2)) = P(

(
cosS(Φ)
sinS(Φ)

)
∈ S(ϕ1, ϕ2)) = P(Φ ∈ (ϕ1, ϕ2)).

It follows now by (28) and (31) that the distribution law L(eiΦ) looked for in this
section is

P(eiΦ ∈ S(ϕ1, ϕ2)) =
ALS(ϕ1,ϕ2),S∗

ALS,S∗
, 0 ≤ ϕ1 < ϕ2 < 2π. (35)

Definition 11. We call the distribution in (35) the generalized uniform distribution on the circle S
with respect to the phbs-functional ||.||, or the S-generalized uniform distribution, for short, and
a random variable US that follows this distribution an S-generalized uniform basis of the random
generalized complex number Z.

Equation (25) can now be viewed as a stochastic representation,

Z ∼ R · US, (36)

where the random phbs-radius variable R = ||Z|| and uniform basis US are independent
and follow the density (27) and the distribution law (35), respectively.

Because S borders the star body B, the product R · US is said to be star-shaped distributed.
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5.5. Star-Shaped Distributed Random Generalized Complex Numbers

Definition 12. A random generalized complex number Z =

(
X
Y

)
is said to follow a star-shaped

distribution if there exist a nonnegative random variable R, a star body S, centered at 0, and

a uniform basis US that is independent of R such that the random vector
(

X
Y

)
satisfies the

stochastic representation (36).

For the big subclasses of norm- and antinorm-contoured and more general star-shaped
distributions, we refer to [40,41], respectively. For antinorms, see [42]. The more particular
class of elliptically contoured distributions is studied in [12,40,41,43] and the related ellipses
numbers in [38,39].

Still another class of probability densities which are invariant with respect to certain
[p, q]-vector multiplications was discussed in [18].

6. Discussion

In the present work, a new, rather general concept of complex numbers was brought
into connection with the concepts of generalized uniform distributions on generalized
circles, generalized circle numbers for circular discs with respect to positively homogeneous
and bounded functionals and a well known general theory of star-shaped distributions in
R2. Moreover, the concept of complex differentiability was generalized and a generalization
of the Cauchy–Riemann differential equations was derived. Obvious further questions for
future work in this area concern a general treatment of power series and the search for a
potentially possible adaption of the statement of Cauchy’s integral theorem. Additionally,
the reader should be made aware of the following aspects.

As subsets of the real line, the set of all integers is a subset of the set of all rational
numbers; analogously, every rational number is a real number. However, are real numbers
special complex numbers? To the best of the author’s knowledge, this has actually not
been shown anywhere, although an impression to this effect may occasionally have arisen.
Instead, it has been proved that the two-dimensional field of complex numbers, C, is an
extension field of the one-dimensional field of real numbers, R, based on the following.
Because of(

x1
0

)
⊕
(

x2
0

)
=

(
x1 + x2

0

)
and

(
x1
0

)
�
(

x2
0

)
=

(
x1 · x2

0

)
,

the mapping x 7→
(

x
0

)
defines an isomorphism from R to C. In other words, the space

({
(

x
0

)
, x ∈ R},⊕,�) is isomorph to (R,+, ·). The occasionally encountered view that

z = x + iy =

(
x
y

)
becomes a real number if y = 0 falls short within the present vector

space approach.
In a certain part of the international mathematical literature, a mentality of wishing

properties of abstract mathematical objects has become established without giving the
reader the guarantee that these wishes can be fulfilled, or how, by explicitly specifying suit-
able concrete mathematical objects. Beginning in [9,18], this approach was abandoned and
explicit objects for the realization of ordinary complex numbers and their p-generalizations,
p > 0, as well their norm-, antinorm- and semi-antinorm-generalizations were given.

As we have seen, Equation (19), often referred to as mysterious or most beautiful
formula of mathematics, does not, from a rigorous point of view, point to the facts at hand
with complete precision. The message that a frequently quoted formula is not perfectly
correct could lead to great uncertainty, if it had not been specified in Equation (18) at the
same time.
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These circumstances are the reason why we also subject other well-known mathematical
formulas to a check for the necessary mathematical rigor. This is demonstrated here using
the example of the addition property of the exponential function. The proof of the formula,

ex+y = exey for all x and y from R, (37)

can be done quite easily using the Cauchy formula as follows:

exey = (
∞

∑
k=0

xk

k!
)(

∞

∑
l=0

yl

l!
) =

∞

∑
m=0

(
m

∑
ν=0

xνym−ν

ν!(m− ν)!
) =

∞

∑
m=0

(x + y)m

m!
= ex+y.

However, this proof cannot be transferred directly to complex numbers within the
framework of the present vector space approach. Let ||.|| be the Euclidean norm in R2. In
order to prove the formula

exp||.||(z1 + z2) = exp||.||(z1)~ exp||.||(z2) for all z1 and z2 from C2 (38)

in the vector approach considered here for ordinary complex numbers, the formulation of
the series expansion

exp||.||(z) = e +
(

x
y

)
+

1
2!

(
x2 − y2

2xy

)
+

1
3!

(
x3 − 3xy2

3x2y− y3

)
+

1
4!

(
x4 − 6x2y2 + y4

4(x3y− xy3)

)
+

1
5!

(
x5 − 10x3y2 + 5xy4

5x4y− 10x2y3 + y5

)
+

1
6!

(
x6 − 15x4y2 + 15x2y4 − y5

6x5y− 20x3y3 + 6xy5

)
+ . . . , z = z1 + z2 ∈ C2

(39)

and the suitable sorting of the summands in the corresponding vector product,

exp||.||(z1)~ exp||.||(z2) for all z1 and z2 from C2, (40)

are correspondingly more technically challenging. The reader should wonder from the
considerations made so far whether in the present approach, or other ones in papers which
start from various desires that a complex algebraic structure should satisfy, there is a
guarantee that all precisifications in the sense of mathematical rigor cannot lead to any
technical or even deep-seated conflicts. The need for a consistent, strict mathematical action
in this field is additionally underlined by a statement in [44], where it is shown in Theorem 1,
Formula (19), that the exponential function considered there does not have the addition
property examined here.

If one has finally carried out the steps just indicated, then, for example, a valid proof
follows from (38) and the usual definitions of cos z and sin z that the Euler formula

eix = cos x + i sin x, x ∈ R

can be generalized to
eiz = cos z + i sin z, z ∈ C.

Fortunately, the greater effort that a vector consideration of complex numbers requires
is offset by a greater expected benefit. For example, it was shown in [18] that a quadratic
equation that has no real solution can have solutions in Cp for infinitely many p. A fun-
damental question then is, for which p, for a given variable x, a suitable variable y exists
and is well interpretable, so that they naturally satisfy the equation |x|p + |y|p = rp for a
certain r > 0.
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Appendix A

The examples presented in this section are to prove the existence and variety of
complex numbers and their generalizations. Notice that the known uniqueness statement
on usual complex numbers can only be made under the additional distributivity assumption
with respect to the complex algebraic structure under consideration. Each of the following
examples can occur equally in the deterministic and in the stochastic context. To name just
two of the possible areas of application, we refer to complex variable frequency electric
circuit theory in [45] and complex spectral signal representation for the processing and
analysis of images in [46].

Example A1. Let V = R2, ||z|| = ||
(

x
y

)
|| =

√
x2 + y2, z1 � z2 = z1 ~ z2, e =

(
1
0

)
and i =

(
0
1

)
. Then, the assumptions (6)–(10) are fulfilled; the complex algebraic structure

C = (V,⊕,�, ·, 0, e, i) is commonly called the complex plane and its elements, z =

(
x
y

)
, are

called complex numbers.
Usually complex numbers are written as z = x + iy where the so called imaginary unit i is

said to come from a different set than the real numbers, nowadays an astonishing non-mathematical
approach. The circumstance that then it is simply not explained what iy, x + iy, i2 are, and what the

“identification” −
(

1
0

)
= −1, which stands for i2 =

(
0
1

)
~
(

0
1

)
= −1 means is often not

even mentioned.
The present approach to C avoids such a gap in mathematical rigor and proves the existence

of a mathematically completely formally correct definition while the following examples show the
variety of complex numbers as well as the existence and variety of their generalizations.

Example A2. Let V = { f : [0, 1] → R with f (x) = ax + b where a, b are reals} be a function
space, || f || =

√
a2 + b2 a norm on it and

( f � g)(x) = (ac− bd)x + (ad + bc)

if f (x) = ax + b and g(x) = cx + d with reals a, b, c, d. Further assume that elements e and i
from V satisfy e(x) = x and i(x) = 1 for all x ∈ [0, 1]. Then, assumptions (6)–(10) are satisfied
and the complex algebraic structure (V,⊕,�, ·, 0, e, i) can be considered as another realization of
the complex plane C.

Example A3. Let the vector space V = {
(

a −b
b a

)
, a, b are reals } be endowed with the norm

||
(

a −b
b a

)
|| =
√

a2 + b2 and put e =
(

1 0
0 1

)
, i =

(
0 −1
1 0

)
as well as

(
a −b
b a

)
�
(

c −d
d c

)
=

(
ac− bd −ad− bc
ad + bc ac− bd

)
.

Then, assumptions (6)–(10) are satisfied and the corresponding algebraic structure is called the
matrix representation of C.
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Example A4. Let V = R2, ||z|| = ||z||p with p 6= 0,

z1 � z2 = z1 �p z2 =

[
(|x1|p + |y1|p)(|x2|p + |y2|p)
|x1x2 − y1y2|p + |x1y2 + x2y1|p

]1/p
z1 ~ z2

for all z1 =

(
x1
y1

)
, z2 =

(
x2
y2

)
from V and e =

(
1
0

)
, i =

(
0
1

)
. Then, the assump-

tions (6)–(10) are satisfied and the corresponding complex algebraic structure can be viewed as a
generalization of the complex plane C.

Here, ||.||p denotes a norm, antinorm or semi-antinorm if accordingly p ≥ 1, 0 < p ≤ 1 or
p < 0, [42], and ⊕ denotes common vector addition.

Remark A1. Suitably modified, the product �p can also be used in Examples 2 and 3.

Example A5. If V = R2, ||z|| = |z|(a,b) =
√
( x

a )
2 + ( y

b )
2, a > 0, b > 0 and

z1 �(a,b) z2 =

(
(x2

1 + ( a
b y1)

2)(( b
a x2)

2 + y2
2)

b2(x1x2 − y1y2)2 + a2(x1y2 + x2y1)2

)1/2

z1 ~ z2

then assumptions (6)–(10) are satisfied and the complex algebraic structure (V,⊕,�, ·, 0, e, i),
where ⊕, 0, e, i are as before, is called an elliptical complex plane.

Remark A2. Suitably adopted, the Euler-type formulae apply to arbitrary two-dimensional complex
algebraic structures.
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