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1. Introduction and Preliminaries

LetM(U) denote the class of analytic functions in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Let A be the subclass of M(U) whose functions f satisfy the normalization condition
given by

f (0) = f ′(0)− 1 = 0,

that is, each function f inA can be represented by the following Taylor–Maclaurin series ex-
pansion:

f (z) = z +
∞

∑
k=2

υkzk (z ∈ U). (1)

Moreover, let S be the subclass of A whose functions are univalent in U. The Koebe
one-quarter theorem ensures that the image of U under every f ∈ S contains a disk of
radius 1/4.

It is known that every function f ∈ S has an inverse f−1 defined by

f−1( f (z)) = z (z ∈ U),

and

f−1( f (ω)) = ω

(
|ω| < r0( f ); r0( f ) ≥ 1

4

)
,
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where

f−1(ω) = g(ω) = ω− υ2ω2 +
(

2υ2
2 − υ3

)
ω3 −

(
5υ3

2 − 5υ2υ3 + υ4

)
ω4 + · · · . (2)

A function is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote
the class of bi-univalent functions in U given by (1).

Lewin [1] investigated the class Σ and showed that |v2| < 1.51. Subsequently, Brannan
and Clunie [2] conjectured that |v2| <

√
2. Netanyahu [3], on the other hand, showed that

max
f∈Σ
|v2| =

4
3

.

The Taylor–Maclaurin coefficients |vn| (n ≥ 3, n ∈ N) in (1) are still unknown, and it is an
open problem.

Similar to the subclasses S∗(ζ) and K(ζ) of the starlike and convex functions of the
order ζ (0 ≤ ζ < 1), respectively, that we are familiar with, Brannan and Taha [4] gave
two subclasses of Σ, which are called S∗Σ(ζ) and KΣ(ζ) of the bi-starlike functions and
bi-convex functions of the order ζ (0 ≤ ζ < 1), respectively. It should be remarked here
that, in their pioneering work, Srivastava et al. [5] actually revived the study of analytic
and bi-univalent functions in recent years.

Moreover, for two analytic functions s1 and s2, the function s1 is called subordinated
to the function s2, denoted as

s1(z) ≺ s2(z) (z ∈ U),

if there is an analytic function w in U with

w(0) = 0 and |w(z)| < 1,

such that
s1(z) = s2(w(z)).

If the function s2 ∈ S , then

s1(z) ≺ s2(z)⇔ s1(0) = s2(0) and s1(U) ⊂ s2(U).

In 2008, Babalola [6] defined the operator Iσ
n : A −→ A as

Iτ
m f (z) = (ντ ∗ ν−1

τ,m ∗ f )(z) (3)

where
ντ,m(z) =

z
(1− z)τ−(m−1)

, τ − (m− 1) > 0, ντ = ντ,0

and ν−1
τ,m is such that

(ντ,m ∗ ν−1
τ,m)(z) =

z
1− z

(τ, m ∈ N ).

Let f ∈ A, then (3) is equivalent to

Iτ
m f (z) = z +

∞

∑
j=2

[
[τ + j− 1]!

τ!
[τ −m]!

[τ + j−m− 1]!

]
υjzj. (4)

The q-derivative operator Dq of a function was introduced and researched by Jack-
son [7,8].

Dq f (z) =
f (qz)− f (z)

z(q− 1)
= z−1

{
z +

∞

∑
k=2

[k]qυkzk

}
(5)
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and Dq f (0) = f ′(0). In particular, f (z) = zk for k is a positive integer, the q-derivative of
f (z) is given by

Dqzk =
(zq)k − zk

z(q− 1)
= [k]qzk−1, (6)

lim
q−→1

[k]q = lim
q−→1

qk − 1
q− 1

= k. (7)

For function f (z) given by (1) and g(z) given by

g(z) = z +
∞

∑
k=2

ckzk

the convolution of f (z) and g(z) is defined by

( f ∗ g)(z) = z +
∞

∑
k=2

υkckzk = (g ∗ f )(z).

Let

Dq(z) =
z

(1− qz)(1− z)
= z + (1 + e1)z2 + (1 + e1 + e2)z3 + · · · = z +

∞

∑
k=2

[k]ezk (8)

where
[k]e = 1 + e1 + e2 + · · ·+ ek−1, ek = qk. (9)

See [9,10] for additional information on q-derivative theories.
Quantum (or q-) calculus is a strong instrument for investigating a wide range of

analytic functions, and it has sparked new research in mathematics and other fields. The
first time it was used in the context of univalent functions was by Srivastava [11]. Many
academics have studied q-calculus and its many applications due to the usefulness of q-
analysis in mathematics and other areas. With the help of certain higher-order q-derivative
operators, Khan et al. [12] constructed and analyzed a number of subclasses of q-starlike
functions. Shi et al. (see also [13]) created a novel subclass of multivalent q-starlike Janowski
functions using the q-differential operator. A variety of adequate requirements as well as
some other noteworthy characteristics were investigated in both articles [12,14].

Because of the large range of applications and the usefulness of q-operators above
fundamental operators, many scholars have looked into q-calculus in depth. Furthermore,
Srivastava’s recently published survey-cum-expository review study [15–17] is useful for
academics and scholars studying these topics.

The q-Hermite polynomial was first introduced by Rogers [18] (see also [19,20]) and is
usually defined by means of their generating function as follows

Bk(s|q) =
∞

∑
k=0

Hk(x; q)
tk

(q; q)k
=

∞

∏
k=0

1
1− 2xtqk + t2q2k (0 < q < 1).

The q-derivative of the q-Hermite polynomial is

Dq{Bk+1(s|q)} = [k]qBk(s|q). (10)

Moreover, Ismail et al. [18] were able to define the recursion relation as

tBk(s|q) = Bk+1(s|q) + [k]qBk−1(s|q) (11)

with
B0(s|q) = 1 and B−1(s|q) = 0.
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Also from (11), we have

B1(s|q) = s

B2(s|q) = s2 − 1

B3(s|q) = s3 − (2 + q)s

B4(s|q) = s4 − (3 + 2q + q2)s2 + (1 + q + q2).

Remark 1. It is clear that
Bk(s|q = 1) = Bck (s)

is the Hermite polynomials. Moreover, when

Bk(s|q = 0) = Uk(s/2),

we have Chebyshev polynomials of the first kind, and they are defined by the recursion relation,

2sUk(s) = Uk−1(s) + Uk+1(s) (12)

with
U0(s) = 1 and U−1(s) = 0.

Next, we define the q-Babalola convolution operator which will be used throughout
this paper.

Definition 1. Let f ∈ A. Denote by Iγ,q f (z) the q-Babalola convolution operator defined by

Iγ,q f (z) = (ντ,q ∗ ν
(−1)
γ,q ∗ f )(z) (13)

where
νγ,q =

z
(1− qz)γ(1− z)

, γ > −1 and ν
(−1)
γ,q

is such that
(νγ,q ∗ ν

(−1)
γ,q )(z) =

z
1− z

.

Hence,

Iγ,q f (z) = z +
∞

∑
k=2

[k]σe
[k]γe

υkzk = z +
∞

∑
k=2

(k]γe υkzk. (14)

where

(k]γe =
1 + e1(τ) + e2(τ) · · · ek−1(τ)

1 + e1(γ) + e2(γ) · · · ek−1(γ)

and

ek−1(τ) =
(τ + k− 2)!
(τ − 1)!

qk−1

(k− 1)!
, ek−1(γ) =

(γ + k− 2)!
(γ− 1)!

qk−1

(k− 1)!
.

Remark 2. It is easily seen that, upon setting q −→ 1−, the extended Babalola convolution
operator Iγ,q f (z) reduces to the Babalola convolution operator Im

σ f (z) which was introduced and
studied by Babalola [6]. For m = τ = 1, the extended Babalola convolution operator Iγ,q f (z)
reduces to the q-derivative operator introduced and studied by Jackson [7,8]. Moreover, if m = τ
and q −→ 1−, we have the Ruscheweyh’s operator [21].

Consider the univalent normalized functions of the kind (1); the Fekete–Szegö func-
tional |υ3 − ϕυ2

2| has a long history in geometric function theory. The authors in [22]
disproved Paley’s conjecture and Littlewood’s that the coefficients of odd univalent func-
tions are confined by unity in 1933. Since then, the functional has gotten much attention,
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especially in subclasses of the family of univalent functions. This problem appears to have
piqued the interest of scholars in recent years (see, for example, [23,24]).

We know that the q-Hermite polynomials and q-convolution operators still have not
been studied with bi-univalent functions. The main goal of this paper is to start looking at
the properties of the bi-univalent functions that are connected to q-Hermite polynomials
and the q-convolution operator. In this study, the initial coefficient estimates for the Fekete–
Szegö problem of analytic and bi-univalent functions are determined using the q-Hermite
polynomial expansions and the q-convolution operator.

In Definition 2, we describe a class of convex bi-univalent functions that are defined
by the q-convolution operator and linked to the q-Hermite polynomial.

Definition 2. Let N(z, s, q) be defined as follows:

N(z, s, q) =
∞

∑
k=2

Bk(s|q)zk. (15)

A function f ∈ Σ given by (1) is said to be in the class Γ
q
Σ(s, γ, τ), if the following conditions are

satisfied:

1 +
zD2

q(Iγ,q f (z))
Dq(Iγ,q f (z))

≺ N(z, s, q) (16)

and

1 +
ωD2

q(Iγ,q f−1(ω))

Dq(Iγ,q f−1(ω))
≺ N(ω, s, q). (17)

Where s ∈
(

1
2 , 1
)

, 0 < q < 1, z ∈ U, ω ∈ U, γ = τ −m > −1.

In Definition 3, we describe a class of starlike bi-univalent functions that are defined
by the q-convolution operator and linked to the q-Hermite polynomial.

Definition 3. Let N(z, s, q) be defined as follows:

N(z, s, q) =
∞

∑
k=2

Bk(s|q)zk. (18)

A function f ∈ Σ given by (1) is said to be in the class Π
q
Σ(s, γ, τ), if the following conditions

are satisfied:
zDq(Iγ,q f (z))

Iγ,q f (z)
≺ N(z, s, q) (19)

and
ωDq(Iγ,q f−1(ω))

Iγ,q f−1(ω)
≺ N(ω, s, q). (20)

We must recall the following lemma in order to arrive at our primary conclusions.
As is usually the case, we let P be the family of functions p(z) = 1 + p1z + p2z2 + ...

regular with positive real part, for z ∈ U.

Lemma 1 ([25]). Let ϕ(z) ∈ P , then

|pj| ≤ 2 (j ∈ N ).

2. Coefficient Estimates for the Class Γ
q
Σ (s, γ, τ)

The initial coefficient bounds of the class Γ
q
Σ(s, γ, τ) of bi-univalent functions are

investigated in this section.
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Theorem 1. Let f ∈ Γ
q
Σ(s, γ, τ). Then,

|υ2| ≤
√

Ψ1(s, q, γ), (21)

|υ3| ≤
s2

[2]2b((2]
γ
e )2

+
s

4[2]b[3]b(3]
γ
e

, (22)

and

|υ4| ≤
s3(2(1 + e1)[3]e(3]

γ
e − [2]2e ((2]

γ
e )

2)

[2]3e [4]e(4]
γ
e ((2]

γ
e )2

− s2(2e1[2]e(2]
γ
e (3]

γ
e + 5[4]e(4]

γ
e )

2[2]3e [4]e(2]
γ
e (3]

γ
e (4]

γ
e

+
s3 − 2s− 2qs− 4

[2]e[4]e(4]
γ
e

where

Ψ1(s, q, γ) =
s3

|s2([2]e[3]e(3]
γ
e − [2]2e ((2]

γ
e )2)− [2]2e ((2]

γ
e )2(s2 − s− 1)|

. (23)

Proof. Let f ∈ Σ be given by (1) be in the class Γ
q
Σ(s, γ, τ). Then,

1 +
zD2

q(Iγ,q f (z))
Dq(Iγ,q f (z))

= N(d(z), s, q) (24)

and

1 +
zD2

q(Iγ,q f−1(ω))

Dq(Iγ,q f−1(ω))
= N(v(ω), s, q), (25)

Let $, η ∈ P be defined as

$(z) =
1 + d(z)
1− d(z)

= 1 + $1z + $2z2 + $3z3 + · · · ⇒ d(z) =
$(z)− 1
$(z) + 1

, (z ∈ U) (26)

and

η(ω) =
1 + v(ω)

1−v(ω)
= 1 + η1ω + η2ω2 + η3ω3 + · · · ⇒ v(ω) =

η(ω)− 1
η(ω) + 1

, (ω ∈ U). (27)

It follows that from (26) and (27) that

d(z) =
1
2

[
$1z +

(
$2 −

$2
1

2

)
z2 +

(
$3 − $1$2 +

$3
1

4

)
z3 + · · ·

]
(28)

and

v(ω) =
1
2

[
η1ω +

(
η2 −

η2
1

2

)
ω2 +

(
η3 − η1η2 +

η3
1

4

)
ω3 + · · ·

]
. (29)

From (28) and (29), applying N(z, s, q) as given in (18), we see that

N(d(z), s, q) = 1 +
B1(s|q)

2
$1z +

[
B1(s|q)

2

(
$2 −

$2
1

2

)
+

B2(s|q)
4

$2
1

]
z2

+

[
B1(s|q)

2

(
$3 − $1$2 +

$3
1

4

)
+

B2(s|q)
2

$1

(
$2 −

$2
1

2

)
+

B3(s|q)
8

$3
1

]
z3 + · · ·

and
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N(v(ω), s, q) = 1 +
B1(s|q)

2
η1ω +

[
B1(s|q)

2

(
η2 −

η2
1

2

)
+

B2(s|q)
4

η2
1

]
ω2

+

[
B1(s|q)

2

(
η3 − η1η2 +

η3
1

4

)
+

B2(s|q)
2

η1

(
η2 −

η2
1

2

)
+

B3(s|q)
8

η3
1

]
ω3 + · · · . (30)

It follows from (24), (30), and (25), we have

[2]e(2]
γ
e υ2 =

B1(s|q)
2

$1, (31)

[2]e[3]e(3]
γ
e υ3 − [2]2e ((2]

γ
e )

2υ2
2 =

B1(s|q)
2

(
$2 −

$2
1

2

)
+

B2(s|q)
4

$2
1, (32)

[3]e[4]e(4]
γ
e υ4 − [2]e[3]e(2]

γ
e (3]

γ
e e1υ2υ3 + [2]3e ((2]

γ
e )

3υ3
2 (33)

=
B1(s|q)

2

(
$3 − $1$2 +

$3
1

4

)
+

B2(s|q)
2

$1

(
$2 −

$2
1

2

)
+

B3(s|q)
8

$3
1,

− [2]e(2]
γ
e υ2 =

B1(s|q)
2

η1, (34)

(2[2]e[3]e(3]
γ
e − [2]2e ((2]

γ
e )

2)υ2
2 − [2]e[3]e(3]

γ
e υ3 =

B1(s|q)
2

(
η2 −

η2
1

2

)
+

B2(s|q)
4

η2
1 , (35)

(2(2 + e1)[2]e[3]e(2]
γ
e (3]

γ
e − 5[3]e[4]e(4]

γ
e − [2]3e ((2]

γ
e )

2)υ3
2 + (5[3]e[4]e(4]

γ
e

+ [2]e[3]e(2]
γ
e (3]

γ
e e1)υ2υ3 − [3]e[4]e(4]

γ
e υ4 =

B1(s|q)
2

(
η3 − η1η2 +

η3
1

4

)

+
B2(s|q)

2
η1

(
η2 −

η2
1

2

)
+

B3(s|q)
8

η3
1 . (36)

Adding (31) and (34), we have

$1 = −η1, $2
1 = η2

1 and $3
1 = −η3

1 (37)

and

υ2
2 =

(B1(s|q))2($2
1 + η2

1)

8[2]2e ((2]
γ
e )2

. (38)

Moreover, adding (32) and (35) and applying (37) yields

4υ2
2[[2]e[3]e(3]

γ
e − [2]2b((2]

γ
e )

2] = B1(s|q)($2 + η2)− η2
1(B1(s|q)− B2(s|q)). (39)

Applying (37) in (38) gives

η2
1 =

4[2]2e ((2]
γ
e )

2υ2
2

(B1(s|q))2 . (40)

Putting (40) into (39) and with some calculations, we have

|υ2|2 =

∣∣∣∣∣ (B1(s|q))3($2 + η2)

4[[2]e[3]e(3]
γ
e − [2]2b((2]

γ
e )2](B1(s|q))2 + 4[2]2e ((2]

γ
e )2(B1(s|q)− B2(s|q))

∣∣∣∣∣.



Axioms 2023, 12, 52 8 of 14

Applying triangular inequality and Lemma 1, we have

|υ2| ≤
√

Ψ1(s, q, γ). (41)

Subtracting (35) from (32) and with some calculations, we have

υ3 = υ2
2 +

B1(s|q)[$2 − η2]

4[2]e[3]e(3]
γ
e

(42)

υ3 =
(B1(s|q))2$2

1

4[2]2e ((2]
γ
e )2

+
B1(s|q)[$2 − η2]

4[2]e[3]e(3]
γ
e

. (43)

Applying triangular inequality and Lemma 1, we have

|υ3| ≤
s2

[2]2b((2]
γ
e )2

+
s

4[2]b[3]b(3]
γ
e

. (44)

Subtracting (36) from (33), we have

2[2]e[4]e(4]
γ
e υ4 =

(2(1 + e1)[3]e(3]
γ
e − [2]2e ((2]

γ
e )

2)(B1(s|q))3$3
1

4[2]2e ((2]
γ
e )2

− (2e1[2]e(2]
γ
e (3]

γ
e + 5[4]e(4]

γ
e )(B1(s|q))2$1($2 − η2)

8[2]2e (2]
γ
e (3]

γ
e

+
B1(s|q)($3 − η3)

2
+

[B2(s|q)− B1(s|q)]$1($2 + η2)

2

+
(B1(s|q)− 2B2(s|q) + B3(s|q))$3

1
4

. (45)

Applying triangular inequality and Lemma 1, we have

|υ4| ≤
s3(2(1 + e1)[3]e(3]

γ
e − [2]2e ((2]

γ
e )

2)

[2]3e [4]e(4]
γ
e ((2]

γ
e )2

− s2(2e1[2]e(2]
γ
e (3]

γ
e + 5[4]e(4]

γ
e )

2[2]3e [4]e(2]
γ
e (3]

γ
e (4]

γ
e

+
s3 − 2s− 2qs− 4

[2]e[4]e(4]
γ
e

.

3. Coefficient Estimates for the Class Π
q
Σ(s, γ, τ)

The initial coefficient bounds of the class Π
q
Σ(s, γ, τ) of bi-univalent functions are

investigated in this section.

Theorem 2. Let f ∈ Π
q
Σ(s, γ, τ). Then,

|υ2| ≤
√

X1(s, q, γ), (46)

|υ3| ≤
s2

e2
1((2]

γ
e )2

+
s

(e1 + e2)(3]
γ
e

, (47)

and

|υ4| ≤
s3((2]γe (3]

γ
e (4e1 + 2e2)− 2((2]γe )3e1 − 10(e1 + e2 + e3)(4]

γ
e )

2(e1 + e2 + e3)((2]
γ
e )3(4]γe e3

1

− 5s2

2(2]γe (3]
γ
e e1(e1 + e2)

+
s3 − 2s− 2qs− 4
(e1 + e2 + e3)(4]

γ
e
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where

X1(s, q, γ) =
2s3

|s2{2(e1 + e2)(3]
γ
e + (2]γe − ((2]γe )2(1 + 2e1)} − 2((2]γe )2e2

1(s
2 − s− 1)|

. (48)

Proof. Let f ∈ Σ be given by (1) be in the class Π
q
Σ(s, γ, τ). Then,

zDq(Iγ,q f (z))
Iγ,q f (z)

= N(d(z), s, q) (49)

and
ωDq(Iγ,q f−1(ω))

Iγ,q f−1(ω)
= N(v(ω), s, q). (50)

Let $, η ∈ P be defined by

$(z) =
1 + d(z)
1− d(z)

= 1 + $1(z) + $2z2 + $3z3 + · · · ⇒ d(z) =
$(z)− 1
$(z) + 1

, (z ∈ U) (51)

and

η(ω) =
1 + v(ω)

1−v(ω)
= 1 + η1(ω) + η2ω2 + η3ω3 + · · · ⇒ v(ω) =

η(ω)− 1
η(ω) + 1

, (ω ∈ U). (52)

It follows that from (51) and (52) that

d(z) =
1
2

[
$1z +

(
$2 −

$2
1

2

)
z2 +

(
$3 − $1$2 +

$3
1

4

)
z3 + · · ·

]
(53)

and

v(ω) =
1
2

[
η1ω +

(
η2 −

η2
1

2

)
ω2 +

(
η3 − η1η2 +

η3
1

4

)
ω3 + · · ·

]
. (54)

From (53) and (54), applying N(z, s, q) as given in (18), we see that

N(d(z), s, q) = 1 +
B1(s|q)

2
$1z +

[
B1(s|q)

2

(
$2 −

$2
1

2

)
+

B2(s|q)
4

$2
1

]
z2

+

[
B1(s|q)

2

(
$3 − $1$2 +

$3
1

4

)
+

B2(s|q)
2

$1

(
$2 −

$2
1

2

)
+

B3(s|q)
8

$3
1

]
z3 + · · ·

and

N(v(ω), s, q) = 1 +
B1(s|q)

2
η1ω +

[
B1(s|q)

2

(
η2 −

η2
1

2

)
+

B2(s|q)
4

η2
1

]
ω2

+

[
B1(s|q)

2

(
η3 − η1η2 +

η3
1

4

)
+

B2(s|q)
2

η1

(
η2 −

η2
1

2

)
+

B3(s|q)
8

η3
1

]
ω3 + · · · . (55)

It follows from (49), (55), and (50), we have

(2]γe e1υ2 =
B1(s|q)

2
$1, (56)
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(e1 + e2)(3]
γ
e υ3 − ((2]γe )2e1υ2

2 =
B1(s|q)

2

(
$2 −

$2
1

2

)
+

B2(s|q)
4

$2
1, (57)

(e1 + e2 + e3)(4]
γ
e υ4 − (2e1 + e2)(2]

γ
e (3]

γ
e υ2υ3 + e1((2]

γ
e )

3υ3
2 (58)

=
B1(s|q)

2

(
$3 − $1$2 +

$3
1

4

)
+

B2(s|q)
2

$1

(
$2 −

$2
1

2

)
+

B3(s|q)
8

$3
1,

− (2]γe e1υ2 =
B1(s|q)

2
η1, (59)

2(3]γe (e1 + e2)υ
2
2 − e1((2]

γ
e )

2υ2
2 − (e1 + e2)(3]

γ
e υ3 =

B1(s|q)
2

(
η2 −

η2
1

2

)
+

B2(s|q)
4

η2
1 , (60)

((2]γe (3]
γ
e (4e1 + 2e2)− 5(4]γe (e1 + e2 + e3)− ((2]γe )2e1)υ

3
2 − ((2]γe (3]

γ
e (2e1 + e2)

+ 5(4]γe (e1 + e2 + e3))υ2υ3 − (4]γe (e1 + e2 + e3)υ4 =
B1(s|q)

2

(
η3 − η1η2 +

η3
1

4

)

+
B2(s|q)

2
η1

(
η2 −

η2
1

2

)
+

B3(s|q)
8

η3
1 . (61)

Adding (56) and (59), we have

$1 = −η1, $2
1 = η2

1 and $3
1 = −η3

1 (62)

and

υ2
2 =

(B1(s|q))2($2
1 + η2

1)

8((2]γe )2e2
1

. (63)

Moreover, adding (57) and (60) and applying (62) yields

2υ2
2{2(e1 + e2)(3]

γ
e + (2]γe − ((2]γe )2(1 + 2e1)} = B1(s|q)($2 + η2)− η2

1(B1(s|q)− B2(s|q)). (64)

Applying (62) in (63) gives

η2
1 =

4((2]γe )2e2
1υ2

2
(B1(s|q))2 . (65)

Putting (65) into (64) and with some calculations, we have

|υ2|2 =

∣∣∣∣∣∣∣∣∣
(B1(s|q))3($2 + η2)

2[2(e1 + e2)(3]
γ
e + (2]γe − ((2]γe )2(1 + 2e1)](B1(s|q))2

+ 4((2]γe )2e2
1(B1(s|q)− B2(s|q))

∣∣∣∣∣∣∣∣∣.
Applying triangular inequality and Lemma 1, we have

|υ2| ≤
√

X1(s, q, γ). (66)

Subtracting (60) from (57) and with some calculations, we have

υ3 = υ2
2 +

B1(s|q)[$2 − η2]

4(e1 + e2)(3]
γ
e

(67)
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υ3 =
(B1(s|q))2$2

1

4e2
1((2]

γ
e )2

+
B1(s|q)[$2 − η2]

4(e1 + e2)(3]
γ
e

. (68)

Applying triangular inequality and Lemma 1, we have

|υ3| ≤
s2

e2
1((2]

γ
e )2

+
s

(e1 + e2)(3]
γ
e

. (69)

Subtracting (61) from (58), we have

2(e1 + e2 + e3)(4]
γ
e υ4 =

(3]γe (4e1 + 2e2)(B1(s|q))3$3
1

8e2
1((2]

γ
e )2

−
(B1(s|q))3$3

1
4e2

1

−
5(4]γe (e1 + e2 + e3)(B1(s|q))3$3

1

4((2]γe )3e3
1

(70)

− 5(4]γe (e1 + e2 + e3)(B1(s|q))2$1($2 − η2)

8(2]γe (3]
γ
e e1(e1 + e2)

+
B1(s|q)($3 − η3)

2
+

[B2(s|q)− B1(s|q)]$1($2 + η2)

2

+
(B1(s|q)− 2B2(s|q) + B3(s|q))$3

1
4

. (71)

Applying triangular inequality and Lemma 1, we have

|υ4| ≤
s3((2]γe (3]

γ
e (4e1 + 2e2)− 2((2]γe )3e1 − 10(e1 + e2 + e3)(4]

γ
e )

2(e1 + e2 + e3)((2]
γ
e )3(4]γe e3

1

− 5s2

2(2]γe (3]
γ
e e1(e1 + e2)

+
s3 − 2s− 2qs− 4
(e1 + e2 + e3)(4]

γ
e

.

4. Fekete–Szego Inequalities for the Function Class Γ
q
Σ (s, γ, τ)

Theorem 3. Let f ∈ Γ
q
Σ(s, γ, τ). Then, for some ϕ ∈ R,

∣∣∣υ3 − ϕυ2
2

∣∣∣ ≤


2|1− ϕ|Ψ1(s, q, γ)
(
|1− ϕ| ≥ s

[2]b [3]b(3]
γ
e Ψ1(s,q,γ)

)
2s

[2]b [3]b(3]
γ
e

(
|1− ϕ| ≤ s

[2]b [3]b(3]
γ
e Ψ1(s,q,γ)

)
,

where

Ψ1(s, q, γ) =
s3

|s2([2]e[3]e(3]
γ
e − [2]2e ((2]

γ
e )2)− [2]2e ((2]

γ
e )2(s2 − s− 1)|

. (72)

Proof. From (42), we have

υ3 − ϕυ2
2 = υ2

2 +
B1(s|q)[$2 − η2]

4[2]e[3]e(3]
γ
e
− ϕυ2

2.

By triangular inequality, we have

|υ3 − ϕυ2
2| ≤

s
[2]e[3]e(3]

γ
e
+ |1− ϕ|Ψ1(s, q, γ). (73)

Suppose

|1− ϕ|Ψ1(s, q, γ) ≥ s
[2]e[3]e(3]

γ
e
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then we have
|υ3 − ϕυ2

2| ≤ 2|1− ϕ|Ψ1(s, q, γ) (74)

where
|1− ϕ| ≥ s

[2]e[3]e(3]
γ
e Ψ1(s, q, γ)

and suppose

|1− ϕ|Ψ1(s, q, γ) ≤ s
[2]e[3]e(3]

γ
e

then we have
|υ3 − δυ2

2| ≤
2s

[2]e[3]e(3]
γ
e

where
|1− ϕ| ≤ s

[2]e[3]e(3]
γ
e Ψ1(s, q, γ)

and Ψ1(s, q, γ) is given in (72).

5. Fekete–Szego Inequalities for the Function Class Π
q
Σ(s, γ, τ)

Theorem 4. Let f ∈ Π
q
Σ(s, γ, τ). Then, for some ϕ ∈ R,

∣∣∣υ3 − ϕυ2
2

∣∣∣ ≤


2|1− ϕ|X1(s, q, γ)
(
|1− ϕ| ≥ s

(e1+e2)(3]
γ
e X1(s,q,γ)

)
2s

(e1+e2)(3]
γ
e

(
|1− ϕ| ≤ s

(e1+e2)(3]
γ
e X1(s,q,γ)

)
,

where

X1(s, q, γ) =
2s3

|s2{2(e1 + e2)(3]
γ
e + (2]γe − ((2]γe )2(1 + 2e1)} − 2((2]γe )2e2

1(s
2 − s− 1)|

. (75)

Proof. From (67), we have

υ3 − ϕυ2
2 = υ2

2 +
B1(s|q)[$2 − η2]

4(e1 + e2)(3]
γ
e
− ϕυ2

2.

By triangular inequality, we have

|υ3 − ϕυ2
2| ≤

s
(e1 + e2)(3]

γ
e
+ |1− ϕ|X1(s, q, γ). (76)

Suppose

|1− ϕ|X1(s, q, γ) ≥ s
(e1 + e2)(3]

γ
e

then we have
|υ3 − ϕυ2

2| ≤ 2|1− ϕ|X1(s, q, γ) (77)

where
|1− ϕ| ≥ s

(e1 + e2)(3]
γ
e X1(s, q, γ)

and suppose

|1− ϕ|Ψ1(s, q, γ) ≤ s
(e1 + e2)(3]

γ
e

then we have
|υ3 − δυ2

2| ≤
2s

(e1 + e2)(3]
γ
e
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where
|1− ϕ| ≤ s

(e1 + e2)(3]
γ
e X1(s, q, γ)

and X1(s, q, γ) is given in (75).

6. Conclusions

As we mentioned earlier, q-calculus is a vital tool for understanding a large class of
analytic functions and its applications. Several useful results related to the q-version of the
starlike function and the q-derivative, bi-univalent functions, for instance, were provided
in [26–31]. In recent decades, the orthogonal polynomials and special functions have played
an essential role in mathematics, physics, engineering, and other research disciplines. In
our current analysis, we used q-Hermite polynomials and q-convolution operators and
systematically defined two new subclasses of bi-univalent functions, which was primarily
prompted by the recent research cited in this paper. We then obtained several significant
findings, such as bonds for the initial coefficients of υ2, υ3, and υ4 of the Taylor–Maclaurin
series and the Fekete–Szegö functional results for our established function classes.

Moreover, to have more new theorems under the present examinations, new gener-
alizations and applications can be explored with some positive and novel outcomes in
various fields of science, mainly in geometric function theory. These recent surveys will be
presented in the future research work being processed by the authors of the present paper.

However, the purported trivial (p, q)-calculus extension was clearly demonstrated
to be a relatively insignificant variation of the classical q-calculus, the extra parameter p
being redundant or superfluous (see, for details, [17], p. 340, and [32], pp. 1511–1512).
This observation by Srivastava (see [17,32]) will indeed also apply to any future attempt to
produce the rather straightforward (p, q)-variants of the results which we have presented
in this paper.
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