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Abstract: We revisit the problem of calculating amplitude at infinity for the class of functions
with power-law behavior at infinity by means of a resummation procedure based on the truncated
series for small variables. Iterative Borel summation is applied by employing Padé approximants
of the “odd” and “even” types modified to satisfy the power-law. The odd approximations are
conventional and are asymptotically equivalent with an odd number of terms in the truncated series.
Even approximants are new, and they are constructed based on the idea of corrected approximants.
They are asymptotically equivalent to the even number of terms in truncated series. Odd- and
even-modified Padé approximants could be applied with and without a Borel transformation. The
four methods are applied to some basic examples from condensed matter physics. We found that
modified Padé–Borel summation works well in the case of zero-dimensional field theory with fast-
growing coefficients and for similar examples. Remarkably, the methodology of modified Padé–Borel
summation appears to be extendible to the instances with slow decay or non-monotonous behavior.
In such situations, exemplified by the problem of Bose condensation temperature shift, the results are
still very good.

Keywords: modified Padé-Borel summation; odd and even Padé approximants; iterative Borel
summation and modified Padé approximants
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1. Brief Introduction to Odd and Even Modified Padé Approximants

The simplest, most transparent and widely accepted way to extrapolate power series is
to apply the Padé approximants pn,m, which are represented as the ratio of two polynomials
of the order n and m, respectively. The coefficients of pn,m are derived directly from the
coefficients of the given power series [1,2]. They follow from the requirement of asymptotic
equivalence to the given series of the function f (x). When it is necessary to emphasize the
former point, we write simply pn,m(x) = PadeApproximant[ f [x], n, m].

Among rational approximations, the Padé approximants locally are the best rational
approximations of the power series. They also may have poles which are used to determine
singularities [1–3]. In our problems, we will try to avoid approximants with poles in
finite domains.

Thus, among the Padé approximations, we select only such approximants which are
holomorphic functions. It is established rigorously by Gonchar that the holomorphy of
diagonal Padé approximants in a given domain implies their uniform convergence inside
this domain [4]. Thus, for the problems with a finite number of terms in the expansion, we
will try to restrict the sets of Padé approximants only to the diagonal sequences and find
such groupings of approximants with clear numerical convergence.

It always makes sense before considering more sophisticated approximations to at-
tempt to apply well-developed techniques of Padé approximants. It is also highly desirable
to develop some modified Padé approximants to capture the class of functions with power-
law behavior at infinity, since standard Padé approximations are obviously limited in such
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respect by the integer powers xn−m (see also [5]). Consider only non-negative functions
with asymptotic behavior

f (x) ' Axβ (1)

at infinity with known index at infinity β and unknown amplitude at infinity A. The
following expansion at small x,

f (x) =
N

∑
n=0

anxn + O(xN+1), (2)

is given as well. Here, N is integer and N > 1. Let us calculate the amplitude at infinity A
based on the truncation (2) and known index β.

Usually, only the case of odd N = 1, 3 . . . is studied [6–8]. In such an approach, one
has to apply the transformation

T(x) = f (x)−1/β, (3)

to the truncated series f (x) in order to get rid of the power-law behavior at infinity. Apply-
ing the well-known technique of diagonal Padé approximants to the function xT(x), one
can readily obtain the sequence of approximations An for the amplitude at infinity [6],

An = lim
x→∞

(xPadeApproximant[T[x], n, n + 1])−β, (4)

where n = 0, 1 . . . , is a non-negative integer. Thus, the following modified Padé quasi-
rational approximant

Pn,n+1(x) = (PadeApproximant[T[x], n, n + 1])−β,

is defined for odd cases. The approximants evolve with increasing n and the amplitudes
follow. The amplitudes in the subsequent approximations are not formally related.

The even case of N = 2, 4, . . . requires special attention and is rarely (never?) consid-
ered explicitly with Padé approximants. While for the very long truncations, the difference
between odd and even cases may be insignificant and ignored, for short truncations, the
difference can very well be detectable. Of course, to avoid the problem of odd–even ap-
proximants altogether, one can resort to the self-similar iterated roots, which assimilate the
coefficients an one-by-one [9]. However, in contrast, the Padé approximants can be easily
and routinely extended to very high orders.

Below, we suggest a way to apply Padé techniques for even numbers of terms in the
truncation. Instead of meekly increasing the order of approximation, one can adopt the
idea of corrected approximants [10]. In an such approach, to find the amplitude A, we
divide the original series for f (x) by the “corrector” K(x) and find the new truncated series

G(x) =
f (x)
K(x)

.

The corrector is supposed to have a correct power-law behavior at infinity and be the same
for all n. It also defines some fixed contribution to the amplitude. The function G(x) and
Padé approximants will be designed to contribute only to the amplitude, producing a
correction to it.

Thus, in the case of even N = 2, 4, . . ., we ensure the correct index β already in the
starting approximation K(x) once and for all n. In place of K(x), one can assume the
simplest, modified-odd Padé approximant, i.e.,

K(x) = (PadeApproximant[T[x], 0, 1])−β.
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One can find a corresponding value for the amplitude

A0 = lim
x→∞

(
K(x)x−β

)
.

Then, one can apply rational approximants to the series G(x) and build a sequence of
the even diagonal Padé approximants asymptotically equivalent to G(x). The sought
amplitude at infinity can be found as follows

An = A0 × lim
x→∞

(PadeApproximant[G[x], n, n]), (5)

where n = 1, 2 . . ., is a positive integer. Thus, the following modified-even Padé approximant

Pn,n(x) = K(x)× (PadeApproximant[G[x], n, n]),

is defined for even case. The sought solution is factorized. The first factor is represented by
a modified a quasi-rational Padé approximation of the lowest order, ensuring the correct
index β at infinity, and the second factor is also a diagonal Padé approximant, characterizing
the rational part of the solution. In the current paper, there are two novel features:

(1) Novel, modified-even Padé approximants based on the even number of terms in truncations
are advanced and applied.

(2) Odd-modified and even-modified Padé approximants are advanced and applied in conjunc-
tion with an iterative Borel summation.

The methodology of modified Padé–Borel summation is very user-friendly and always
leads to a unique solution. In addition, the convergence of the method is controlled by
the general theorem of Gonchar [4]. We recommend that various modified Padé and
Padé–Borel techniques are to be tried whenever the perturbative problems of finding the
amplitude at infinity are studied.

The modified Padé–Borel summation takes into account an arbitrary power-law be-
havior at infinity, making it superior to the standard Padé–Borel approach which considers
only integer powers. In addition, the approach is much simpler compared with optimal
Borel–Leroy, Mittag–Leffler and iterative Borel techniques [9,11], allowing us to go easily to
very high orders of perturbation theory.

2. Modified Padé Approximants and Iterative Borel Summation

Borel summation is applied for the effective summation of the functions with known
truncation at small x [9,11–20]. More references on Borel summation can be found in our
recent paper [11].

The Borel summation can be applied also to the hypergeometric functions/
approximants [21,22]. Such a technique leads to the hypergeometric-Meijer approx-
imants [23,24]. Yet, such techniques are rather cumbersome. The non-uniqueness of the
approximants complicates establishing explicitly the property of asymptotic equivalence
with the truncated series. Their application also requires a fitting procedure [25,26]. As a
consequence, the results appear only in numerical form. Therefore, a much simpler method
of Padé approximant should not be abandoned; see also [27]. Our choice throughout the
current paper of the modified Padé approximants allows for analytical calculation of the
amplitudes while keeping the calculations rather simple and straightforward. Again, just
like in the paper [9], we can extend the technique from the amplitude A calculations to the
indices β.

The iterative Borel summation starts with the transformation of the truncated series (2)
to the form

B(x, b) =
N

∑
n=0

an

(Γ(1 + n))b xn , (6)
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which is defined following [13]. In the current paper, we are concerned only with the
discrete case of positive integer b, standing for the number of iterations. The transform is
meant to capture the case when an grows as (n!)b (see [9,13,14]).

Our goal now is to accomplish an inverse transformation returning to the original
truncated series. Ultimately, the truncation (6) ought to be extended to all an for the inverse
transformation to become feasible. Such an extension is made either by means of Padé
approximants [15–19] or by adding the information on large-n asymptotics of an [14].
However, the whole table of the Padé approximants is not able to capture the power-law (1)
with arbitrary β, and it is used for extrapolation to finite values of variable x. With the
power-law condition (1) imposed at infinity, the B(x, b) series can be summed by means of
modified Padé approximants of the odd Pn,n+1 and even Pn,n-types.

Assume once again that we know the value of the index β. The modified Padé
approximants P(x, b) of the Pn,n+1 and Pn,n-types, at large x, behave as

P(x, b) ' C(b)xβ (x → ∞) . (7)

As a result, the large-variable behavior of the reconstructed function acquires the form

f (x, b) ' A(b)xβ (x → ∞) , (8)

with the amplitude
A(b) = C(b) (Γ(1 + β))b . (9)

Consider first the case of odd N = 1, 3 . . ., and let us calculate the marginal amplitude
C(b) in the odd case. To this end, let us apply the now familiar transformation (3) to the
truncated series B(x, b). In such a way, we arrive to the transformed series

T(x, b) = B(x, b)−1/β,

getting rid of the power-law behavior at infinity, at least formally. Applying now the
well-known technique of modified-odd Padé approximants equivalent asymptotically to
T(x, b), one can find the sequence of approximations Cn(b) for the marginal amplitude,

Cn(b) = lim
x→∞

(xPadeApproximant[T[x, b], n, n + 1])−β, (10)

where n = 0, 1, . . . , nmax is a non-negative integer, and N = 2nmax + 1.
Consider now the case of even N = 2, 4, . . .. Just as in the case of now familiar

modified-even Padé approximants, let us ensure the correct index β already in the starting
approximation K(x, b). In place of K(x, b), one can assume the simplest Padé approximant
with a correct form at infinity,

K(x, b) = (PadeApproximant[T[x, b], 0, 1])−β.

Then, one can find the corresponding values for the amplitude

C0(b) = lim
x→∞

(K(x, b)x−β).

Instead of increasing the order of approximation, one can again adopt the idea of
corrected approximants [10]. In such an approach, to find the correction to the amplitude
C0, we divide the original Borel-transformed series B(x, b) by the corrector K(x, b) and find
yet new truncated series

G(x, b) =
B(x, b)
K(x, b)

.
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Finally, we have to build a sequence of the diagonal Padé approximants asymptotically
equivalent to G(x, b). The marginal amplitude could be found as a product

Cn(b) = C0(b)× lim
x→∞

(PadeApproximant[G[x, b], n, n]), (11)

where n = 1, 2 . . . , nmax, is a positive integer, and N = 2nmax.
Obviously, the complete amplitude can be found as well,

An(b) = Cn(b) (Γ(1 + β))b , (12)

in the same form for odd and even cases, notwithstanding.
In the discrete case of positive integer b, we consider only the sequences of averages

with the smallest b so that the sought amplitudes are given as follows,

A∗n =
An(1) + An(2)

2
, (13)

in the same form for odd and even cases [9].
Let us consider the very popular in field theory and statistical mechanics, zero-

dimensional anharmonic model represented by the integral

I(g) =
1√
π

∫ ∞

−∞
exp

(
−ϕ2 − gϕ4

)
dϕ , (14)

with the non-negative coupling parameter g. Expansion in powers of g leads to the strongly
divergent series with the coefficients an = (−1)n

√
π n! Γ

(
2n + 1

2

)
. The strong-coupling form of

the integral is a power-law

I(g) ' 1.022766 g−0.25 (g→ ∞) . (15)

Using the methods described above for defining the large-variable amplitudes An for
the modified Padé approximations of different sorts, we obtain the results illustrated in
Figures 1–4.

In Figure 1, the relative percentage error ε for the amplitude An is shown, which is
dependent on the approximation number n. It is presented for the modified-odd Padé ap-
proximants with disks and is shown with squares for modified-odd Padé-Borel summation.
Only a single-iteration step is made. In the latter case, performance appears to be better by
an order of magnitude compared with standard modified-odd Padé approximants.
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Figure 1. Approximate calculation of the amplitude at infinity in the case of anharmonic partition
integral I(g) (14). The relative percentage error ε for the amplitude An for the modified-odd Padé
approximants is shown with disks, and it is dependent on the approximation number n. Meanwhile,
the relative percentage error for modified-odd Padé–Borel summation in a single-iteration step is
shown with squares.

The results of modified-odd Padé–Borel summation results are very good, with a
relative percentage error of 0.1–0.2%, as shown in Figure 2. The amplitude An(1) obtained
with the modified-odd Padé–Borel summation performed in a single-iteration step is shown
with disks, and it is dependent on the approximation number n. The amplitude An(2) for
the modified-odd Padé–Borel summation performed in two-iteration steps is shown with
squares. The exact result, A = 1.02277, is shown for comparison with (empty) circles.
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1.030
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Figure 2. Approximate calculation of the amplitude at infinity for the case of anharmonic partition
integral I(g) (14). The amplitude An(1) is shown with (filled) disks, dependent on the approximation
number n, obtained for with the modified-odd Padé–Borel summation performed in a single-iteration
step. The dependence of An(2) on n for the modified-odd Padé–Borel summation performed in two-
iteration steps is shown with squares. The exact result, A = 1.02277, is shown with (empty) circles.

In Figure 3, the relative percentage error ε for the amplitude An is shown for the
modified-odd and modified-even Padé approximants, and it is dependent on the approx-
imation number n. The results obtained with the modified-odd Padé approximants are
shown with disks, while the relative percentage error for modified-even Padé summation
is shown with squares. The latter, even approximants demonstrate striking quasi-periodic
performance with error possessing minima at some quasi-periodic intervals, which is in
contrast with a monotonous improvement with n in the case of odd approximants. Already,
the first minimum gives the best result, implying that the higher-order an are somewhat
redundant. We see that performance of odd and even approximants can be very different,
and modified-even approximants can outperform the odd, in principle.

In Figure 4, performances of modified-odd and modified-even Padé–Borel approxima-
tions in a two-step iteration procedure are compared. For the modified-odd Padé–Borel
summation performed in two-iteration steps, the amplitude An(2) is shown with disks,
and it is dependent on the approximation number n. The approximation An(2) for the
modified-even Padé–Borel summation performed in two-iteration steps is shown with
squares. The performances appear to be similar, and rather good, but odd approximations
are more stable and can be extended to higher orders than even.
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Figure 3. Approximate calculation of the amplitude at infinity for the anharmonic partition integral
I(g) (14). The relative percentage error ε for the amplitude An is shown, and it is dependent on the
approximation number n. The results obtained with the modified-odd Padé approximants are shown
with disks. The relative percentage error for modified-even Padé summation is shown with squares.

5 10 15 20
n

1.00

1.01

1.02

1.03

A

Figure 4. Approximate calculation of the amplitude at infinity for the anharmonic partition integral
I(g) (14). For the two-step modified-odd Padé–Borel summation, the amplitudes An(2) are shown
with (filled) disks, and it is dependent on the approximation number n, while the amplitudes An(2)
for modified-even Padé–Borel summation performed in two-iteration steps are shown with squares.
The exact result, A = 1.02277, is shown for comparison with (empty) circles.

3. Examples

Realistic problems to be discussed below are more complicated than the model exam-
ple discussed above. In many realistic problems, only very short truncations are available.
In addition, the coefficients do not show the same perfect growth pattern and may be even
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slowly decaying or irregular. Nevertheless, the features observed in the model case appear
to be robust and persist to the imperfect realistic physical cases.

For the short truncations, it makes sense to try to use all available an for odd or even
N in the expansion (2), and a certain gain can be reached just by technical means, without
computing more coefficients.

3.1. Cusp Anomalous Dimension

In the n = 4 supersymmetric Yang–Mills theory, in the limit of a large angle, the
planar cusp anomalous dimension is linear in angle, with a coefficient Ω(g), that is the cusp
anomalous dimension of a light-like Wilson loop, which depends only on the coupling g.
The weak-coupling and strong-coupling expansions are available for the sought quantity
(see [28,29] and references therein).

In terms of the variable x = g2, after minor transformations, the problem can be recast
into the familiar form (2) with N = 3 for the function f (x) = Ω(x)

x with

f (x) ' 4− 13.1595x + 95.2444x2 − 937.431x3, x → 0,

and in the strong-coupling limit of (1), f (x) takes the form of a power-law

f (x) ' 2x−1/2, x → ∞,

with A = 2 and β = −1/2. Let us estimate the amplitude at large x by various modified
Padé approximations. In such cases, only odd approximations can exploit all terms from
the weak-coupling expansion.

Standard modified-odd Padé approximants give A1 = 1.79734 with all terms from the
weak-coupling exploited. Meanwhile, modified-even Padé approximants give A1 = 1.55939
with only two non-trivial terms from the weak-coupling expansion being used.

Modified-odd Padé approximation when combined with the Borel summation gives
the best result in one-step, A1(1) = 2.06701, with an accuracy of 3%. Even Padé ap-
proximation when combined with the Borel summation gives only A1(1) = 2.76395 with
abysmal accuracy.

Thus, compared with conventional odd Padé approximants, modified-odd Padé
approximation applied for Borel summation brings a significant improvement. Yet, the
best result, A ≈ 2.0118, is achieved by the optimal Borel–Leroy summation [11]. However,
such a technique is considerably more sophisticated compared with a direct application of
modified Padé–Borel summation.

3.2. Two-Dimensional Polymer

It is forbidden for the polymer segments to occupy the same space. As a consequence,
there is a swelling effect in the typical polymer chain radius

√
〈R2〉 when compared to

the non-perturbed segments. The swelling could be measured by the swelling factor Υ(g),
where g stands for the dimensionless coupling parameter [30]. As g → ∞, the swelling
factor behaves as a power-law, i.e.,

Υ(g) ' Agβ.

The index at infinity β is considered to be known exactly, β = 1/2 [31,32].
For the swelling factor, perturbation theory yields the expansion in powers of the di-

mensionless coupling parameter [30]. Consider the two-dimensional polymer coil [30] with

Υ(g) ' 1 +
1
2

g− 0.12154525 g2 + 0.02663136 g3 − 0.13223603 g4, (16)

as g→ 0.
Let us estimate the amplitude at infinity by various modified Padé approximations. Only

even approximations can exploit all terms from the weak-coupling expansion. Standard
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modified-odd Padé approximants give only A1 = 1.00035 with a non-trivial three terms from
the weak-coupling exploited. Meanwhile, modified-even Padé approximants give

A1 = 1, A2 = 1.00002,

with all four non-trivial terms from the weak-coupling expansion being used.
Modified-odd Padé approximation combined with the Borel summation gives the

result A1(1) = 1.01741 in one-step summation. Modified-even Padé approximation when
combined with the Borel summation gives

A∗2 = 1.05277,

with reasonably good lower and upper bounds for the amplitude,

A2(1) = 0.977767, A2(2) = 1.12777.

The simple average over all four Padé-type estimates imply

A ≈ 1.017,

and is compatible with the bounds. The true value of amplitude A for the two-dimensional
polymer is not known, and our result could be viewed as a prediction. The value of
A ≈ 0.97396 found by the optimal Borel–Leroy summation [11] appears to be close to
the lower bound. Current estimates are systematically higher than our previous results
obtianed by various approximants in the book [33].

3.3. Bose Condensation Temperature

Introducing interactions to uniform Bose gas leads to a shift of the ideal Bose gas
transition temperature T0 to the value of Tc. The shift ∆Tc ≡ Tc − T0 is considered to
depend linearly on the parameter γ ≡ ρ1/3as, so that

∆Tc

T0
' c1γ (γ→ 0) .

Here, as is the atomic scattering length, and ρ stands for gas density.
The goal is to find c1 theoretically. To this end, the coefficient c1 can be understood

formally [34–36] as the limit
c1 = lim

g→∞
c1(g) ≡ A, (17)

where g is the effective coupling parameter. However, for the function c1(g), one can only
find the expansion

c1(g) ' 0.223286g− 0.0661032g2 + 0.026446g3 − 0.0129177g4 + 0.00729073g5 , (18)

as g → 0. The modified-odd Padé-summation practically fails after resummation in the
third order of perturbation theory, bringing A1 = 0.985. In contrast, the modified-even Padé
summation gives a very good estimate A2 ≈ 1.28853, which is obtained after resummation
in the fourth order of perturbation theory.

The problem of finding A by means of a Borel summation is undetermined because
of the Γ-functional divergent contribution to the amplitude for β = −1 in formula (9).
Using formula (13), but in application to the inverse series and then taking the inverse as
discussed for the indeterminate case in the paper [9], we manage to obtain rather reasonable
results for the amplitudes at infinity.

The modified-even Padé–Borel summation gives a very good estimate

A∗2 ≈ 1.31173,



Axioms 2023, 12, 50 11 of 19

which is obtained after resummation in the fourth order of perturbation theory with
reasonably good lower and upper bounds for the amplitude,

A2(1) = 1.153, A2(2) = 1.52113.

Mind that Monte Carlo simulations (see [10,37] and multiple references therein), give
c1 = 1.3.± 0.05 .

The modified-odd Padé–Borel summation also gives a sensible estimate A∗1 ≈ 1.34526,
after resummation in the third order of perturbation theory, with the lower and upper
bounds, A1(1) = 1.16299, A1(2) = 1.59528.

The results obtained above by the two modified-even Padé methods and modified-odd
Padé–Borel summation well agree with Monte Carlo simulations, and they appear to be
close to the estimate A ≈ 1.33967 obtained by the optimal Mittag–Leffler summation [11].

In the same way, one can find the values of c1 for the O(1) field theory [35]. The
following formally obtained expansion is available for small g,

c1(g) ' 0.334931g− 0.178478g2 + 0.129786g3 − 0.115999g4 + 0.120433g5 .

It is considered as an input for calculating c1 as g→ ∞.
The modified-even Padé summation again gives a good estimate A2 ≈ 1.11459, after

resummation in the fourth order of perturbation theory. However, the modified-odd Padé
summation fails again, bringing A1 = 0.82441.

The modified-even Padé–Borel summation gives a very good estimate

A∗2 ≈ 1.10507,

after resummation in the fourth order of perturbation theory with reasonably good bounds
A2(1) = 0.969127, A2(2) = 1.28538. The results for the amplitude agree quite well with
Monte Carlo numerical estimate c1 = 1.09.± 0.09 , (see [10] and references therein).

The modified-odd Padé–Borel summation also gives rather sensible estimate A∗1 ≈ 1.13351,
after resummation in the third order of perturbation theory with reasonable bounds
for the amplitude, A1(1) = 0.976586, A1(2) = 1.35052. The result of Mittag–Leffler
optimal summation A = 1.14124 from [11] appears to be close to various modified
Padé–Borel summations.

For the O(4) field theory, analogous computations can be accomplished. The expansion
for c1(g as g→ 0 can be found in [35], so that

c1(g) ' 0.167465g− 0.0297465g2 + 0.00700448g3 − 0.00198926g4 + 0.000647007g5.

The modified-odd Padé-summation fails once again, bringing the estimate A1 = 1.218855.
The modified-even Padé summation once again gives a good estimate A2 ≈ 1.51825,

after resummation in the fourth order of perturbation theory. The modified-even Padé–
Borel summation gives a very good estimate

A∗2 ≈ 1.5995,

obtained after resummation in the fourth order of perturbation theory with reasonably good
bounds A2(1) = 1.41241, A2(2) = 1.84066. The modified-even Padé–Borel approximation
agrees very well with Monte Carlo numerical estimate c1 = 1.6.± 0.1 , as discussed in [10].

The modified-odd Padé–Borel summation also gives quite sensible estimate
A∗1 ≈ 1.63875, after resummation in the third order of perturbation theory with reasonable
lower and upper bounds, A1(1) = 1.42792, A1(2) = 1.92258. The result of Mittag–Leffler
optimal summation from [11], A = 1.60226, appears to be close to various modified Padé–
Borel summations. The modified-even Padé–Borel summation appears to be in a better
agreement with Monte Carlo simulations than the other “Borelian” methods of [9,11].



Axioms 2023, 12, 50 12 of 19

Remarkably, a rather simple modified-even Padé summation appears to be accurate
enough in all three cases considered above. It is the most simple and direct method of
estimating the shift, bringing better estimates than obtained before by the method of
corrected approximants [10].

3.4. Bose Condensate in Spherical Trap

The wave function of the Bose-condensed atoms in a spherically symmetric har-
monic trap can be found from the three-dimensional stationary nonlinear Schrödinger
equation [38]. The problem can be reduced to studying only the radial part of the conden-
sate wave function. In terms of the coupling c measuring the intensity/depth of the trap,
the ground state energy E of the trapped Bose-condensate can be approximated by the
following truncations

E(c) ' 3
2
+

1
2

c− 3
16

c2 +
9

64
c3 − 35

256
c4 (c→ 0), (19)

and by the power-law
E(c) ' Ac2/5 (c→ ∞), (20)

with the amplitude at infinity A = 5
4 [38].

The modified-even Padé summation gives a good estimate for the amplitude,
A∗2 ≈ 1.28211, after resummation in the fourth order of perturbation theory. The modified-
odd Padé summation brings a slightly inferior number A1 = 1.3097 but after resummation
in the third order of perturbation theory.

The modified-even Padé–Borel summation gives the following estimate

A∗2 = 1.34057,

after resummation in the fourth order of perturbation theory with reasonable lower and
upper bounds, A2(1) = 1.28548, A2(2) = 1.39567. The best estimates in this case could be
obtained from the conventional sequence of “accuracy-through-order” approximations [1],

A1(1) = 1.23729, A2(1) = 1.28548,

with the estimate for the amplitude by their average

A ≈ 1.26138± 0.0241.

The modified-odd Padé–Borel summation also produces a sensible estimate A∗1 = 1.36686,
after resummation in the third order of perturbation theory, with reasonable lower and
upper bounds on the amplitude, A1(1) = 1.29394, A1(2) = 1.43978. The best estimates in
this case could be obtained again from the conventional sequence of “accuracy-through-
order” approximations,

A0(1) = 1.23729, A1(1) = 1.29394,

leading to the estimate for the amplitude by their average

A = 1.26561± 0.02832.

Optimal Mittag–Leffler summation [11] in the fourth-order of perturbation theory
produces three close estimates for the amplitude,

1.21091, 1.28579, 1.29063,

with average result A ≈ 1.2624± 0.11. The latter estimate is close to the best results obtained
above by modified Padé–Borel summations. In addition, a significant improvement is
achieved over the results of optimization through the self-similar power transformation [39].
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4. Comments

Our first comment is on the subject of calculating the index at infinity β. In the course
of such calculations with the strongly divergent series, it makes sense to avoid the diff-log
(or, equivalently, DLog) [20] transformation altogether. The transformation makes the Borel
resummation more difficult because in the expression for indices in the Borel technique,
there is now a pole [9,11,20]. Such a pole is of the very same nature as in the case of
formula (9). It is possible though to escape the problem altogether and develop the Borel
techniques without poles.

To such an end, even without a differentiation, the simpler, Log Padé approximants
can be advanced. The index β in such an approach can be expressed as follows,

β = lim
g→∞

log( f (g))
log(g)

. (21)

After resummation, the sought function acquires the following form:

f ∗(g) =
(

1 +
g
g0

)β(g)
, (22)

where the parameter g0 is always positive. For g→ ∞, the index function β(g) is supposed
to satisfy the limit

β(g)→ β.

The value of β gives the sought index.
We can also use the known asymptotic form f (g) (and of f ∗(g)) at small g to express

β(g) as a truncated power series. For small g, we have to deal with the form

β(g) ' log( f ∗(g))

log
(

1 + g
g0

) =
N

∑
n=0

bnxn, (23)

with the RHS expanded in powers of g around the value of β(0). Now, for β(g), we can
construct the diagonal Padé approximants

Pn,n(g) = PadeApproximant[β[g], n, n],

which are always defined as even approximants. Their corresponding limits can be found
with relative ease, so that

βn = lim
g→∞

Pn,n(g), (24)

for all non-negative integers n. The choice of β(0) = a1 simplifies computations. It
corresponds to g0 = 1. Thus, we arrive at the estimates for the index dependent on the
approximation number with the 2n terms from the expansion for β(g) being employed,

The Borel transform can be applied to the truncated series (23) so that

B(g) =
N

∑
n=0

bn

Γ(1 + n)
gn . (25)

The diagonal Padé approximant P(g) = Pn,n(g) required for calculations at large g
behaves as

Pn,n(g) ' Cng0 (g→ ∞) , (26)

and the index dependence on n

βn = Cn = lim
g→∞

PadeApproximant[B(g), n, n] (27)
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can be calculated for all non-negative integers n. There is no pole in the formulas of the
type of (9), which is reduced to formula (27).

Consider the now familiar integral I(g), given by formula (14), with known exact
index β = −1/4. Calculation of the index according to the Log Padé approximation (24)
demonstrates a monotonous convergence, as shown in Figure 5.

Since the index function β(g) is strongly divergent at small g, one can hope that appli-
cation of the Padé–Borel summation directly to β(g) can help to improve the convergence
of the sequences for the index β. Indeed, the Padé–Borel summation according to the
formula (27) results in much better numbers, as shown in Figure 5.

5 10 15 20 25
n

5

10

15

20

25

Ε

Figure 5. Approximate calculation of the index at infinity for the anharmonic partition integral
I(g) (14). The relative percentage error ε is shown dependent on the approximation order. It is
shown with (filled) disks for the Log Padé approximation according to formula (24). The Padé–Borel
summation according to formula (27) results in much better numbers. The relative percentage error
ascribed to formula (27) is shown with squares.

We conclude that it is feasible to (1) avoid the singularity in the expression of the type
of (9), in the Padé–Borel summation and (2) find a sizable improvement in performance by
applying formula (27) instead of formula (24) for calculation of the indices at infinity. Our
second comment is on the subject of calculating the amplitude at infinity for a very short
series, with N = 2 in the general expression (2). Quite often, such minimal meaningful
truncations are all that is known. Mind that the cost of finding more coefficients could
be prohibitive.

In such a case, one can try a special choice of the correcting function K(x), or K(x, b)
in the formulas for even approximants, which would not consume in the process of its
construction any terms from the already short expansions. In particular, one can try the
corrector K(x, b) ≡ K(x), where

K(x) =
Γ(1 + x + β)

Γ(1 + x)
. (28)

As x → ∞, one can see that K(x) ' xβ, automatically satisfying the strong-coupling limit.
In particular, such an approach makes sense for the ground-state energy E of the

Schwinger model. In such a case with N = 2, only the minimal expansion in the dimen-
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sionless coupling parameter x is available. The expansion at small-x for the ground-state
energy, as well as multiple references, can be found in the papers [13,29]. The large-x limit
is a power-law

E(x) ' 0.6418x−1/3.

All four modified Padé methods of the current paper, applied in a standard way, do
not give very good results, with the best number A ≈ 0.7262 for the amplitude at infinity.

However, by applying the modified-even Padé–Borel technique with the corrector
given by formula (28), we find a much better result A1(1) = 0.6911. Furthermore, without
adding any new terms in the expansions for E(x), one can formally apply the same method
in higher orders and find A2(1) = 0.651. The latter result is close to our best estimate
A ≈ 0.6426 from [29].

The form (28) hints that it could be feasible to combine the technique of Borel sum-
mation with fractional calculus [7,8]. We would like to introduce fractional derivatives in
such a way that a nice asymptotic property of asymptotic scale invariance [9] given by the
expression (1) is preserved. To this end, one might look at the generalized Borel formulae
of [16] and attempt to extend the class of modified derivatives entering the formulas to
fractional derivatives while preserving the asymptotic scaling. Determining the order of
fractional derivatives to be employed can be challenging but also productive, since it can
be required to be determined uniquely from the optimization conditions of the types used
in [9,11].

Fractional modeling can be useful when the information on the sought function f (x)is
given in the form of data points and complemented by asymptotic exponential decay
or by a constant with additive exponential correction asymptotic at infinity. A similar
case was discussed in the paper [40]. Spatio-temporal modeling could be performed,
in principle, by means of multi-dimensional extensions of the Padé-approximants. The
third comment concerns the ground-state energy e(g) of the one-dimensional stationary
nonlinear Schrödinger equation describing the Bose-condensed atoms in a harmonic trap.
The equation was employed to find the wave function of the Bose-condensed atoms in a
harmonic trap [41,42]. The expansion for the function e(g) in powers of the small effective
coupling g was obtained up to N = 5 in the general expression (2) [41,42].

In the strong-coupling limit, the ground-state energy behaves as a power-law, i.e.,

e(g) ' Ag2/3 ,

with A = 3
2 [42]. It turns out that modified-odd Padé approximants work well in the fifth

order of perturbation theory, giving rather accurate estimates,

A1 = 1.49145, A2 = 1.49226.

Modified-even Padé approximants also work well in fourth order of perturbation theory,
giving the estimate

A2 = 1.49181,

for the amplitude.
However, if we unwittingly apply the Borel summation in such an almost perfect case

for the modified Padé approximants, then we can only hope that the result will stray not
too far from the already good results achieved by the Padé approximants. Indeed, the
modified-odd Padé–Borel summation gives the following estimates

A1(1) = 1.563, A2(1) = 1.57327,

after resummation in the fifth order of perturbation theory. In addition, the modified-
even Padé–Borel summation also produces a sensible estimate A2(1) = 1.56761 after
resummation in the fourth order of perturbation theory. The estimates appear to be located
not too far from the best solutions by the Padé approximants presented above.
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5. Discussion and Conclusions

Finally, we discuss the ongoing attempts to apply the techniques developed in the
paper to find critical indices for the two popular models of statistical physics where some
unresolved issues still exist. In the case of compressibility of hard disks [43–46], the value
of the index is only conjectured. In the case of the susceptibility of the so-called (2 + 1)-
dimensional Ising model [32,47,48], the standard methods give results systematically higher
than expected. Below, we briefly discuss only the main results, while the complete results
will be presented elsewhere.

The equation of state of the fluid of hard discs expresses the so-called compressibility
factor Z as the function of packing fraction f [43,44]. The compressibility factor exhibits a
divergent, power-law behavior at the filling fc = 1, and

Z ∝ ( fc − f )β ( f → fc − 0),

with the unknown critical index β. For low density, the compressibility factor could be
expressed as an expansion in powers of f , and the nine terms of the perturbative expansion
are available [45,46]. When the critical point fc is finite, the transformation

z =
f

fc − f
, f =

z fc

z + 1
,

could be applied to bring the problem to the generic form considered throughout the current
paper. Following the same idea as in paper [9], and performing the diff-log transformation
and taklng its inverse when required [9], the critical index β can be calculated as the
specific amplitude.

Standard modified-odd Padé approximants give β ≈ −1.866, with all possible terms
from the expansion exploited. The modified-even Padé approximants give β ≈ −1.865
with all terms from the perturbative expansion being used. Such estimates appear to be
rather close to the results of the paper [20].

Modified-odd Padé approximation when combined with the Borel summation gives
β ≈ −2.019. Modified even Padé approximants when combined with the Borel summation
give a close result β ≈ −2.035. These values are much closer to the conjectured value of
β = −2 [43,44] than the result β ≈ −1.884 from the paper [20]. Let us also discuss the
problem of finding the critical index for susceptibility of the (2 + 1)-dimensional Ising
model on the square lattice [47]. The susceptibility χ(x) [47], expressed as the function of
an inverse temperature x diverges at a critical point xc ≈ 0.3285 , as a power-law

χ(x) ∝ (xc − x)−γ , (29)

with the critical index γ ≈ 1.24 [32,47,48]. The high-temperature expansion of the suscep-
tibility on a square lattice is available up to the terms of 16th order in the variable x [47].
It is believed that the (2 + 1) and three-dimensional isotropic Ising model [32] belong to
the same universality class, but the conclusion appears to be poorly supported by the
resummation results for the (2 + 1)-dimensional Ising model [47].

The methodology of the papers [9,20] can be employed to compute the index γ with
various modifications of the Padé approximants introduced in the current paper. Yet,
without the Borel transform, the standard modified-odd Padé approximants give γ ≈ 1.252,
with all terms from the expansion exploited. The modified-even Padé approximants give
γ ≈ 1.249 with all possible terms from the perturbative expansion being used. Such
estimates appear to be significantly higher than the result γ ≈ 1.244 of the paper [47],
which is obtained by various advanced resummation techniques.

Modified-odd Padé approximants combined with the Borel summation give γ = 1.2391.
Modified-even Padé approximants when combined with the Borel summation give a slightly
lower result, γ = 1.2356. These values are much closer to the values of γ = 1.2371 [32], and
γ = 1.2396 from [48], which were obtained for the three-dimensional isotropic Ising model.
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Thus, we cautiously confirm that the (2 + 1)-dimensional Ising model on the square lattice
suggests the values for the critical index γ that are close to the currently accepted values
for the three-dimensional Ising model.

In summary, in the current paper, we suggest a novel method of modified-even Padé
approximants based on the even number of terms in truncations (2). The techniques of
known odd-modified and of novel, even-modified Padé approximants are also employed
for the iterative Borel summation. Because of their accuracy and simplicity, various modi-
fied Padé and Padé–Borel techniques should be tried whenever the problems of finding the
amplitude at infinity reconstructions arise.

In order for the powerful general results of Gonchar [4] to be applicable to realis-
tic truncated problems considered in the current paper, the problems should be with
reasonable accuracy approximated by the holomorphic, modified Padé approximations.
All innovations, transformations, etc. serve the purpose of improving the convergence
and accuracy of reasonable numerical approximations. Sometimes, significant gain can
be found.

The methodology of modified Padé–Borel summation is much simpler technically
than other methods involving optimization, special functions or heavy numerical analysis.
Its application always leads to unique solutions, and the convergence of the method is
controlled by the general theorem of Gonchar [4]. Compared to the well-known Padé–Borel
method, the modified Padé–Borel method could be applied to the case of functions with an
arbitrary power-law asymptotic behavior at infinity.

Modified-odd Padé–Borel summation performs well where it is expected; e.g., it works
well in the case of zero-dimensional field theory with fast-growing an and in the case of
cusp anomalous dimension. In the former case, very good results for the amplitude A were
previously obtained by the variational perturbation method of Kleinert [49] and by our
own self-similar additive approximants [33]. However, such techniques require additional
information on the so-called correction-to-scaling critical indices, while the modified-odd
Padé–Borel summation works without such knowledge.

Remarkably, the methodology of modified Padé–Borel summation appears to be
extendable to the instances with slow decay or non-monotonous behavior of the coefficients
an. In such situations, exemplified by the Bose condensation temperature shift, the results
are still good. The method of modified-even Padé approximants brings the most direct
and quite accurate estimates for the shift. It works well compared to other more involved
methods, such as Mittag–Leffler, Borel–Leroy and iterative Borel summations employed
previously [9,11]. For another important problem of the expansion factor of the two-
dimensional polymer modeled as random walks without intersections, the value of critical
amplitude is not known, and our results could be viewed as a prediction.

We should also remember that there are important physical problems where all current
modified Padé and Padé–Borel schemes fail without any hope to improve them by applying
exclusively various rational and quasi-rational approximations. A vivid example could be
given by the ground state energy of a one-dimensional Bose gas with contact interactions
quantified by the non-dimensional coupling parameter [50,51]. In such case(s), we have to
consider irrational approximations along the lines of the papers [9,10].
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